#!/usr/bin/env python3 import os import sys from statistics import variance import numpy as np import pandas as pd from scipy import stats CURDIR = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(CURDIR, "helpers")) from pure_http_client import ClickHouseClient # unpooled variance z-test for means of two samples def scipy_anova(rvs): return stats.f_oneway(*rvs) def test_and_check(rvs, n_groups, f_stat, p_value, precision=1e-2): client = ClickHouseClient() client.query("DROP TABLE IF EXISTS anova;") client.query("CREATE TABLE anova (left Float64, right UInt64) ENGINE = Memory;") for group in range(n_groups): client.query( f"""INSERT INTO anova VALUES {", ".join([f'({i},{group})' for i in rvs[group]])};""" ) real = client.query_return_df( """SELECT roundBankers(a.1, 16) as f_stat, roundBankers(a.2, 16) as p_value FROM (SELECT anova(left, right) as a FROM anova) FORMAT TabSeparatedWithNames;""" ) real_f_stat = real["f_stat"][0] real_p_value = real["p_value"][0] assert ( abs(real_f_stat - np.float64(f_stat)) < precision ), f"clickhouse_f_stat {real_f_stat}, py_f_stat {f_stat}" assert ( abs(real_p_value - np.float64(p_value)) < precision ), f"clickhouse_p_value {real_p_value}, py_p_value {p_value}" client.query("DROP TABLE IF EXISTS anova;") def test_anova(): n_groups = 3 rvs = [] loc = 0 scale = 5 size = 500 for _ in range(n_groups): rvs.append(np.round(stats.norm.rvs(loc=loc, scale=scale, size=size), 2)) loc += 5 f_stat, p_value = scipy_anova(rvs) test_and_check(rvs, n_groups, f_stat, p_value) n_groups = 6 rvs = [] loc = 0 scale = 5 size = 500 for _ in range(n_groups): rvs.append(np.round(stats.norm.rvs(loc=loc, scale=scale, size=size), 2)) f_stat, p_value = scipy_anova(rvs) test_and_check(rvs, n_groups, f_stat, p_value) n_groups = 10 rvs = [] loc = 1 scale = 2 size = 100 for _ in range(n_groups): rvs.append(np.round(stats.norm.rvs(loc=loc, scale=scale, size=size), 2)) loc += 1 scale += 2 size += 100 f_stat, p_value = scipy_anova(rvs) test_and_check(rvs, n_groups, f_stat, p_value) n_groups = 20 rvs = [] loc = 0 scale = 10 size = 1100 for _ in range(n_groups): rvs.append(np.round(stats.norm.rvs(loc=loc, scale=scale, size=size), 2)) size -= 50 f_stat, p_value = scipy_anova(rvs) test_and_check(rvs, n_groups, f_stat, p_value) if __name__ == "__main__": test_anova() print("Ok.")