#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace ProfileEvents { extern const Event ExternalAggregationWritePart; extern const Event ExternalAggregationCompressedBytes; extern const Event ExternalAggregationUncompressedBytes; } namespace CurrentMetrics { extern const Metric QueryThread; } namespace DB { namespace ErrorCodes { extern const int UNKNOWN_AGGREGATED_DATA_VARIANT; extern const int NOT_ENOUGH_SPACE; extern const int TOO_MANY_ROWS; extern const int EMPTY_DATA_PASSED; extern const int CANNOT_MERGE_DIFFERENT_AGGREGATED_DATA_VARIANTS; extern const int LOGICAL_ERROR; } AggregatedDataVariants::~AggregatedDataVariants() { if (aggregator && !aggregator->all_aggregates_has_trivial_destructor) { try { aggregator->destroyAllAggregateStates(*this); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__); } } } void AggregatedDataVariants::convertToTwoLevel() { if (aggregator) LOG_TRACE(aggregator->log, "Converting aggregation data to two-level."); switch (type) { #define M(NAME) \ case Type::NAME: \ NAME ## _two_level = std::make_unique(*(NAME)); \ (NAME).reset(); \ type = Type::NAME ## _two_level; \ break; APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) #undef M default: throw Exception("Wrong data variant passed.", ErrorCodes::LOGICAL_ERROR); } } Block Aggregator::getHeader(bool final) const { return params.getHeader(final); } Block Aggregator::Params::getHeader( const Block & src_header, const Block & intermediate_header, const ColumnNumbers & keys, const AggregateDescriptions & aggregates, bool final) { Block res; if (intermediate_header) { res = intermediate_header.cloneEmpty(); if (final) { for (const auto & aggregate : aggregates) { auto & elem = res.getByName(aggregate.column_name); elem.type = aggregate.function->getReturnType(); elem.column = elem.type->createColumn(); } } } else { for (const auto & key : keys) res.insert(src_header.safeGetByPosition(key).cloneEmpty()); for (const auto & aggregate : aggregates) { size_t arguments_size = aggregate.arguments.size(); DataTypes argument_types(arguments_size); for (size_t j = 0; j < arguments_size; ++j) argument_types[j] = src_header.safeGetByPosition(aggregate.arguments[j]).type; DataTypePtr type; if (final) type = aggregate.function->getReturnType(); else type = std::make_shared(aggregate.function, argument_types, aggregate.parameters); res.insert({ type, aggregate.column_name }); } } return materializeBlock(res); } void Aggregator::Params::explain(WriteBuffer & out, size_t indent) const { Strings res; const auto & header = src_header ? src_header : intermediate_header; String prefix(indent, ' '); { /// Dump keys. out << prefix << "Keys: "; bool first = true; for (auto key : keys) { if (!first) out << ", "; first = false; if (key >= header.columns()) out << "unknown position " << key; else out << header.getByPosition(key).name; } out << '\n'; } if (!aggregates.empty()) { out << prefix << "Aggregates:\n"; for (const auto & aggregate : aggregates) aggregate.explain(out, indent + 4); } } void Aggregator::Params::explain(JSONBuilder::JSONMap & map) const { const auto & header = src_header ? src_header : intermediate_header; auto keys_array = std::make_unique(); for (auto key : keys) { if (key >= header.columns()) keys_array->add(""); else keys_array->add(header.getByPosition(key).name); } map.add("Keys", std::move(keys_array)); if (!aggregates.empty()) { auto aggregates_array = std::make_unique(); for (const auto & aggregate : aggregates) { auto aggregate_map = std::make_unique(); aggregate.explain(*aggregate_map); aggregates_array->add(std::move(aggregate_map)); } map.add("Aggregates", std::move(aggregates_array)); } } #if USE_EMBEDDED_COMPILER static CHJIT & getJITInstance() { static CHJIT jit; return jit; } class CompiledAggregateFunctionsHolder final : public CompiledExpressionCacheEntry { public: explicit CompiledAggregateFunctionsHolder(CompiledAggregateFunctions compiled_function_) : CompiledExpressionCacheEntry(compiled_function_.compiled_module.size) , compiled_aggregate_functions(compiled_function_) {} ~CompiledAggregateFunctionsHolder() override { getJITInstance().deleteCompiledModule(compiled_aggregate_functions.compiled_module); } CompiledAggregateFunctions compiled_aggregate_functions; }; #endif Aggregator::Aggregator(const Params & params_) : params(params_) { /// Use query-level memory tracker if (auto * memory_tracker_child = CurrentThread::getMemoryTracker()) if (auto * memory_tracker = memory_tracker_child->getParent()) memory_usage_before_aggregation = memory_tracker->get(); aggregate_functions.resize(params.aggregates_size); for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i] = params.aggregates[i].function.get(); /// Initialize sizes of aggregation states and its offsets. offsets_of_aggregate_states.resize(params.aggregates_size); total_size_of_aggregate_states = 0; all_aggregates_has_trivial_destructor = true; // aggregate_states will be aligned as below: // |<-- state_1 -->|<-- pad_1 -->|<-- state_2 -->|<-- pad_2 -->| ..... // // pad_N will be used to match alignment requirement for each next state. // The address of state_1 is aligned based on maximum alignment requirements in states for (size_t i = 0; i < params.aggregates_size; ++i) { offsets_of_aggregate_states[i] = total_size_of_aggregate_states; total_size_of_aggregate_states += params.aggregates[i].function->sizeOfData(); // aggregate states are aligned based on maximum requirement align_aggregate_states = std::max(align_aggregate_states, params.aggregates[i].function->alignOfData()); // If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned. if (i + 1 < params.aggregates_size) { size_t alignment_of_next_state = params.aggregates[i + 1].function->alignOfData(); if ((alignment_of_next_state & (alignment_of_next_state - 1)) != 0) throw Exception("Logical error: alignOfData is not 2^N", ErrorCodes::LOGICAL_ERROR); /// Extend total_size to next alignment requirement /// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state. total_size_of_aggregate_states = (total_size_of_aggregate_states + alignment_of_next_state - 1) / alignment_of_next_state * alignment_of_next_state; } if (!params.aggregates[i].function->hasTrivialDestructor()) all_aggregates_has_trivial_destructor = false; } method_chosen = chooseAggregationMethod(); HashMethodContext::Settings cache_settings; cache_settings.max_threads = params.max_threads; aggregation_state_cache = AggregatedDataVariants::createCache(method_chosen, cache_settings); #if USE_EMBEDDED_COMPILER compileAggregateFunctionsIfNeeded(); #endif } #if USE_EMBEDDED_COMPILER void Aggregator::compileAggregateFunctionsIfNeeded() { static std::unordered_map aggregate_functions_description_to_count; static std::mutex mtx; if (!params.compile_aggregate_expressions) return; std::vector functions_to_compile; size_t aggregate_instructions_size = 0; String functions_description; is_aggregate_function_compiled.resize(aggregate_functions.size()); /// Add values to the aggregate functions. for (size_t i = 0; i < aggregate_functions.size(); ++i) { const auto * function = aggregate_functions[i]; size_t offset_of_aggregate_function = offsets_of_aggregate_states[i]; if (function->isCompilable()) { AggregateFunctionWithOffset function_to_compile { .function = function, .aggregate_data_offset = offset_of_aggregate_function }; functions_to_compile.emplace_back(std::move(function_to_compile)); functions_description += function->getDescription(); functions_description += ' '; functions_description += std::to_string(offset_of_aggregate_function); functions_description += ' '; } ++aggregate_instructions_size; is_aggregate_function_compiled[i] = function->isCompilable(); } if (functions_to_compile.empty()) return; SipHash aggregate_functions_description_hash; aggregate_functions_description_hash.update(functions_description); UInt128 aggregate_functions_description_hash_key; aggregate_functions_description_hash.get128(aggregate_functions_description_hash_key); { std::lock_guard lock(mtx); if (aggregate_functions_description_to_count[aggregate_functions_description_hash_key]++ < params.min_count_to_compile_aggregate_expression) return; if (auto * compilation_cache = CompiledExpressionCacheFactory::instance().tryGetCache()) { auto [compiled_function_cache_entry, _] = compilation_cache->getOrSet(aggregate_functions_description_hash_key, [&] () { LOG_TRACE(log, "Compile expression {}", functions_description); auto compiled_aggregate_functions = compileAggregateFunctions(getJITInstance(), functions_to_compile, functions_description); return std::make_shared(std::move(compiled_aggregate_functions)); }); compiled_aggregate_functions_holder = std::static_pointer_cast(compiled_function_cache_entry); } else { LOG_TRACE(log, "Compile expression {}", functions_description); auto compiled_aggregate_functions = compileAggregateFunctions(getJITInstance(), functions_to_compile, functions_description); compiled_aggregate_functions_holder = std::make_shared(std::move(compiled_aggregate_functions)); } } } #endif AggregatedDataVariants::Type Aggregator::chooseAggregationMethod() { /// If no keys. All aggregating to single row. if (params.keys_size == 0) return AggregatedDataVariants::Type::without_key; /// Check if at least one of the specified keys is nullable. DataTypes types_removed_nullable; types_removed_nullable.reserve(params.keys.size()); bool has_nullable_key = false; bool has_low_cardinality = false; for (const auto & pos : params.keys) { DataTypePtr type = (params.src_header ? params.src_header : params.intermediate_header).safeGetByPosition(pos).type; if (type->lowCardinality()) { has_low_cardinality = true; type = removeLowCardinality(type); } if (type->isNullable()) { has_nullable_key = true; type = removeNullable(type); } types_removed_nullable.push_back(type); } /** Returns ordinary (not two-level) methods, because we start from them. * Later, during aggregation process, data may be converted (partitioned) to two-level structure, if cardinality is high. */ size_t keys_bytes = 0; size_t num_fixed_contiguous_keys = 0; key_sizes.resize(params.keys_size); for (size_t j = 0; j < params.keys_size; ++j) { if (types_removed_nullable[j]->isValueUnambiguouslyRepresentedInContiguousMemoryRegion()) { if (types_removed_nullable[j]->isValueUnambiguouslyRepresentedInFixedSizeContiguousMemoryRegion()) { ++num_fixed_contiguous_keys; key_sizes[j] = types_removed_nullable[j]->getSizeOfValueInMemory(); keys_bytes += key_sizes[j]; } } } if (has_nullable_key) { if (params.keys_size == num_fixed_contiguous_keys && !has_low_cardinality) { /// Pack if possible all the keys along with information about which key values are nulls /// into a fixed 16- or 32-byte blob. if (std::tuple_size>::value + keys_bytes <= 16) return AggregatedDataVariants::Type::nullable_keys128; if (std::tuple_size>::value + keys_bytes <= 32) return AggregatedDataVariants::Type::nullable_keys256; } if (has_low_cardinality && params.keys_size == 1) { if (types_removed_nullable[0]->isValueRepresentedByNumber()) { size_t size_of_field = types_removed_nullable[0]->getSizeOfValueInMemory(); if (size_of_field == 1) return AggregatedDataVariants::Type::low_cardinality_key8; if (size_of_field == 2) return AggregatedDataVariants::Type::low_cardinality_key16; if (size_of_field == 4) return AggregatedDataVariants::Type::low_cardinality_key32; if (size_of_field == 8) return AggregatedDataVariants::Type::low_cardinality_key64; } else if (isString(types_removed_nullable[0])) return AggregatedDataVariants::Type::low_cardinality_key_string; else if (isFixedString(types_removed_nullable[0])) return AggregatedDataVariants::Type::low_cardinality_key_fixed_string; } /// Fallback case. return AggregatedDataVariants::Type::serialized; } /// No key has been found to be nullable. /// Single numeric key. if (params.keys_size == 1 && types_removed_nullable[0]->isValueRepresentedByNumber()) { size_t size_of_field = types_removed_nullable[0]->getSizeOfValueInMemory(); if (has_low_cardinality) { if (size_of_field == 1) return AggregatedDataVariants::Type::low_cardinality_key8; if (size_of_field == 2) return AggregatedDataVariants::Type::low_cardinality_key16; if (size_of_field == 4) return AggregatedDataVariants::Type::low_cardinality_key32; if (size_of_field == 8) return AggregatedDataVariants::Type::low_cardinality_key64; } if (size_of_field == 1) return AggregatedDataVariants::Type::key8; if (size_of_field == 2) return AggregatedDataVariants::Type::key16; if (size_of_field == 4) return AggregatedDataVariants::Type::key32; if (size_of_field == 8) return AggregatedDataVariants::Type::key64; if (size_of_field == 16) return AggregatedDataVariants::Type::keys128; if (size_of_field == 32) return AggregatedDataVariants::Type::keys256; throw Exception("Logical error: numeric column has sizeOfField not in 1, 2, 4, 8, 16, 32.", ErrorCodes::LOGICAL_ERROR); } if (params.keys_size == 1 && isFixedString(types_removed_nullable[0])) { if (has_low_cardinality) return AggregatedDataVariants::Type::low_cardinality_key_fixed_string; else return AggregatedDataVariants::Type::key_fixed_string; } /// If all keys fits in N bits, will use hash table with all keys packed (placed contiguously) to single N-bit key. if (params.keys_size == num_fixed_contiguous_keys) { if (has_low_cardinality) { if (keys_bytes <= 16) return AggregatedDataVariants::Type::low_cardinality_keys128; if (keys_bytes <= 32) return AggregatedDataVariants::Type::low_cardinality_keys256; } if (keys_bytes <= 2) return AggregatedDataVariants::Type::keys16; if (keys_bytes <= 4) return AggregatedDataVariants::Type::keys32; if (keys_bytes <= 8) return AggregatedDataVariants::Type::keys64; if (keys_bytes <= 16) return AggregatedDataVariants::Type::keys128; if (keys_bytes <= 32) return AggregatedDataVariants::Type::keys256; } /// If single string key - will use hash table with references to it. Strings itself are stored separately in Arena. if (params.keys_size == 1 && isString(types_removed_nullable[0])) { if (has_low_cardinality) return AggregatedDataVariants::Type::low_cardinality_key_string; else return AggregatedDataVariants::Type::key_string; } return AggregatedDataVariants::Type::serialized; } template void Aggregator::createAggregateStates(AggregateDataPtr & aggregate_data) const { for (size_t j = 0; j < params.aggregates_size; ++j) { if constexpr (skip_compiled_aggregate_functions) if (is_aggregate_function_compiled[j]) continue; try { /** An exception may occur if there is a shortage of memory. * In order that then everything is properly destroyed, we "roll back" some of the created states. * The code is not very convenient. */ aggregate_functions[j]->create(aggregate_data + offsets_of_aggregate_states[j]); } catch (...) { for (size_t rollback_j = 0; rollback_j < j; ++rollback_j) { if constexpr (skip_compiled_aggregate_functions) if (is_aggregate_function_compiled[j]) continue; aggregate_functions[rollback_j]->destroy(aggregate_data + offsets_of_aggregate_states[rollback_j]); } throw; } } } /** It's interesting - if you remove `noinline`, then gcc for some reason will inline this function, and the performance decreases (~ 10%). * (Probably because after the inline of this function, more internal functions no longer be inlined.) * Inline does not make sense, since the inner loop is entirely inside this function. */ template void NO_INLINE Aggregator::executeImpl( Method & method, Arena * aggregates_pool, size_t rows, ColumnRawPtrs & key_columns, AggregateFunctionInstruction * aggregate_instructions, bool no_more_keys, AggregateDataPtr overflow_row) const { typename Method::State state(key_columns, key_sizes, aggregation_state_cache); if (!no_more_keys) { #if USE_EMBEDDED_COMPILER if (compiled_aggregate_functions_holder) { executeImplBatch(method, state, aggregates_pool, rows, aggregate_instructions, overflow_row); } else #endif { executeImplBatch(method, state, aggregates_pool, rows, aggregate_instructions, overflow_row); } } else { executeImplBatch(method, state, aggregates_pool, rows, aggregate_instructions, overflow_row); } } template void NO_INLINE Aggregator::executeImplBatch( Method & method, typename Method::State & state, Arena * aggregates_pool, size_t rows, AggregateFunctionInstruction * aggregate_instructions, AggregateDataPtr overflow_row) const { /// Optimization for special case when there are no aggregate functions. if (params.aggregates_size == 0) { if constexpr (no_more_keys) return; /// For all rows. AggregateDataPtr place = aggregates_pool->alloc(0); for (size_t i = 0; i < rows; ++i) state.emplaceKey(method.data, i, *aggregates_pool).setMapped(place); return; } /// Optimization for special case when aggregating by 8bit key. if constexpr (!no_more_keys && std::is_same_v) { /// We use another method if there are aggregate functions with -Array combinator. bool has_arrays = false; for (AggregateFunctionInstruction * inst = aggregate_instructions; inst->that; ++inst) { if (inst->offsets) { has_arrays = true; break; } } if (!has_arrays) { for (AggregateFunctionInstruction * inst = aggregate_instructions; inst->that; ++inst) { inst->batch_that->addBatchLookupTable8( rows, reinterpret_cast(method.data.data()), inst->state_offset, [&](AggregateDataPtr & aggregate_data) { aggregate_data = aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states); createAggregateStates(aggregate_data); }, state.getKeyData(), inst->batch_arguments, aggregates_pool); } return; } } std::unique_ptr places(new AggregateDataPtr[rows]); /// For all rows. for (size_t i = 0; i < rows; ++i) { AggregateDataPtr aggregate_data = nullptr; if constexpr (!no_more_keys) { auto emplace_result = state.emplaceKey(method.data, i, *aggregates_pool); /// If a new key is inserted, initialize the states of the aggregate functions, and possibly something related to the key. if (emplace_result.isInserted()) { /// exception-safety - if you can not allocate memory or create states, then destructors will not be called. emplace_result.setMapped(nullptr); aggregate_data = aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states); #if USE_EMBEDDED_COMPILER if constexpr (use_compiled_functions) { const auto & compiled_aggregate_functions = compiled_aggregate_functions_holder->compiled_aggregate_functions; compiled_aggregate_functions.create_aggregate_states_function(aggregate_data); if (compiled_aggregate_functions.functions_count != aggregate_functions.size()) { static constexpr bool skip_compiled_aggregate_functions = true; createAggregateStates(aggregate_data); } #if defined(MEMORY_SANITIZER) /// We compile only functions that do not allocate some data in Arena. Only store necessary state in AggregateData place. for (size_t aggregate_function_index = 0; aggregate_function_index < aggregate_functions.size(); ++aggregate_function_index) { if (!is_aggregate_function_compiled[aggregate_function_index]) continue; auto aggregate_data_with_offset = aggregate_data + offsets_of_aggregate_states[aggregate_function_index]; auto data_size = params.aggregates[aggregate_function_index].function->sizeOfData(); __msan_unpoison(aggregate_data_with_offset, data_size); } #endif } else #endif { createAggregateStates(aggregate_data); } emplace_result.setMapped(aggregate_data); } else aggregate_data = emplace_result.getMapped(); assert(aggregate_data != nullptr); } else { /// Add only if the key already exists. auto find_result = state.findKey(method.data, i, *aggregates_pool); if (find_result.isFound()) aggregate_data = find_result.getMapped(); else aggregate_data = overflow_row; } places[i] = aggregate_data; } #if USE_EMBEDDED_COMPILER if constexpr (use_compiled_functions) { std::vector columns_data; for (size_t i = 0; i < aggregate_functions.size(); ++i) { if (!is_aggregate_function_compiled[i]) continue; AggregateFunctionInstruction * inst = aggregate_instructions + i; size_t arguments_size = inst->that->getArgumentTypes().size(); for (size_t argument_index = 0; argument_index < arguments_size; ++argument_index) columns_data.emplace_back(getColumnData(inst->batch_arguments[argument_index])); } auto add_into_aggregate_states_function = compiled_aggregate_functions_holder->compiled_aggregate_functions.add_into_aggregate_states_function; add_into_aggregate_states_function(rows, columns_data.data(), places.get()); } #endif /// Add values to the aggregate functions. for (size_t i = 0; i < aggregate_functions.size(); ++i) { #if USE_EMBEDDED_COMPILER if constexpr (use_compiled_functions) if (is_aggregate_function_compiled[i]) continue; #endif AggregateFunctionInstruction * inst = aggregate_instructions + i; if (inst->offsets) inst->batch_that->addBatchArray(rows, places.get(), inst->state_offset, inst->batch_arguments, inst->offsets, aggregates_pool); else inst->batch_that->addBatch(rows, places.get(), inst->state_offset, inst->batch_arguments, aggregates_pool); } } void NO_INLINE Aggregator::executeWithoutKeyImpl( AggregatedDataWithoutKey & res, size_t rows, AggregateFunctionInstruction * aggregate_instructions, Arena * arena) { /// Adding values for (AggregateFunctionInstruction * inst = aggregate_instructions; inst->that; ++inst) { if (inst->offsets) inst->batch_that->addBatchSinglePlace( inst->offsets[static_cast(rows - 1)], res + inst->state_offset, inst->batch_arguments, arena); else inst->batch_that->addBatchSinglePlace(rows, res + inst->state_offset, inst->batch_arguments, arena); } } void NO_INLINE Aggregator::executeOnIntervalWithoutKeyImpl( AggregatedDataWithoutKey & res, size_t row_begin, size_t row_end, AggregateFunctionInstruction * aggregate_instructions, Arena * arena) { /// Adding values for (AggregateFunctionInstruction * inst = aggregate_instructions; inst->that; ++inst) { if (inst->offsets) inst->batch_that->addBatchSinglePlaceFromInterval(inst->offsets[row_begin], inst->offsets[row_end - 1], res + inst->state_offset, inst->batch_arguments, arena); else inst->batch_that->addBatchSinglePlaceFromInterval(row_begin, row_end, res + inst->state_offset, inst->batch_arguments, arena); } } void Aggregator::prepareAggregateInstructions(Columns columns, AggregateColumns & aggregate_columns, Columns & materialized_columns, AggregateFunctionInstructions & aggregate_functions_instructions, NestedColumnsHolder & nested_columns_holder) { for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_columns[i].resize(params.aggregates[i].arguments.size()); aggregate_functions_instructions.resize(params.aggregates_size + 1); aggregate_functions_instructions[params.aggregates_size].that = nullptr; for (size_t i = 0; i < params.aggregates_size; ++i) { for (size_t j = 0; j < aggregate_columns[i].size(); ++j) { materialized_columns.push_back(columns.at(params.aggregates[i].arguments[j])->convertToFullColumnIfConst()); aggregate_columns[i][j] = materialized_columns.back().get(); auto column_no_lc = recursiveRemoveLowCardinality(aggregate_columns[i][j]->getPtr()); if (column_no_lc.get() != aggregate_columns[i][j]) { materialized_columns.emplace_back(std::move(column_no_lc)); aggregate_columns[i][j] = materialized_columns.back().get(); } } aggregate_functions_instructions[i].arguments = aggregate_columns[i].data(); aggregate_functions_instructions[i].state_offset = offsets_of_aggregate_states[i]; const auto * that = aggregate_functions[i]; /// Unnest consecutive trailing -State combinators while (const auto * func = typeid_cast(that)) that = func->getNestedFunction().get(); aggregate_functions_instructions[i].that = that; if (const auto * func = typeid_cast(that)) { /// Unnest consecutive -State combinators before -Array that = func->getNestedFunction().get(); while (const auto * nested_func = typeid_cast(that)) that = nested_func->getNestedFunction().get(); auto [nested_columns, offsets] = checkAndGetNestedArrayOffset(aggregate_columns[i].data(), that->getArgumentTypes().size()); nested_columns_holder.push_back(std::move(nested_columns)); aggregate_functions_instructions[i].batch_arguments = nested_columns_holder.back().data(); aggregate_functions_instructions[i].offsets = offsets; } else aggregate_functions_instructions[i].batch_arguments = aggregate_columns[i].data(); aggregate_functions_instructions[i].batch_that = that; } } bool Aggregator::executeOnBlock(const Block & block, AggregatedDataVariants & result, ColumnRawPtrs & key_columns, AggregateColumns & aggregate_columns, bool & no_more_keys) { UInt64 num_rows = block.rows(); return executeOnBlock(block.getColumns(), num_rows, result, key_columns, aggregate_columns, no_more_keys); } bool Aggregator::executeOnBlock(Columns columns, UInt64 num_rows, AggregatedDataVariants & result, ColumnRawPtrs & key_columns, AggregateColumns & aggregate_columns, bool & no_more_keys) { /// `result` will destroy the states of aggregate functions in the destructor result.aggregator = this; /// How to perform the aggregation? if (result.empty()) { result.init(method_chosen); result.keys_size = params.keys_size; result.key_sizes = key_sizes; LOG_TRACE(log, "Aggregation method: {}", result.getMethodName()); } /** Constant columns are not supported directly during aggregation. * To make them work anyway, we materialize them. */ Columns materialized_columns; /// Remember the columns we will work with for (size_t i = 0; i < params.keys_size; ++i) { materialized_columns.push_back(columns.at(params.keys[i])->convertToFullColumnIfConst()); key_columns[i] = materialized_columns.back().get(); if (!result.isLowCardinality()) { auto column_no_lc = recursiveRemoveLowCardinality(key_columns[i]->getPtr()); if (column_no_lc.get() != key_columns[i]) { materialized_columns.emplace_back(std::move(column_no_lc)); key_columns[i] = materialized_columns.back().get(); } } } NestedColumnsHolder nested_columns_holder; AggregateFunctionInstructions aggregate_functions_instructions; prepareAggregateInstructions(columns, aggregate_columns, materialized_columns, aggregate_functions_instructions, nested_columns_holder); if ((params.overflow_row || result.type == AggregatedDataVariants::Type::without_key) && !result.without_key) { AggregateDataPtr place = result.aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states); createAggregateStates(place); result.without_key = place; } /// We select one of the aggregation methods and call it. /// For the case when there are no keys (all aggregate into one row). if (result.type == AggregatedDataVariants::Type::without_key) { executeWithoutKeyImpl(result.without_key, num_rows, aggregate_functions_instructions.data(), result.aggregates_pool); } else { /// This is where data is written that does not fit in `max_rows_to_group_by` with `group_by_overflow_mode = any`. AggregateDataPtr overflow_row_ptr = params.overflow_row ? result.without_key : nullptr; #define M(NAME, IS_TWO_LEVEL) \ else if (result.type == AggregatedDataVariants::Type::NAME) \ executeImpl(*result.NAME, result.aggregates_pool, num_rows, key_columns, aggregate_functions_instructions.data(), \ no_more_keys, overflow_row_ptr); if (false) {} // NOLINT APPLY_FOR_AGGREGATED_VARIANTS(M) #undef M } size_t result_size = result.sizeWithoutOverflowRow(); Int64 current_memory_usage = 0; if (auto * memory_tracker_child = CurrentThread::getMemoryTracker()) if (auto * memory_tracker = memory_tracker_child->getParent()) current_memory_usage = memory_tracker->get(); /// Here all the results in the sum are taken into account, from different threads. auto result_size_bytes = current_memory_usage - memory_usage_before_aggregation; bool worth_convert_to_two_level = (params.group_by_two_level_threshold && result_size >= params.group_by_two_level_threshold) || (params.group_by_two_level_threshold_bytes && result_size_bytes >= static_cast(params.group_by_two_level_threshold_bytes)); /** Converting to a two-level data structure. * It allows you to make, in the subsequent, an effective merge - either economical from memory or parallel. */ if (result.isConvertibleToTwoLevel() && worth_convert_to_two_level) result.convertToTwoLevel(); /// Checking the constraints. if (!checkLimits(result_size, no_more_keys)) return false; /** Flush data to disk if too much RAM is consumed. * Data can only be flushed to disk if a two-level aggregation structure is used. */ if (params.max_bytes_before_external_group_by && result.isTwoLevel() && current_memory_usage > static_cast(params.max_bytes_before_external_group_by) && worth_convert_to_two_level) { size_t size = current_memory_usage + params.min_free_disk_space; std::string tmp_path = params.tmp_volume->getDisk()->getPath(); // enoughSpaceInDirectory() is not enough to make it right, since // another process (or another thread of aggregator) can consume all // space. // // But true reservation (IVolume::reserve()) cannot be used here since // current_memory_usage does not takes compression into account and // will reserve way more that actually will be used. // // Hence let's do a simple check. if (!enoughSpaceInDirectory(tmp_path, size)) throw Exception("Not enough space for external aggregation in " + tmp_path, ErrorCodes::NOT_ENOUGH_SPACE); writeToTemporaryFile(result, tmp_path); } return true; } void Aggregator::writeToTemporaryFile(AggregatedDataVariants & data_variants, const String & tmp_path) { Stopwatch watch; size_t rows = data_variants.size(); auto file = createTemporaryFile(tmp_path); const std::string & path = file->path(); WriteBufferFromFile file_buf(path); CompressedWriteBuffer compressed_buf(file_buf); NativeBlockOutputStream block_out(compressed_buf, DBMS_TCP_PROTOCOL_VERSION, getHeader(false)); LOG_DEBUG(log, "Writing part of aggregation data into temporary file {}.", path); ProfileEvents::increment(ProfileEvents::ExternalAggregationWritePart); /// Flush only two-level data and possibly overflow data. #define M(NAME) \ else if (data_variants.type == AggregatedDataVariants::Type::NAME) \ writeToTemporaryFileImpl(data_variants, *data_variants.NAME, block_out); if (false) {} // NOLINT APPLY_FOR_VARIANTS_TWO_LEVEL(M) #undef M else throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); /// NOTE Instead of freeing up memory and creating new hash tables and arenas, you can re-use the old ones. data_variants.init(data_variants.type); data_variants.aggregates_pools = Arenas(1, std::make_shared()); data_variants.aggregates_pool = data_variants.aggregates_pools.back().get(); if (params.overflow_row || data_variants.type == AggregatedDataVariants::Type::without_key) { AggregateDataPtr place = data_variants.aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states); createAggregateStates(place); data_variants.without_key = place; } block_out.flush(); compressed_buf.next(); file_buf.next(); double elapsed_seconds = watch.elapsedSeconds(); double compressed_bytes = file_buf.count(); double uncompressed_bytes = compressed_buf.count(); { std::lock_guard lock(temporary_files.mutex); temporary_files.files.emplace_back(std::move(file)); temporary_files.sum_size_uncompressed += uncompressed_bytes; temporary_files.sum_size_compressed += compressed_bytes; } ProfileEvents::increment(ProfileEvents::ExternalAggregationCompressedBytes, compressed_bytes); ProfileEvents::increment(ProfileEvents::ExternalAggregationUncompressedBytes, uncompressed_bytes); LOG_DEBUG(log, "Written part in {:.3f} sec., {} rows, {} uncompressed, {} compressed," " {:.3f} uncompressed bytes per row, {:.3f} compressed bytes per row, compression rate: {:.3f}" " ({:.3f} rows/sec., {}/sec. uncompressed, {}/sec. compressed)", elapsed_seconds, rows, ReadableSize(uncompressed_bytes), ReadableSize(compressed_bytes), uncompressed_bytes / rows, compressed_bytes / rows, uncompressed_bytes / compressed_bytes, rows / elapsed_seconds, ReadableSize(uncompressed_bytes / elapsed_seconds), ReadableSize(compressed_bytes / elapsed_seconds)); } void Aggregator::writeToTemporaryFile(AggregatedDataVariants & data_variants) { String tmp_path = params.tmp_volume->getDisk()->getPath(); return writeToTemporaryFile(data_variants, tmp_path); } template Block Aggregator::convertOneBucketToBlock( AggregatedDataVariants & data_variants, Method & method, Arena * arena, bool final, size_t bucket) const { Block block = prepareBlockAndFill(data_variants, final, method.data.impls[bucket].size(), [bucket, &method, arena, this] ( MutableColumns & key_columns, AggregateColumnsData & aggregate_columns, MutableColumns & final_aggregate_columns, bool final_) { convertToBlockImpl(method, method.data.impls[bucket], key_columns, aggregate_columns, final_aggregate_columns, arena, final_); }); block.info.bucket_num = bucket; return block; } Block Aggregator::mergeAndConvertOneBucketToBlock( ManyAggregatedDataVariants & variants, Arena * arena, bool final, size_t bucket, std::atomic * is_cancelled) const { auto & merged_data = *variants[0]; auto method = merged_data.type; Block block; if (false) {} // NOLINT #define M(NAME) \ else if (method == AggregatedDataVariants::Type::NAME) \ { \ mergeBucketImpl(variants, bucket, arena); \ if (is_cancelled && is_cancelled->load(std::memory_order_seq_cst)) \ return {}; \ block = convertOneBucketToBlock(merged_data, *merged_data.NAME, arena, final, bucket); \ } APPLY_FOR_VARIANTS_TWO_LEVEL(M) #undef M return block; } template void Aggregator::writeToTemporaryFileImpl( AggregatedDataVariants & data_variants, Method & method, IBlockOutputStream & out) { size_t max_temporary_block_size_rows = 0; size_t max_temporary_block_size_bytes = 0; auto update_max_sizes = [&](const Block & block) { size_t block_size_rows = block.rows(); size_t block_size_bytes = block.bytes(); if (block_size_rows > max_temporary_block_size_rows) max_temporary_block_size_rows = block_size_rows; if (block_size_bytes > max_temporary_block_size_bytes) max_temporary_block_size_bytes = block_size_bytes; }; for (size_t bucket = 0; bucket < Method::Data::NUM_BUCKETS; ++bucket) { Block block = convertOneBucketToBlock(data_variants, method, data_variants.aggregates_pool, false, bucket); out.write(block); update_max_sizes(block); } if (params.overflow_row) { Block block = prepareBlockAndFillWithoutKey(data_variants, false, true); out.write(block); update_max_sizes(block); } /// Pass ownership of the aggregate functions states: /// `data_variants` will not destroy them in the destructor, they are now owned by ColumnAggregateFunction objects. data_variants.aggregator = nullptr; LOG_DEBUG(log, "Max size of temporary block: {} rows, {}.", max_temporary_block_size_rows, ReadableSize(max_temporary_block_size_bytes)); } bool Aggregator::checkLimits(size_t result_size, bool & no_more_keys) const { if (!no_more_keys && params.max_rows_to_group_by && result_size > params.max_rows_to_group_by) { switch (params.group_by_overflow_mode) { case OverflowMode::THROW: throw Exception("Limit for rows to GROUP BY exceeded: has " + toString(result_size) + " rows, maximum: " + toString(params.max_rows_to_group_by), ErrorCodes::TOO_MANY_ROWS); case OverflowMode::BREAK: return false; case OverflowMode::ANY: no_more_keys = true; break; } } return true; } template void Aggregator::convertToBlockImpl( Method & method, Table & data, MutableColumns & key_columns, AggregateColumnsData & aggregate_columns, MutableColumns & final_aggregate_columns, Arena * arena, bool final) const { if (data.empty()) return; if (key_columns.size() != params.keys_size) throw Exception{"Aggregate. Unexpected key columns size.", ErrorCodes::LOGICAL_ERROR}; std::vector raw_key_columns; raw_key_columns.reserve(key_columns.size()); for (auto & column : key_columns) raw_key_columns.push_back(column.get()); if (final) { #if USE_EMBEDDED_COMPILER if (compiled_aggregate_functions_holder) { static constexpr bool use_compiled_functions = !Method::low_cardinality_optimization; convertToBlockImplFinal(method, data, std::move(raw_key_columns), final_aggregate_columns, arena); } else #endif { convertToBlockImplFinal(method, data, std::move(raw_key_columns), final_aggregate_columns, arena); } } else { convertToBlockImplNotFinal(method, data, std::move(raw_key_columns), aggregate_columns); } /// In order to release memory early. data.clearAndShrink(); } template inline void Aggregator::insertAggregatesIntoColumns( Mapped & mapped, MutableColumns & final_aggregate_columns, Arena * arena) const { /** Final values of aggregate functions are inserted to columns. * Then states of aggregate functions, that are not longer needed, are destroyed. * * We mark already destroyed states with "nullptr" in data, * so they will not be destroyed in destructor of Aggregator * (other values will be destroyed in destructor in case of exception). * * But it becomes tricky, because we have multiple aggregate states pointed by a single pointer in data. * So, if exception is thrown in the middle of moving states for different aggregate functions, * we have to catch exceptions and destroy all the states that are no longer needed, * to keep the data in consistent state. * * It is also tricky, because there are aggregate functions with "-State" modifier. * When we call "insertResultInto" for them, they insert a pointer to the state to ColumnAggregateFunction * and ColumnAggregateFunction will take ownership of this state. * So, for aggregate functions with "-State" modifier, the state must not be destroyed * after it has been transferred to ColumnAggregateFunction. * But we should mark that the data no longer owns these states. */ size_t insert_i = 0; std::exception_ptr exception; try { /// Insert final values of aggregate functions into columns. for (; insert_i < params.aggregates_size; ++insert_i) aggregate_functions[insert_i]->insertResultInto( mapped + offsets_of_aggregate_states[insert_i], *final_aggregate_columns[insert_i], arena); } catch (...) { exception = std::current_exception(); } /** Destroy states that are no longer needed. This loop does not throw. * * Don't destroy states for "-State" aggregate functions, * because the ownership of this state is transferred to ColumnAggregateFunction * and ColumnAggregateFunction will take care. * * But it's only for states that has been transferred to ColumnAggregateFunction * before exception has been thrown; */ for (size_t destroy_i = 0; destroy_i < params.aggregates_size; ++destroy_i) { /// If ownership was not transferred to ColumnAggregateFunction. if (!(destroy_i < insert_i && aggregate_functions[destroy_i]->isState())) aggregate_functions[destroy_i]->destroy( mapped + offsets_of_aggregate_states[destroy_i]); } /// Mark the cell as destroyed so it will not be destroyed in destructor. mapped = nullptr; if (exception) std::rethrow_exception(exception); } template void NO_INLINE Aggregator::convertToBlockImplFinal( Method & method, Table & data, std::vector key_columns, MutableColumns & final_aggregate_columns, Arena * arena) const { if constexpr (Method::low_cardinality_optimization) { if (data.hasNullKeyData()) { key_columns[0]->insertDefault(); insertAggregatesIntoColumns(data.getNullKeyData(), final_aggregate_columns, arena); } } auto shuffled_key_sizes = method.shuffleKeyColumns(key_columns, key_sizes); const auto & key_sizes_ref = shuffled_key_sizes ? *shuffled_key_sizes : key_sizes; PaddedPODArray places; places.reserve(data.size()); data.forEachValue([&](const auto & key, auto & mapped) { method.insertKeyIntoColumns(key, key_columns, key_sizes_ref); places.emplace_back(mapped); /// Mark the cell as destroyed so it will not be destroyed in destructor. mapped = nullptr; }); std::exception_ptr exception; size_t aggregate_functions_destroy_index = 0; try { #if USE_EMBEDDED_COMPILER if constexpr (use_compiled_functions) { /** For JIT compiled functions we need to resize columns before pass them into compiled code. * insert_aggregates_into_columns_function function does not throw exception. */ std::vector columns_data; auto compiled_functions = compiled_aggregate_functions_holder->compiled_aggregate_functions; for (size_t i = 0; i < params.aggregates_size; ++i) { if (!is_aggregate_function_compiled[i]) continue; auto & final_aggregate_column = final_aggregate_columns[i]; final_aggregate_column = final_aggregate_column->cloneResized(places.size()); columns_data.emplace_back(getColumnData(final_aggregate_column.get())); } auto insert_aggregates_into_columns_function = compiled_functions.insert_aggregates_into_columns_function; insert_aggregates_into_columns_function(places.size(), columns_data.data(), places.data()); } #endif for (; aggregate_functions_destroy_index < params.aggregates_size;) { if constexpr (use_compiled_functions) { if (is_aggregate_function_compiled[aggregate_functions_destroy_index]) { ++aggregate_functions_destroy_index; continue; } } auto & final_aggregate_column = final_aggregate_columns[aggregate_functions_destroy_index]; size_t offset = offsets_of_aggregate_states[aggregate_functions_destroy_index]; /** We increase aggregate_functions_destroy_index because by function contract if insertResultIntoBatch * throws exception, it also must destroy all necessary states. * Then code need to continue to destroy other aggregate function states with next function index. */ size_t destroy_index = aggregate_functions_destroy_index; ++aggregate_functions_destroy_index; /// For State AggregateFunction ownership of aggregate place is passed to result column after insert bool is_state = aggregate_functions[destroy_index]->isState(); bool destroy_place_after_insert = !is_state; aggregate_functions[destroy_index]->insertResultIntoBatch(places.size(), places.data(), offset, *final_aggregate_column, arena, destroy_place_after_insert); } } catch (...) { exception = std::current_exception(); } for (; aggregate_functions_destroy_index < params.aggregates_size; ++aggregate_functions_destroy_index) { if constexpr (use_compiled_functions) { if (is_aggregate_function_compiled[aggregate_functions_destroy_index]) { ++aggregate_functions_destroy_index; continue; } } size_t offset = offsets_of_aggregate_states[aggregate_functions_destroy_index]; aggregate_functions[aggregate_functions_destroy_index]->destroyBatch(places.size(), places.data(), offset); } if (exception) std::rethrow_exception(exception); } template void NO_INLINE Aggregator::convertToBlockImplNotFinal( Method & method, Table & data, std::vector key_columns, AggregateColumnsData & aggregate_columns) const { if constexpr (Method::low_cardinality_optimization) { if (data.hasNullKeyData()) { key_columns[0]->insertDefault(); for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_columns[i]->push_back(data.getNullKeyData() + offsets_of_aggregate_states[i]); data.getNullKeyData() = nullptr; } } auto shuffled_key_sizes = method.shuffleKeyColumns(key_columns, key_sizes); const auto & key_sizes_ref = shuffled_key_sizes ? *shuffled_key_sizes : key_sizes; data.forEachValue([&](const auto & key, auto & mapped) { method.insertKeyIntoColumns(key, key_columns, key_sizes_ref); /// reserved, so push_back does not throw exceptions for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_columns[i]->push_back(mapped + offsets_of_aggregate_states[i]); mapped = nullptr; }); } template Block Aggregator::prepareBlockAndFill( AggregatedDataVariants & data_variants, bool final, size_t rows, Filler && filler) const { MutableColumns key_columns(params.keys_size); MutableColumns aggregate_columns(params.aggregates_size); MutableColumns final_aggregate_columns(params.aggregates_size); AggregateColumnsData aggregate_columns_data(params.aggregates_size); Block header = getHeader(final); for (size_t i = 0; i < params.keys_size; ++i) { key_columns[i] = header.safeGetByPosition(i).type->createColumn(); key_columns[i]->reserve(rows); } for (size_t i = 0; i < params.aggregates_size; ++i) { if (!final) { const auto & aggregate_column_name = params.aggregates[i].column_name; aggregate_columns[i] = header.getByName(aggregate_column_name).type->createColumn(); /// The ColumnAggregateFunction column captures the shared ownership of the arena with the aggregate function states. ColumnAggregateFunction & column_aggregate_func = assert_cast(*aggregate_columns[i]); for (auto & pool : data_variants.aggregates_pools) column_aggregate_func.addArena(pool); aggregate_columns_data[i] = &column_aggregate_func.getData(); aggregate_columns_data[i]->reserve(rows); } else { final_aggregate_columns[i] = aggregate_functions[i]->getReturnType()->createColumn(); final_aggregate_columns[i]->reserve(rows); if (aggregate_functions[i]->isState()) { /// The ColumnAggregateFunction column captures the shared ownership of the arena with aggregate function states. if (auto * column_aggregate_func = typeid_cast(final_aggregate_columns[i].get())) for (auto & pool : data_variants.aggregates_pools) column_aggregate_func->addArena(pool); /// Aggregate state can be wrapped into array if aggregate function ends with -Resample combinator. final_aggregate_columns[i]->forEachSubcolumn([&data_variants](auto & subcolumn) { if (auto * column_aggregate_func = typeid_cast(subcolumn.get())) for (auto & pool : data_variants.aggregates_pools) column_aggregate_func->addArena(pool); }); } } } filler(key_columns, aggregate_columns_data, final_aggregate_columns, final); Block res = header.cloneEmpty(); for (size_t i = 0; i < params.keys_size; ++i) res.getByPosition(i).column = std::move(key_columns[i]); for (size_t i = 0; i < params.aggregates_size; ++i) { const auto & aggregate_column_name = params.aggregates[i].column_name; if (final) res.getByName(aggregate_column_name).column = std::move(final_aggregate_columns[i]); else res.getByName(aggregate_column_name).column = std::move(aggregate_columns[i]); } /// Change the size of the columns-constants in the block. size_t columns = header.columns(); for (size_t i = 0; i < columns; ++i) if (isColumnConst(*res.getByPosition(i).column)) res.getByPosition(i).column = res.getByPosition(i).column->cut(0, rows); return res; } void Aggregator::addSingleKeyToAggregateColumns( const AggregatedDataVariants & data_variants, MutableColumns & aggregate_columns) const { const auto & data = data_variants.without_key; for (size_t i = 0; i < params.aggregates_size; ++i) { auto & column_aggregate_func = assert_cast(*aggregate_columns[i]); column_aggregate_func.getData().push_back(data + offsets_of_aggregate_states[i]); } } void Aggregator::addArenasToAggregateColumns( const AggregatedDataVariants & data_variants, MutableColumns & aggregate_columns) const { for (size_t i = 0; i < params.aggregates_size; ++i) { auto & column_aggregate_func = assert_cast(*aggregate_columns[i]); for (const auto & pool : data_variants.aggregates_pools) column_aggregate_func.addArena(pool); } } void Aggregator::createStatesAndFillKeyColumnsWithSingleKey( AggregatedDataVariants & data_variants, Columns & key_columns, size_t key_row, MutableColumns & final_key_columns) const { AggregateDataPtr place = data_variants.aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states); createAggregateStates(place); data_variants.without_key = place; for (size_t i = 0; i < params.keys_size; ++i) { final_key_columns[i]->insertFrom(*key_columns[i].get(), key_row); } } Block Aggregator::prepareBlockAndFillWithoutKey(AggregatedDataVariants & data_variants, bool final, bool is_overflows) const { size_t rows = 1; auto filler = [&data_variants, this]( MutableColumns & key_columns, AggregateColumnsData & aggregate_columns, MutableColumns & final_aggregate_columns, bool final_) { if (data_variants.type == AggregatedDataVariants::Type::without_key || params.overflow_row) { AggregatedDataWithoutKey & data = data_variants.without_key; if (!data) throw Exception("Wrong data variant passed.", ErrorCodes::LOGICAL_ERROR); if (!final_) { for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_columns[i]->push_back(data + offsets_of_aggregate_states[i]); data = nullptr; } else { /// Always single-thread. It's safe to pass current arena from 'aggregates_pool'. insertAggregatesIntoColumns(data, final_aggregate_columns, data_variants.aggregates_pool); } if (params.overflow_row) for (size_t i = 0; i < params.keys_size; ++i) key_columns[i]->insertDefault(); } }; Block block = prepareBlockAndFill(data_variants, final, rows, filler); if (is_overflows) block.info.is_overflows = true; if (final) destroyWithoutKey(data_variants); return block; } Block Aggregator::prepareBlockAndFillSingleLevel(AggregatedDataVariants & data_variants, bool final) const { size_t rows = data_variants.sizeWithoutOverflowRow(); auto filler = [&data_variants, this]( MutableColumns & key_columns, AggregateColumnsData & aggregate_columns, MutableColumns & final_aggregate_columns, bool final_) { #define M(NAME) \ else if (data_variants.type == AggregatedDataVariants::Type::NAME) \ convertToBlockImpl(*data_variants.NAME, data_variants.NAME->data, \ key_columns, aggregate_columns, final_aggregate_columns, data_variants.aggregates_pool, final_); if (false) {} // NOLINT APPLY_FOR_VARIANTS_SINGLE_LEVEL(M) #undef M else throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); }; return prepareBlockAndFill(data_variants, final, rows, filler); } BlocksList Aggregator::prepareBlocksAndFillTwoLevel(AggregatedDataVariants & data_variants, bool final, ThreadPool * thread_pool) const { #define M(NAME) \ else if (data_variants.type == AggregatedDataVariants::Type::NAME) \ return prepareBlocksAndFillTwoLevelImpl(data_variants, *data_variants.NAME, final, thread_pool); if (false) {} // NOLINT APPLY_FOR_VARIANTS_TWO_LEVEL(M) #undef M else throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); } template BlocksList Aggregator::prepareBlocksAndFillTwoLevelImpl( AggregatedDataVariants & data_variants, Method & method, bool final, ThreadPool * thread_pool) const { size_t max_threads = thread_pool ? thread_pool->getMaxThreads() : 1; if (max_threads > data_variants.aggregates_pools.size()) for (size_t i = data_variants.aggregates_pools.size(); i < max_threads; ++i) data_variants.aggregates_pools.push_back(std::make_shared()); std::atomic next_bucket_to_merge = 0; auto converter = [&](size_t thread_id, ThreadGroupStatusPtr thread_group) { if (thread_group) CurrentThread::attachToIfDetached(thread_group); BlocksList blocks; while (true) { UInt32 bucket = next_bucket_to_merge.fetch_add(1); if (bucket >= Method::Data::NUM_BUCKETS) break; if (method.data.impls[bucket].empty()) continue; /// Select Arena to avoid race conditions Arena * arena = data_variants.aggregates_pools.at(thread_id).get(); blocks.emplace_back(convertOneBucketToBlock(data_variants, method, arena, final, bucket)); } return blocks; }; /// packaged_task is used to ensure that exceptions are automatically thrown into the main stream. std::vector> tasks(max_threads); try { for (size_t thread_id = 0; thread_id < max_threads; ++thread_id) { tasks[thread_id] = std::packaged_task( [group = CurrentThread::getGroup(), thread_id, &converter] { return converter(thread_id, group); }); if (thread_pool) thread_pool->scheduleOrThrowOnError([thread_id, &tasks] { tasks[thread_id](); }); else tasks[thread_id](); } } catch (...) { /// If this is not done, then in case of an exception, tasks will be destroyed before the threads are completed, and it will be bad. if (thread_pool) thread_pool->wait(); throw; } if (thread_pool) thread_pool->wait(); BlocksList blocks; for (auto & task : tasks) { if (!task.valid()) continue; blocks.splice(blocks.end(), task.get_future().get()); } return blocks; } BlocksList Aggregator::convertToBlocks(AggregatedDataVariants & data_variants, bool final, size_t max_threads) const { LOG_TRACE(log, "Converting aggregated data to blocks"); Stopwatch watch; BlocksList blocks; /// In what data structure is the data aggregated? if (data_variants.empty()) return blocks; std::unique_ptr thread_pool; if (max_threads > 1 && data_variants.sizeWithoutOverflowRow() > 100000 /// TODO Make a custom threshold. && data_variants.isTwoLevel()) /// TODO Use the shared thread pool with the `merge` function. thread_pool = std::make_unique(max_threads); if (data_variants.without_key) blocks.emplace_back(prepareBlockAndFillWithoutKey( data_variants, final, data_variants.type != AggregatedDataVariants::Type::without_key)); if (data_variants.type != AggregatedDataVariants::Type::without_key) { if (!data_variants.isTwoLevel()) blocks.emplace_back(prepareBlockAndFillSingleLevel(data_variants, final)); else blocks.splice(blocks.end(), prepareBlocksAndFillTwoLevel(data_variants, final, thread_pool.get())); } if (!final) { /// data_variants will not destroy the states of aggregate functions in the destructor. /// Now ColumnAggregateFunction owns the states. data_variants.aggregator = nullptr; } size_t rows = 0; size_t bytes = 0; for (const auto & block : blocks) { rows += block.rows(); bytes += block.bytes(); } double elapsed_seconds = watch.elapsedSeconds(); LOG_DEBUG(log, "Converted aggregated data to blocks. {} rows, {} in {} sec. ({:.3f} rows/sec., {}/sec.)", rows, ReadableSize(bytes), elapsed_seconds, rows / elapsed_seconds, ReadableSize(bytes / elapsed_seconds)); return blocks; } template void NO_INLINE Aggregator::mergeDataNullKey( Table & table_dst, Table & table_src, Arena * arena) const { if constexpr (Method::low_cardinality_optimization) { if (table_src.hasNullKeyData()) { if (!table_dst.hasNullKeyData()) { table_dst.hasNullKeyData() = true; table_dst.getNullKeyData() = table_src.getNullKeyData(); } else { for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->merge( table_dst.getNullKeyData() + offsets_of_aggregate_states[i], table_src.getNullKeyData() + offsets_of_aggregate_states[i], arena); for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->destroy( table_src.getNullKeyData() + offsets_of_aggregate_states[i]); } table_src.hasNullKeyData() = false; table_src.getNullKeyData() = nullptr; } } } template void NO_INLINE Aggregator::mergeDataImpl( Table & table_dst, Table & table_src, Arena * arena) const { if constexpr (Method::low_cardinality_optimization) mergeDataNullKey(table_dst, table_src, arena); table_src.mergeToViaEmplace(table_dst, [&](AggregateDataPtr & __restrict dst, AggregateDataPtr & __restrict src, bool inserted) { if (!inserted) { #if USE_EMBEDDED_COMPILER if constexpr (use_compiled_functions) { const auto & compiled_functions = compiled_aggregate_functions_holder->compiled_aggregate_functions; compiled_functions.merge_aggregate_states_function(dst, src); if (compiled_aggregate_functions_holder->compiled_aggregate_functions.functions_count != params.aggregates_size) { for (size_t i = 0; i < params.aggregates_size; ++i) { if (!is_aggregate_function_compiled[i]) aggregate_functions[i]->merge(dst + offsets_of_aggregate_states[i], src + offsets_of_aggregate_states[i], arena); } for (size_t i = 0; i < params.aggregates_size; ++i) { if (!is_aggregate_function_compiled[i]) aggregate_functions[i]->destroy(src + offsets_of_aggregate_states[i]); } } } else #endif { for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->merge(dst + offsets_of_aggregate_states[i], src + offsets_of_aggregate_states[i], arena); for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->destroy(src + offsets_of_aggregate_states[i]); } } else { dst = src; } src = nullptr; }); table_src.clearAndShrink(); } template void NO_INLINE Aggregator::mergeDataNoMoreKeysImpl( Table & table_dst, AggregatedDataWithoutKey & overflows, Table & table_src, Arena * arena) const { /// Note : will create data for NULL key if not exist if constexpr (Method::low_cardinality_optimization) mergeDataNullKey(table_dst, table_src, arena); table_src.mergeToViaFind(table_dst, [&](AggregateDataPtr dst, AggregateDataPtr & src, bool found) { AggregateDataPtr res_data = found ? dst : overflows; for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->merge( res_data + offsets_of_aggregate_states[i], src + offsets_of_aggregate_states[i], arena); for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->destroy(src + offsets_of_aggregate_states[i]); src = nullptr; }); table_src.clearAndShrink(); } template void NO_INLINE Aggregator::mergeDataOnlyExistingKeysImpl( Table & table_dst, Table & table_src, Arena * arena) const { /// Note : will create data for NULL key if not exist if constexpr (Method::low_cardinality_optimization) mergeDataNullKey(table_dst, table_src, arena); table_src.mergeToViaFind(table_dst, [&](AggregateDataPtr dst, AggregateDataPtr & src, bool found) { if (!found) return; for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->merge( dst + offsets_of_aggregate_states[i], src + offsets_of_aggregate_states[i], arena); for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->destroy(src + offsets_of_aggregate_states[i]); src = nullptr; }); table_src.clearAndShrink(); } void NO_INLINE Aggregator::mergeWithoutKeyDataImpl( ManyAggregatedDataVariants & non_empty_data) const { AggregatedDataVariantsPtr & res = non_empty_data[0]; /// We merge all aggregation results to the first. for (size_t result_num = 1, size = non_empty_data.size(); result_num < size; ++result_num) { AggregatedDataWithoutKey & res_data = res->without_key; AggregatedDataWithoutKey & current_data = non_empty_data[result_num]->without_key; for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->merge(res_data + offsets_of_aggregate_states[i], current_data + offsets_of_aggregate_states[i], res->aggregates_pool); for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->destroy(current_data + offsets_of_aggregate_states[i]); current_data = nullptr; } } template void NO_INLINE Aggregator::mergeSingleLevelDataImpl( ManyAggregatedDataVariants & non_empty_data) const { AggregatedDataVariantsPtr & res = non_empty_data[0]; bool no_more_keys = false; /// We merge all aggregation results to the first. for (size_t result_num = 1, size = non_empty_data.size(); result_num < size; ++result_num) { if (!checkLimits(res->sizeWithoutOverflowRow(), no_more_keys)) break; AggregatedDataVariants & current = *non_empty_data[result_num]; if (!no_more_keys) { #if USE_EMBEDDED_COMPILER if (compiled_aggregate_functions_holder) { mergeDataImpl( getDataVariant(*res).data, getDataVariant(current).data, res->aggregates_pool); } else #endif { mergeDataImpl( getDataVariant(*res).data, getDataVariant(current).data, res->aggregates_pool); } } else if (res->without_key) { mergeDataNoMoreKeysImpl( getDataVariant(*res).data, res->without_key, getDataVariant(current).data, res->aggregates_pool); } else { mergeDataOnlyExistingKeysImpl( getDataVariant(*res).data, getDataVariant(current).data, res->aggregates_pool); } /// `current` will not destroy the states of aggregate functions in the destructor current.aggregator = nullptr; } } #define M(NAME) \ template void NO_INLINE Aggregator::mergeSingleLevelDataImpl( \ ManyAggregatedDataVariants & non_empty_data) const; APPLY_FOR_VARIANTS_SINGLE_LEVEL(M) #undef M template void NO_INLINE Aggregator::mergeBucketImpl( ManyAggregatedDataVariants & data, Int32 bucket, Arena * arena, std::atomic * is_cancelled) const { /// We merge all aggregation results to the first. AggregatedDataVariantsPtr & res = data[0]; for (size_t result_num = 1, size = data.size(); result_num < size; ++result_num) { if (is_cancelled && is_cancelled->load(std::memory_order_seq_cst)) return; AggregatedDataVariants & current = *data[result_num]; #if USE_EMBEDDED_COMPILER if (compiled_aggregate_functions_holder) { mergeDataImpl( getDataVariant(*res).data.impls[bucket], getDataVariant(current).data.impls[bucket], arena); } else #endif { mergeDataImpl( getDataVariant(*res).data.impls[bucket], getDataVariant(current).data.impls[bucket], arena); } } } ManyAggregatedDataVariants Aggregator::prepareVariantsToMerge(ManyAggregatedDataVariants & data_variants) const { if (data_variants.empty()) throw Exception("Empty data passed to Aggregator::mergeAndConvertToBlocks.", ErrorCodes::EMPTY_DATA_PASSED); LOG_TRACE(log, "Merging aggregated data"); ManyAggregatedDataVariants non_empty_data; non_empty_data.reserve(data_variants.size()); for (auto & data : data_variants) if (!data->empty()) non_empty_data.push_back(data); if (non_empty_data.empty()) return {}; if (non_empty_data.size() > 1) { /// Sort the states in descending order so that the merge is more efficient (since all states are merged into the first). std::sort(non_empty_data.begin(), non_empty_data.end(), [](const AggregatedDataVariantsPtr & lhs, const AggregatedDataVariantsPtr & rhs) { return lhs->sizeWithoutOverflowRow() > rhs->sizeWithoutOverflowRow(); }); } /// If at least one of the options is two-level, then convert all the options into two-level ones, if there are not such. /// Note - perhaps it would be more optimal not to convert single-level versions before the merge, but merge them separately, at the end. bool has_at_least_one_two_level = false; for (const auto & variant : non_empty_data) { if (variant->isTwoLevel()) { has_at_least_one_two_level = true; break; } } if (has_at_least_one_two_level) for (auto & variant : non_empty_data) if (!variant->isTwoLevel()) variant->convertToTwoLevel(); AggregatedDataVariantsPtr & first = non_empty_data[0]; for (size_t i = 1, size = non_empty_data.size(); i < size; ++i) { if (first->type != non_empty_data[i]->type) throw Exception("Cannot merge different aggregated data variants.", ErrorCodes::CANNOT_MERGE_DIFFERENT_AGGREGATED_DATA_VARIANTS); /** Elements from the remaining sets can be moved to the first data set. * Therefore, it must own all the arenas of all other sets. */ first->aggregates_pools.insert(first->aggregates_pools.end(), non_empty_data[i]->aggregates_pools.begin(), non_empty_data[i]->aggregates_pools.end()); } return non_empty_data; } template void NO_INLINE Aggregator::mergeStreamsImplCase( Block & block, Arena * aggregates_pool, Method & method [[maybe_unused]], Table & data, AggregateDataPtr overflow_row) const { ColumnRawPtrs key_columns(params.keys_size); AggregateColumnsConstData aggregate_columns(params.aggregates_size); /// Remember the columns we will work with for (size_t i = 0; i < params.keys_size; ++i) key_columns[i] = block.safeGetByPosition(i).column.get(); for (size_t i = 0; i < params.aggregates_size; ++i) { const auto & aggregate_column_name = params.aggregates[i].column_name; aggregate_columns[i] = &typeid_cast(*block.getByName(aggregate_column_name).column).getData(); } typename Method::State state(key_columns, key_sizes, aggregation_state_cache); /// For all rows. size_t rows = block.rows(); std::unique_ptr places(new AggregateDataPtr[rows]); for (size_t i = 0; i < rows; ++i) { AggregateDataPtr aggregate_data = nullptr; if (!no_more_keys) { auto emplace_result = state.emplaceKey(data, i, *aggregates_pool); if (emplace_result.isInserted()) { emplace_result.setMapped(nullptr); aggregate_data = aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states); createAggregateStates(aggregate_data); emplace_result.setMapped(aggregate_data); } else aggregate_data = emplace_result.getMapped(); } else { auto find_result = state.findKey(data, i, *aggregates_pool); if (find_result.isFound()) aggregate_data = find_result.getMapped(); } /// aggregate_date == nullptr means that the new key did not fit in the hash table because of no_more_keys. AggregateDataPtr value = aggregate_data ? aggregate_data : overflow_row; places[i] = value; } for (size_t j = 0; j < params.aggregates_size; ++j) { /// Merge state of aggregate functions. aggregate_functions[j]->mergeBatch( rows, places.get(), offsets_of_aggregate_states[j], aggregate_columns[j]->data(), aggregates_pool); } /// Early release memory. block.clear(); } template void NO_INLINE Aggregator::mergeStreamsImpl( Block & block, Arena * aggregates_pool, Method & method, Table & data, AggregateDataPtr overflow_row, bool no_more_keys) const { if (!no_more_keys) mergeStreamsImplCase(block, aggregates_pool, method, data, overflow_row); else mergeStreamsImplCase(block, aggregates_pool, method, data, overflow_row); } void NO_INLINE Aggregator::mergeWithoutKeyStreamsImpl( Block & block, AggregatedDataVariants & result) const { AggregateColumnsConstData aggregate_columns(params.aggregates_size); /// Remember the columns we will work with for (size_t i = 0; i < params.aggregates_size; ++i) { const auto & aggregate_column_name = params.aggregates[i].column_name; aggregate_columns[i] = &typeid_cast(*block.getByName(aggregate_column_name).column).getData(); } AggregatedDataWithoutKey & res = result.without_key; if (!res) { AggregateDataPtr place = result.aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states); createAggregateStates(place); res = place; } for (size_t row = 0, rows = block.rows(); row < rows; ++row) { /// Adding Values for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->merge(res + offsets_of_aggregate_states[i], (*aggregate_columns[i])[row], result.aggregates_pool); } /// Early release memory. block.clear(); } bool Aggregator::mergeBlock(Block block, AggregatedDataVariants & result, bool & no_more_keys) { /// `result` will destroy the states of aggregate functions in the destructor result.aggregator = this; /// How to perform the aggregation? if (result.empty()) { result.init(method_chosen); result.keys_size = params.keys_size; result.key_sizes = key_sizes; LOG_TRACE(log, "Aggregation method: {}", result.getMethodName()); } if (result.type == AggregatedDataVariants::Type::without_key || block.info.is_overflows) mergeWithoutKeyStreamsImpl(block, result); #define M(NAME, IS_TWO_LEVEL) \ else if (result.type == AggregatedDataVariants::Type::NAME) \ mergeStreamsImpl(block, result.aggregates_pool, *result.NAME, result.NAME->data, result.without_key, no_more_keys); APPLY_FOR_AGGREGATED_VARIANTS(M) #undef M else if (result.type != AggregatedDataVariants::Type::without_key) throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); size_t result_size = result.sizeWithoutOverflowRow(); Int64 current_memory_usage = 0; if (auto * memory_tracker_child = CurrentThread::getMemoryTracker()) if (auto * memory_tracker = memory_tracker_child->getParent()) current_memory_usage = memory_tracker->get(); /// Here all the results in the sum are taken into account, from different threads. auto result_size_bytes = current_memory_usage - memory_usage_before_aggregation; bool worth_convert_to_two_level = (params.group_by_two_level_threshold && result_size >= params.group_by_two_level_threshold) || (params.group_by_two_level_threshold_bytes && result_size_bytes >= static_cast(params.group_by_two_level_threshold_bytes)); /** Converting to a two-level data structure. * It allows you to make, in the subsequent, an effective merge - either economical from memory or parallel. */ if (result.isConvertibleToTwoLevel() && worth_convert_to_two_level) result.convertToTwoLevel(); /// Checking the constraints. if (!checkLimits(result_size, no_more_keys)) return false; /** Flush data to disk if too much RAM is consumed. * Data can only be flushed to disk if a two-level aggregation structure is used. */ if (params.max_bytes_before_external_group_by && result.isTwoLevel() && current_memory_usage > static_cast(params.max_bytes_before_external_group_by) && worth_convert_to_two_level) { size_t size = current_memory_usage + params.min_free_disk_space; std::string tmp_path = params.tmp_volume->getDisk()->getPath(); // enoughSpaceInDirectory() is not enough to make it right, since // another process (or another thread of aggregator) can consume all // space. // // But true reservation (IVolume::reserve()) cannot be used here since // current_memory_usage does not takes compression into account and // will reserve way more that actually will be used. // // Hence let's do a simple check. if (!enoughSpaceInDirectory(tmp_path, size)) throw Exception("Not enough space for external aggregation in " + tmp_path, ErrorCodes::NOT_ENOUGH_SPACE); writeToTemporaryFile(result, tmp_path); } return true; } void Aggregator::mergeBlocks(BucketToBlocks bucket_to_blocks, AggregatedDataVariants & result, size_t max_threads) { if (bucket_to_blocks.empty()) return; UInt64 total_input_rows = 0; for (auto & bucket : bucket_to_blocks) for (auto & block : bucket.second) total_input_rows += block.rows(); /** `minus one` means the absence of information about the bucket * - in the case of single-level aggregation, as well as for blocks with "overflowing" values. * If there is at least one block with a bucket number greater or equal than zero, then there was a two-level aggregation. */ auto max_bucket = bucket_to_blocks.rbegin()->first; bool has_two_level = max_bucket >= 0; if (has_two_level) { #define M(NAME) \ if (method_chosen == AggregatedDataVariants::Type::NAME) \ method_chosen = AggregatedDataVariants::Type::NAME ## _two_level; APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) #undef M } /// result will destroy the states of aggregate functions in the destructor result.aggregator = this; result.init(method_chosen); result.keys_size = params.keys_size; result.key_sizes = key_sizes; bool has_blocks_with_unknown_bucket = bucket_to_blocks.count(-1); /// First, parallel the merge for the individual buckets. Then we continue merge the data not allocated to the buckets. if (has_two_level) { /** In this case, no_more_keys is not supported due to the fact that * from different threads it is difficult to update the general state for "other" keys (overflows). * That is, the keys in the end can be significantly larger than max_rows_to_group_by. */ LOG_TRACE(log, "Merging partially aggregated two-level data."); auto merge_bucket = [&bucket_to_blocks, &result, this](Int32 bucket, Arena * aggregates_pool, ThreadGroupStatusPtr thread_group) { if (thread_group) CurrentThread::attachToIfDetached(thread_group); for (Block & block : bucket_to_blocks[bucket]) { #define M(NAME) \ else if (result.type == AggregatedDataVariants::Type::NAME) \ mergeStreamsImpl(block, aggregates_pool, *result.NAME, result.NAME->data.impls[bucket], nullptr, false); if (false) {} // NOLINT APPLY_FOR_VARIANTS_TWO_LEVEL(M) #undef M else throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); } }; std::unique_ptr thread_pool; if (max_threads > 1 && total_input_rows > 100000) /// TODO Make a custom threshold. thread_pool = std::make_unique(max_threads); for (const auto & bucket_blocks : bucket_to_blocks) { const auto bucket = bucket_blocks.first; if (bucket == -1) continue; result.aggregates_pools.push_back(std::make_shared()); Arena * aggregates_pool = result.aggregates_pools.back().get(); auto task = [group = CurrentThread::getGroup(), bucket, &merge_bucket, aggregates_pool]{ return merge_bucket(bucket, aggregates_pool, group); }; if (thread_pool) thread_pool->scheduleOrThrowOnError(task); else task(); } if (thread_pool) thread_pool->wait(); LOG_TRACE(log, "Merged partially aggregated two-level data."); } if (has_blocks_with_unknown_bucket) { LOG_TRACE(log, "Merging partially aggregated single-level data."); bool no_more_keys = false; BlocksList & blocks = bucket_to_blocks[-1]; for (Block & block : blocks) { if (!checkLimits(result.sizeWithoutOverflowRow(), no_more_keys)) break; if (result.type == AggregatedDataVariants::Type::without_key || block.info.is_overflows) mergeWithoutKeyStreamsImpl(block, result); #define M(NAME, IS_TWO_LEVEL) \ else if (result.type == AggregatedDataVariants::Type::NAME) \ mergeStreamsImpl(block, result.aggregates_pool, *result.NAME, result.NAME->data, result.without_key, no_more_keys); APPLY_FOR_AGGREGATED_VARIANTS(M) #undef M else if (result.type != AggregatedDataVariants::Type::without_key) throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); } LOG_TRACE(log, "Merged partially aggregated single-level data."); } } Block Aggregator::mergeBlocks(BlocksList & blocks, bool final) { if (blocks.empty()) return {}; auto bucket_num = blocks.front().info.bucket_num; bool is_overflows = blocks.front().info.is_overflows; LOG_TRACE(log, "Merging partially aggregated blocks (bucket = {}).", bucket_num); Stopwatch watch; /** If possible, change 'method' to some_hash64. Otherwise, leave as is. * Better hash function is needed because during external aggregation, * we may merge partitions of data with total number of keys far greater than 4 billion. */ auto merge_method = method_chosen; #define APPLY_FOR_VARIANTS_THAT_MAY_USE_BETTER_HASH_FUNCTION(M) \ M(key64) \ M(key_string) \ M(key_fixed_string) \ M(keys128) \ M(keys256) \ M(serialized) \ #define M(NAME) \ if (merge_method == AggregatedDataVariants::Type::NAME) \ merge_method = AggregatedDataVariants::Type::NAME ## _hash64; \ APPLY_FOR_VARIANTS_THAT_MAY_USE_BETTER_HASH_FUNCTION(M) #undef M #undef APPLY_FOR_VARIANTS_THAT_MAY_USE_BETTER_HASH_FUNCTION /// Temporary data for aggregation. AggregatedDataVariants result; /// result will destroy the states of aggregate functions in the destructor result.aggregator = this; result.init(merge_method); result.keys_size = params.keys_size; result.key_sizes = key_sizes; for (Block & block : blocks) { if (bucket_num >= 0 && block.info.bucket_num != bucket_num) bucket_num = -1; if (result.type == AggregatedDataVariants::Type::without_key || is_overflows) mergeWithoutKeyStreamsImpl(block, result); #define M(NAME, IS_TWO_LEVEL) \ else if (result.type == AggregatedDataVariants::Type::NAME) \ mergeStreamsImpl(block, result.aggregates_pool, *result.NAME, result.NAME->data, nullptr, false); APPLY_FOR_AGGREGATED_VARIANTS(M) #undef M else if (result.type != AggregatedDataVariants::Type::without_key) throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); } Block block; if (result.type == AggregatedDataVariants::Type::without_key || is_overflows) block = prepareBlockAndFillWithoutKey(result, final, is_overflows); else block = prepareBlockAndFillSingleLevel(result, final); /// NOTE: two-level data is not possible here - chooseAggregationMethod chooses only among single-level methods. if (!final) { /// Pass ownership of aggregate function states from result to ColumnAggregateFunction objects in the resulting block. result.aggregator = nullptr; } size_t rows = block.rows(); size_t bytes = block.bytes(); double elapsed_seconds = watch.elapsedSeconds(); LOG_DEBUG(log, "Merged partially aggregated blocks. {} rows, {}. in {} sec. ({:.3f} rows/sec., {}/sec.)", rows, ReadableSize(bytes), elapsed_seconds, rows / elapsed_seconds, ReadableSize(bytes / elapsed_seconds)); block.info.bucket_num = bucket_num; return block; } template void NO_INLINE Aggregator::convertBlockToTwoLevelImpl( Method & method, Arena * pool, ColumnRawPtrs & key_columns, const Block & source, std::vector & destinations) const { typename Method::State state(key_columns, key_sizes, aggregation_state_cache); size_t rows = source.rows(); size_t columns = source.columns(); /// Create a 'selector' that will contain bucket index for every row. It will be used to scatter rows to buckets. IColumn::Selector selector(rows); /// For every row. for (size_t i = 0; i < rows; ++i) { if constexpr (Method::low_cardinality_optimization) { if (state.isNullAt(i)) { selector[i] = 0; continue; } } /// Calculate bucket number from row hash. auto hash = state.getHash(method.data, i, *pool); auto bucket = method.data.getBucketFromHash(hash); selector[i] = bucket; } size_t num_buckets = destinations.size(); for (size_t column_idx = 0; column_idx < columns; ++column_idx) { const ColumnWithTypeAndName & src_col = source.getByPosition(column_idx); MutableColumns scattered_columns = src_col.column->scatter(num_buckets, selector); for (size_t bucket = 0, size = num_buckets; bucket < size; ++bucket) { if (!scattered_columns[bucket]->empty()) { Block & dst = destinations[bucket]; dst.info.bucket_num = bucket; dst.insert({std::move(scattered_columns[bucket]), src_col.type, src_col.name}); } /** Inserted columns of type ColumnAggregateFunction will own states of aggregate functions * by holding shared_ptr to source column. See ColumnAggregateFunction.h */ } } } std::vector Aggregator::convertBlockToTwoLevel(const Block & block) { if (!block) return {}; AggregatedDataVariants data; ColumnRawPtrs key_columns(params.keys_size); /// Remember the columns we will work with for (size_t i = 0; i < params.keys_size; ++i) key_columns[i] = block.safeGetByPosition(i).column.get(); AggregatedDataVariants::Type type = method_chosen; data.keys_size = params.keys_size; data.key_sizes = key_sizes; #define M(NAME) \ else if (type == AggregatedDataVariants::Type::NAME) \ type = AggregatedDataVariants::Type::NAME ## _two_level; if (false) {} // NOLINT APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) #undef M else throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); data.init(type); size_t num_buckets = 0; #define M(NAME) \ else if (data.type == AggregatedDataVariants::Type::NAME) \ num_buckets = data.NAME->data.NUM_BUCKETS; if (false) {} // NOLINT APPLY_FOR_VARIANTS_TWO_LEVEL(M) #undef M else throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); std::vector splitted_blocks(num_buckets); #define M(NAME) \ else if (data.type == AggregatedDataVariants::Type::NAME) \ convertBlockToTwoLevelImpl(*data.NAME, data.aggregates_pool, \ key_columns, block, splitted_blocks); if (false) {} // NOLINT APPLY_FOR_VARIANTS_TWO_LEVEL(M) #undef M else throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); return splitted_blocks; } template void NO_INLINE Aggregator::destroyImpl(Table & table) const { table.forEachMapped([&](AggregateDataPtr & data) { /** If an exception (usually a lack of memory, the MemoryTracker throws) arose * after inserting the key into a hash table, but before creating all states of aggregate functions, * then data will be equal nullptr. */ if (nullptr == data) return; for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->destroy(data + offsets_of_aggregate_states[i]); data = nullptr; }); } void Aggregator::destroyWithoutKey(AggregatedDataVariants & result) const { AggregatedDataWithoutKey & res_data = result.without_key; if (nullptr != res_data) { for (size_t i = 0; i < params.aggregates_size; ++i) aggregate_functions[i]->destroy(res_data + offsets_of_aggregate_states[i]); res_data = nullptr; } } void Aggregator::destroyAllAggregateStates(AggregatedDataVariants & result) { if (result.empty()) return; LOG_TRACE(log, "Destroying aggregate states"); /// In what data structure is the data aggregated? if (result.type == AggregatedDataVariants::Type::without_key || params.overflow_row) destroyWithoutKey(result); #define M(NAME, IS_TWO_LEVEL) \ else if (result.type == AggregatedDataVariants::Type::NAME) \ destroyImpl(result.NAME->data); if (false) {} // NOLINT APPLY_FOR_AGGREGATED_VARIANTS(M) #undef M else if (result.type != AggregatedDataVariants::Type::without_key) throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT); } }