#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include template <> struct DefaultHash : public StringRefHash {}; namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; } using Sizes = std::vector; /// When packing the values of nullable columns at a given row, we have to /// store the fact that these values are nullable or not. This is achieved /// by encoding this information as a bitmap. Let S be the size in bytes of /// a packed values binary blob and T the number of bytes we may place into /// this blob, the size that the bitmap shall occupy in the blob is equal to: /// ceil(T/8). Thus we must have: S = T + ceil(T/8). Below we indicate for /// each value of S, the corresponding value of T, and the bitmap size: /// /// 32,28,4 /// 16,14,2 /// 8,7,1 /// 4,3,1 /// 2,1,1 /// namespace { template constexpr auto getBitmapSize() { return (sizeof(T) == 32) ? 4 : (sizeof(T) == 16) ? 2 : ((sizeof(T) == 8) ? 1 : ((sizeof(T) == 4) ? 1 : ((sizeof(T) == 2) ? 1 : 0))); } } template using KeysNullMap = std::array()>; /// Pack into a binary blob of type T a set of fixed-size keys. Granted that all the keys fit into the /// binary blob, they are disposed in it consecutively. template static inline T ALWAYS_INLINE packFixed( size_t i, size_t keys_size, const ColumnRawPtrs & key_columns, const Sizes & key_sizes, const ColumnRawPtrs * low_cardinality_positions [[maybe_unused]] = nullptr, const Sizes * low_cardinality_sizes [[maybe_unused]] = nullptr) { union { T key; char bytes[sizeof(key)] = {}; }; size_t offset = 0; for (size_t j = 0; j < keys_size; ++j) { size_t index = i; const IColumn * column = key_columns[j]; if constexpr (has_low_cardinality) { if (const IColumn * positions = (*low_cardinality_positions)[j]) { switch ((*low_cardinality_sizes)[j]) { case sizeof(UInt8): index = assert_cast(positions)->getElement(i); break; case sizeof(UInt16): index = assert_cast(positions)->getElement(i); break; case sizeof(UInt32): index = assert_cast(positions)->getElement(i); break; case sizeof(UInt64): index = assert_cast(positions)->getElement(i); break; default: throw Exception("Unexpected size of index type for low cardinality column.", ErrorCodes::LOGICAL_ERROR); } } } switch (key_sizes[j]) { case 1: memcpy(bytes + offset, static_cast(column)->getRawDataBegin<1>() + index, 1); offset += 1; break; case 2: memcpy(bytes + offset, static_cast(column)->getRawDataBegin<2>() + index * 2, 2); offset += 2; break; case 4: memcpy(bytes + offset, static_cast(column)->getRawDataBegin<4>() + index * 4, 4); offset += 4; break; case 8: memcpy(bytes + offset, static_cast(column)->getRawDataBegin<8>() + index * 8, 8); offset += 8; break; default: memcpy(bytes + offset, static_cast(column)->getRawDataBegin<1>() + index * key_sizes[j], key_sizes[j]); offset += key_sizes[j]; } } return key; } /// Similar as above but supports nullable values. template static inline T ALWAYS_INLINE packFixed( size_t i, size_t keys_size, const ColumnRawPtrs & key_columns, const Sizes & key_sizes, const KeysNullMap & bitmap) { union { T key; char bytes[sizeof(key)] = {}; }; size_t offset = 0; static constexpr auto bitmap_size = std::tuple_size>::value; static constexpr bool has_bitmap = bitmap_size > 0; if (has_bitmap) { memcpy(bytes + offset, bitmap.data(), bitmap_size * sizeof(UInt8)); offset += bitmap_size; } for (size_t j = 0; j < keys_size; ++j) { bool is_null; if (!has_bitmap) is_null = false; else { size_t bucket = j / 8; size_t off = j % 8; is_null = ((bitmap[bucket] >> off) & 1) == 1; } if (is_null) continue; switch (key_sizes[j]) { case 1: memcpy(bytes + offset, static_cast(key_columns[j])->getRawDataBegin<1>() + i, 1); offset += 1; break; case 2: memcpy(bytes + offset, static_cast(key_columns[j])->getRawDataBegin<2>() + i * 2, 2); offset += 2; break; case 4: memcpy(bytes + offset, static_cast(key_columns[j])->getRawDataBegin<4>() + i * 4, 4); offset += 4; break; case 8: memcpy(bytes + offset, static_cast(key_columns[j])->getRawDataBegin<8>() + i * 8, 8); offset += 8; break; default: memcpy(bytes + offset, static_cast(key_columns[j])->getRawDataBegin<1>() + i * key_sizes[j], key_sizes[j]); offset += key_sizes[j]; } } return key; } /// Hash a set of keys into a UInt128 value. static inline UInt128 ALWAYS_INLINE hash128( size_t i, size_t keys_size, const ColumnRawPtrs & key_columns) { UInt128 key; SipHash hash; for (size_t j = 0; j < keys_size; ++j) key_columns[j]->updateHashWithValue(i, hash); hash.get128(key.low, key.high); return key; } /// Copy keys to the pool. Then put into pool StringRefs to them and return the pointer to the first. static inline StringRef * ALWAYS_INLINE placeKeysInPool( size_t keys_size, StringRefs & keys, Arena & pool) { for (size_t j = 0; j < keys_size; ++j) { char * place = pool.alloc(keys[j].size); memcpySmallAllowReadWriteOverflow15(place, keys[j].data, keys[j].size); keys[j].data = place; } /// Place the StringRefs on the newly copied keys in the pool. char * res = pool.alignedAlloc(keys_size * sizeof(StringRef), alignof(StringRef)); memcpySmallAllowReadWriteOverflow15(res, keys.data(), keys_size * sizeof(StringRef)); return reinterpret_cast(res); } /** Serialize keys into a continuous chunk of memory. */ static inline StringRef ALWAYS_INLINE serializeKeysToPoolContiguous( size_t i, size_t keys_size, const ColumnRawPtrs & key_columns, Arena & pool) { const char * begin = nullptr; size_t sum_size = 0; for (size_t j = 0; j < keys_size; ++j) sum_size += key_columns[j]->serializeValueIntoArena(i, pool, begin).size; return {begin, sum_size}; } }