--- slug: /zh/getting-started/example-datasets/brown-benchmark sidebar_label: 布朗大学基准 description: 机器生成日志数据的新分析基准 title: "布朗大学基准" --- `MgBench` 是机器生成的日志数据的新分析基准,[Andrew Crotty](http://cs.brown.edu/people/acrotty/)。 下载数据: ```bash wget https://datasets.clickhouse.com/mgbench{1..3}.csv.xz ``` 解压数据: ```bash xz -v -d mgbench{1..3}.csv.xz ``` 创建数据库和表: ```sql CREATE DATABASE mgbench; ``` ```sql USE mgbench; ``` ```sql CREATE TABLE mgbench.logs1 ( log_time DateTime, machine_name LowCardinality(String), machine_group LowCardinality(String), cpu_idle Nullable(Float32), cpu_nice Nullable(Float32), cpu_system Nullable(Float32), cpu_user Nullable(Float32), cpu_wio Nullable(Float32), disk_free Nullable(Float32), disk_total Nullable(Float32), part_max_used Nullable(Float32), load_fifteen Nullable(Float32), load_five Nullable(Float32), load_one Nullable(Float32), mem_buffers Nullable(Float32), mem_cached Nullable(Float32), mem_free Nullable(Float32), mem_shared Nullable(Float32), swap_free Nullable(Float32), bytes_in Nullable(Float32), bytes_out Nullable(Float32) ) ENGINE = MergeTree() ORDER BY (machine_group, machine_name, log_time); ``` ```sql CREATE TABLE mgbench.logs2 ( log_time DateTime, client_ip IPv4, request String, status_code UInt16, object_size UInt64 ) ENGINE = MergeTree() ORDER BY log_time; ``` ```sql CREATE TABLE mgbench.logs3 ( log_time DateTime64, device_id FixedString(15), device_name LowCardinality(String), device_type LowCardinality(String), device_floor UInt8, event_type LowCardinality(String), event_unit FixedString(1), event_value Nullable(Float32) ) ENGINE = MergeTree() ORDER BY (event_type, log_time); ``` 插入数据: ``` clickhouse-client --query "INSERT INTO mgbench.logs1 FORMAT CSVWithNames" < mgbench1.csv clickhouse-client --query "INSERT INTO mgbench.logs2 FORMAT CSVWithNames" < mgbench2.csv clickhouse-client --query "INSERT INTO mgbench.logs3 FORMAT CSVWithNames" < mgbench3.csv ``` ## 运行基准查询: ```sql USE mgbench; ``` ```sql -- Q1.1: 自午夜以来每个 Web 服务器的 CPU/网络利用率是多少? SELECT machine_name, MIN(cpu) AS cpu_min, MAX(cpu) AS cpu_max, AVG(cpu) AS cpu_avg, MIN(net_in) AS net_in_min, MAX(net_in) AS net_in_max, AVG(net_in) AS net_in_avg, MIN(net_out) AS net_out_min, MAX(net_out) AS net_out_max, AVG(net_out) AS net_out_avg FROM ( SELECT machine_name, COALESCE(cpu_user, 0.0) AS cpu, COALESCE(bytes_in, 0.0) AS net_in, COALESCE(bytes_out, 0.0) AS net_out FROM logs1 WHERE machine_name IN ('anansi','aragog','urd') AND log_time >= TIMESTAMP '2017-01-11 00:00:00' ) AS r GROUP BY machine_name; ``` ```sql -- Q1.2:最近一天有哪些机房的机器离线? SELECT machine_name, log_time FROM logs1 WHERE (machine_name LIKE 'cslab%' OR machine_name LIKE 'mslab%') AND load_one IS NULL AND log_time >= TIMESTAMP '2017-01-10 00:00:00' ORDER BY machine_name, log_time; ``` ```sql -- Q1.3:特定工作站过去 10 天的每小时的平均指标是多少? SELECT dt, hr, AVG(load_fifteen) AS load_fifteen_avg, AVG(load_five) AS load_five_avg, AVG(load_one) AS load_one_avg, AVG(mem_free) AS mem_free_avg, AVG(swap_free) AS swap_free_avg FROM ( SELECT CAST(log_time AS DATE) AS dt, EXTRACT(HOUR FROM log_time) AS hr, load_fifteen, load_five, load_one, mem_free, swap_free FROM logs1 WHERE machine_name = 'babbage' AND load_fifteen IS NOT NULL AND load_five IS NOT NULL AND load_one IS NOT NULL AND mem_free IS NOT NULL AND swap_free IS NOT NULL AND log_time >= TIMESTAMP '2017-01-01 00:00:00' ) AS r GROUP BY dt, hr ORDER BY dt, hr; ``` ```sql -- Q1.4: 1 个月内,每台服务器的磁盘 I/O 阻塞的频率是多少? SELECT machine_name, COUNT(*) AS spikes FROM logs1 WHERE machine_group = 'Servers' AND cpu_wio > 0.99 AND log_time >= TIMESTAMP '2016-12-01 00:00:00' AND log_time < TIMESTAMP '2017-01-01 00:00:00' GROUP BY machine_name ORDER BY spikes DESC LIMIT 10; ``` ```sql -- Q1.5:哪些外部可访问的虚拟机的运行内存不足? SELECT machine_name, dt, MIN(mem_free) AS mem_free_min FROM ( SELECT machine_name, CAST(log_time AS DATE) AS dt, mem_free FROM logs1 WHERE machine_group = 'DMZ' AND mem_free IS NOT NULL ) AS r GROUP BY machine_name, dt HAVING MIN(mem_free) < 10000 ORDER BY machine_name, dt; ``` ```sql -- Q1.6: 每小时所有文件服务器的总网络流量是多少? SELECT dt, hr, SUM(net_in) AS net_in_sum, SUM(net_out) AS net_out_sum, SUM(net_in) + SUM(net_out) AS both_sum FROM ( SELECT CAST(log_time AS DATE) AS dt, EXTRACT(HOUR FROM log_time) AS hr, COALESCE(bytes_in, 0.0) / 1000000000.0 AS net_in, COALESCE(bytes_out, 0.0) / 1000000000.0 AS net_out FROM logs1 WHERE machine_name IN ('allsorts','andes','bigred','blackjack','bonbon', 'cadbury','chiclets','cotton','crows','dove','fireball','hearts','huey', 'lindt','milkduds','milkyway','mnm','necco','nerds','orbit','peeps', 'poprocks','razzles','runts','smarties','smuggler','spree','stride', 'tootsie','trident','wrigley','york') ) AS r GROUP BY dt, hr ORDER BY both_sum DESC LIMIT 10; ``` ```sql -- Q2.1:过去 2 周内哪些请求导致了服务器错误? SELECT * FROM logs2 WHERE status_code >= 500 AND log_time >= TIMESTAMP '2012-12-18 00:00:00' ORDER BY log_time; ``` ```sql -- Q2.2:在特定的某 2 周内,用户密码文件是否被泄露了? SELECT * FROM logs2 WHERE status_code >= 200 AND status_code < 300 AND request LIKE '%/etc/passwd%' AND log_time >= TIMESTAMP '2012-05-06 00:00:00' AND log_time < TIMESTAMP '2012-05-20 00:00:00'; ``` ```sql -- Q2.3:过去一个月顶级请求的平均路径深度是多少? SELECT top_level, AVG(LENGTH(request) - LENGTH(REPLACE(request, '/', ''))) AS depth_avg FROM ( SELECT SUBSTRING(request FROM 1 FOR len) AS top_level, request FROM ( SELECT POSITION(SUBSTRING(request FROM 2), '/') AS len, request FROM logs2 WHERE status_code >= 200 AND status_code < 300 AND log_time >= TIMESTAMP '2012-12-01 00:00:00' ) AS r WHERE len > 0 ) AS s WHERE top_level IN ('/about','/courses','/degrees','/events', '/grad','/industry','/news','/people', '/publications','/research','/teaching','/ugrad') GROUP BY top_level ORDER BY top_level; ``` ```sql -- Q2.4:在过去的 3 个月里,哪些客户端发出了过多的请求? SELECT client_ip, COUNT(*) AS num_requests FROM logs2 WHERE log_time >= TIMESTAMP '2012-10-01 00:00:00' GROUP BY client_ip HAVING COUNT(*) >= 100000 ORDER BY num_requests DESC; ``` ```sql -- Q2.5:每天的独立访问者数量是多少? SELECT dt, COUNT(DISTINCT client_ip) FROM ( SELECT CAST(log_time AS DATE) AS dt, client_ip FROM logs2 ) AS r GROUP BY dt ORDER BY dt; ``` ```sql -- Q2.6:平均和最大数据传输速率(Gbps)是多少? SELECT AVG(transfer) / 125000000.0 AS transfer_avg, MAX(transfer) / 125000000.0 AS transfer_max FROM ( SELECT log_time, SUM(object_size) AS transfer FROM logs2 GROUP BY log_time ) AS r; ``` ```sql -- Q3.1:自 2019/11/29 17:00 以来,室温是否达到过冰点? SELECT * FROM logs3 WHERE event_type = 'temperature' AND event_value <= 32.0 AND log_time >= '2019-11-29 17:00:00.000'; ``` ```sql -- Q3.4:在过去的 6 个月里,每扇门打开的频率是多少? SELECT device_name, device_floor, COUNT(*) AS ct FROM logs3 WHERE event_type = 'door_open' AND log_time >= '2019-06-01 00:00:00.000' GROUP BY device_name, device_floor ORDER BY ct DESC; ``` 下面的查询 3.5 使用了 UNION 关键词。设置该模式以便组合 SELECT 的查询结果。该设置仅在未明确指定 UNION ALL 或 UNION DISTINCT 但使用了 UNION 进行共享时使用。 ```sql SET union_default_mode = 'DISTINCT' ``` ```sql -- Q3.5: 在冬季和夏季,建筑物内哪些地方会出现较大的温度变化? WITH temperature AS ( SELECT dt, device_name, device_type, device_floor FROM ( SELECT dt, hr, device_name, device_type, device_floor, AVG(event_value) AS temperature_hourly_avg FROM ( SELECT CAST(log_time AS DATE) AS dt, EXTRACT(HOUR FROM log_time) AS hr, device_name, device_type, device_floor, event_value FROM logs3 WHERE event_type = 'temperature' ) AS r GROUP BY dt, hr, device_name, device_type, device_floor ) AS s GROUP BY dt, device_name, device_type, device_floor HAVING MAX(temperature_hourly_avg) - MIN(temperature_hourly_avg) >= 25.0 ) SELECT DISTINCT device_name, device_type, device_floor, 'WINTER' FROM temperature WHERE dt >= DATE '2018-12-01' AND dt < DATE '2019-03-01' UNION SELECT DISTINCT device_name, device_type, device_floor, 'SUMMER' FROM temperature WHERE dt >= DATE '2019-06-01' AND dt < DATE '2019-09-01'; ``` ```sql -- Q3.6:对于每种类别的设备,每月的功耗指标是什么? SELECT yr, mo, SUM(coffee_hourly_avg) AS coffee_monthly_sum, AVG(coffee_hourly_avg) AS coffee_monthly_avg, SUM(printer_hourly_avg) AS printer_monthly_sum, AVG(printer_hourly_avg) AS printer_monthly_avg, SUM(projector_hourly_avg) AS projector_monthly_sum, AVG(projector_hourly_avg) AS projector_monthly_avg, SUM(vending_hourly_avg) AS vending_monthly_sum, AVG(vending_hourly_avg) AS vending_monthly_avg FROM ( SELECT dt, yr, mo, hr, AVG(coffee) AS coffee_hourly_avg, AVG(printer) AS printer_hourly_avg, AVG(projector) AS projector_hourly_avg, AVG(vending) AS vending_hourly_avg FROM ( SELECT CAST(log_time AS DATE) AS dt, EXTRACT(YEAR FROM log_time) AS yr, EXTRACT(MONTH FROM log_time) AS mo, EXTRACT(HOUR FROM log_time) AS hr, CASE WHEN device_name LIKE 'coffee%' THEN event_value END AS coffee, CASE WHEN device_name LIKE 'printer%' THEN event_value END AS printer, CASE WHEN device_name LIKE 'projector%' THEN event_value END AS projector, CASE WHEN device_name LIKE 'vending%' THEN event_value END AS vending FROM logs3 WHERE device_type = 'meter' ) AS r GROUP BY dt, yr, mo, hr ) AS s GROUP BY yr, mo ORDER BY yr, mo; ``` 此数据集可在 [Playground](https://sql.clickhouse.com) 中进行交互式的请求, [example](https://sql.clickhouse.com?query_id=1MXMHASDLEQIP4P1D1STND).