#include #include #include namespace DB { namespace ErrorCodes { extern const int TYPE_MISMATCH; extern const int ARGUMENT_OUT_OF_BOUND; extern const int BAD_ARGUMENTS; extern const int DICTIONARY_IS_EMPTY; } ComplexKeyHashedDictionary::ComplexKeyHashedDictionary( const std::string & name, const DictionaryStructure & dict_struct, DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime, bool require_nonempty) : name{name}, dict_struct(dict_struct), source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime), require_nonempty(require_nonempty) { createAttributes(); try { loadData(); calculateBytesAllocated(); } catch (...) { creation_exception = std::current_exception(); } creation_time = std::chrono::system_clock::now(); } ComplexKeyHashedDictionary::ComplexKeyHashedDictionary(const ComplexKeyHashedDictionary & other) : ComplexKeyHashedDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.require_nonempty} { } #define DECLARE(TYPE)\ void ComplexKeyHashedDictionary::get##TYPE(\ const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\ PaddedPODArray & out) const\ {\ dict_struct.validateKeyTypes(key_types);\ \ const auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ const auto null_value = std::get(attribute.null_values);\ \ getItemsNumber(attribute, key_columns,\ [&] (const std::size_t row, const auto value) { out[row] = value; },\ [&] (const std::size_t) { return null_value; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void ComplexKeyHashedDictionary::getString( const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, ColumnString * out) const { dict_struct.validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; const auto & null_value = StringRef{std::get(attribute.null_values)}; getItemsImpl(attribute, key_columns, [&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const std::size_t) { return null_value; }); } #define DECLARE(TYPE)\ void ComplexKeyHashedDictionary::get##TYPE(\ const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\ const PaddedPODArray & def, PaddedPODArray & out) const\ {\ dict_struct.validateKeyTypes(key_types);\ \ const auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ getItemsNumber(attribute, key_columns,\ [&] (const std::size_t row, const auto value) { out[row] = value; },\ [&] (const std::size_t row) { return def[row]; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void ComplexKeyHashedDictionary::getString( const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, const ColumnString * const def, ColumnString * const out) const { dict_struct.validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; getItemsImpl(attribute, key_columns, [&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const std::size_t row) { return def->getDataAt(row); }); } #define DECLARE(TYPE)\ void ComplexKeyHashedDictionary::get##TYPE(\ const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\ const TYPE def, PaddedPODArray & out) const\ {\ dict_struct.validateKeyTypes(key_types);\ \ const auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ getItemsNumber(attribute, key_columns,\ [&] (const std::size_t row, const auto value) { out[row] = value; },\ [&] (const std::size_t) { return def; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void ComplexKeyHashedDictionary::getString( const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, const String & def, ColumnString * const out) const { dict_struct.validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; getItemsImpl(attribute, key_columns, [&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const std::size_t) { return StringRef{def}; }); } void ComplexKeyHashedDictionary::has(const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, PaddedPODArray & out) const { dict_struct.validateKeyTypes(key_types); const auto & attribute = attributes.front(); switch (attribute.type) { case AttributeUnderlyingType::UInt8: has(attribute, key_columns, out); break; case AttributeUnderlyingType::UInt16: has(attribute, key_columns, out); break; case AttributeUnderlyingType::UInt32: has(attribute, key_columns, out); break; case AttributeUnderlyingType::UInt64: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Int8: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Int16: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Int32: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Int64: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Float32: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Float64: has(attribute, key_columns, out); break; case AttributeUnderlyingType::String: has(attribute, key_columns, out); break; } } void ComplexKeyHashedDictionary::createAttributes() { const auto size = dict_struct.attributes.size(); attributes.reserve(size); for (const auto & attribute : dict_struct.attributes) { attribute_index_by_name.emplace(attribute.name, attributes.size()); attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value)); if (attribute.hierarchical) throw Exception{ name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(), ErrorCodes::TYPE_MISMATCH}; } } void ComplexKeyHashedDictionary::loadData() { auto stream = source_ptr->loadAll(); stream->readPrefix(); /// created upfront to avoid excess allocations const auto keys_size = dict_struct.key.value().size(); StringRefs keys(keys_size); const auto attributes_size = attributes.size(); while (const auto block = stream->read()) { const auto rows = block.rows(); element_count += rows; const auto key_column_ptrs = ext::map(ext::range(0, keys_size), [&] (const std::size_t attribute_idx) { return block.safeGetByPosition(attribute_idx).column.get(); }); const auto attribute_column_ptrs = ext::map(ext::range(0, attributes_size), [&] (const std::size_t attribute_idx) { return block.safeGetByPosition(keys_size + attribute_idx).column.get(); }); for (const auto row_idx : ext::range(0, rows)) { /// calculate key once per row const auto key = placeKeysInPool(row_idx, key_column_ptrs, keys, keys_pool); auto should_rollback = false; for (const auto attribute_idx : ext::range(0, attributes_size)) { const auto & attribute_column = *attribute_column_ptrs[attribute_idx]; auto & attribute = attributes[attribute_idx]; const auto inserted = setAttributeValue(attribute, key, attribute_column[row_idx]); if (!inserted) should_rollback = true; } /// @note on multiple equal keys the mapped value for the first one is stored if (should_rollback) keys_pool.rollback(key.size); } } stream->readSuffix(); if (require_nonempty && 0 == element_count) throw Exception{ name + ": dictionary source is empty and 'require_nonempty' property is set.", ErrorCodes::DICTIONARY_IS_EMPTY}; } template void ComplexKeyHashedDictionary::addAttributeSize(const Attribute & attribute) { const auto & map_ref = std::get>(attribute.maps); bytes_allocated += sizeof(ContainerType) + map_ref->getBufferSizeInBytes(); bucket_count = map_ref->getBufferSizeInCells(); } void ComplexKeyHashedDictionary::calculateBytesAllocated() { bytes_allocated += attributes.size() * sizeof(attributes.front()); for (const auto & attribute : attributes) { switch (attribute.type) { case AttributeUnderlyingType::UInt8: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt16: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt32: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt64: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int8: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int16: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int32: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int64: addAttributeSize(attribute); break; case AttributeUnderlyingType::Float32: addAttributeSize(attribute); break; case AttributeUnderlyingType::Float64: addAttributeSize(attribute); break; case AttributeUnderlyingType::String: { addAttributeSize(attribute); bytes_allocated += sizeof(Arena) + attribute.string_arena->size(); break; } } } bytes_allocated += keys_pool.size(); } template void ComplexKeyHashedDictionary::createAttributeImpl(Attribute & attribute, const Field & null_value) { std::get(attribute.null_values) = null_value.get::Type>(); std::get>(attribute.maps) = std::make_unique>(); } ComplexKeyHashedDictionary::Attribute ComplexKeyHashedDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value) { Attribute attr{type}; switch (type) { case AttributeUnderlyingType::UInt8: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt16: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int8: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int16: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Float32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Float64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::String: { std::get(attr.null_values) = null_value.get(); std::get>(attr.maps) = std::make_unique>(); attr.string_arena = std::make_unique(); break; } } return attr; } template void ComplexKeyHashedDictionary::getItemsNumber( const Attribute & attribute, const ConstColumnPlainPtrs & key_columns, ValueSetter && set_value, DefaultGetter && get_default) const { if (false) {} #define DISPATCH(TYPE) \ else if (attribute.type == AttributeUnderlyingType::TYPE) \ getItemsImpl(attribute, key_columns, std::forward(set_value), std::forward(get_default)); DISPATCH(UInt8) DISPATCH(UInt16) DISPATCH(UInt32) DISPATCH(UInt64) DISPATCH(Int8) DISPATCH(Int16) DISPATCH(Int32) DISPATCH(Int64) DISPATCH(Float32) DISPATCH(Float64) #undef DISPATCH else throw Exception("Unexpected type of attribute: " + toString(attribute.type), ErrorCodes::LOGICAL_ERROR); } template void ComplexKeyHashedDictionary::getItemsImpl( const Attribute & attribute, const ConstColumnPlainPtrs & key_columns, ValueSetter && set_value, DefaultGetter && get_default) const { const auto & attr = *std::get>(attribute.maps); const auto keys_size = key_columns.size(); StringRefs keys(keys_size); Arena temporary_keys_pool; const auto rows = key_columns.front()->size(); for (const auto i : ext::range(0, rows)) { /// copy key data to arena so it is contiguous and return StringRef to it const auto key = placeKeysInPool(i, key_columns, keys, temporary_keys_pool); const auto it = attr.find(key); set_value(i, it != attr.end() ? it->second : get_default(i)); /// free memory allocated for the key temporary_keys_pool.rollback(key.size); } query_count.fetch_add(rows, std::memory_order_relaxed); } template bool ComplexKeyHashedDictionary::setAttributeValueImpl(Attribute & attribute, const StringRef key, const T value) { auto & map = *std::get>(attribute.maps); const auto pair = map.insert({ key, value }); return pair.second; } bool ComplexKeyHashedDictionary::setAttributeValue(Attribute & attribute, const StringRef key, const Field & value) { switch (attribute.type) { case AttributeUnderlyingType::UInt8: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::UInt16: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::UInt32: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::UInt64: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Int8: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Int16: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Int32: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Int64: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Float32: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Float64: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::String: { auto & map = *std::get>(attribute.maps); const auto & string = value.get(); const auto string_in_arena = attribute.string_arena->insert(string.data(), string.size()); const auto pair = map.insert({ key, StringRef{string_in_arena, string.size()} }); return pair.second; } } return {}; } const ComplexKeyHashedDictionary::Attribute & ComplexKeyHashedDictionary::getAttribute(const std::string & attribute_name) const { const auto it = attribute_index_by_name.find(attribute_name); if (it == std::end(attribute_index_by_name)) throw Exception{ name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS}; return attributes[it->second]; } StringRef ComplexKeyHashedDictionary::placeKeysInPool( const std::size_t row, const ConstColumnPlainPtrs & key_columns, StringRefs & keys, Arena & pool) { const auto keys_size = key_columns.size(); size_t sum_keys_size{}; for (const auto i : ext::range(0, keys_size)) { keys[i] = key_columns[i]->getDataAtWithTerminatingZero(row); sum_keys_size += keys[i].size; } const auto res = pool.alloc(sum_keys_size); auto place = res; for (size_t j = 0; j < keys_size; ++j) { memcpy(place, keys[j].data, keys[j].size); place += keys[j].size; } return { res, sum_keys_size }; } template void ComplexKeyHashedDictionary::has(const Attribute & attribute, const ConstColumnPlainPtrs & key_columns, PaddedPODArray & out) const { const auto & attr = *std::get>(attribute.maps); const auto keys_size = key_columns.size(); StringRefs keys(keys_size); Arena temporary_keys_pool; const auto rows = key_columns.front()->size(); for (const auto i : ext::range(0, rows)) { /// copy key data to arena so it is contiguous and return StringRef to it const auto key = placeKeysInPool(i, key_columns, keys, temporary_keys_pool); const auto it = attr.find(key); out[i] = it != attr.end(); /// free memory allocated for the key temporary_keys_pool.rollback(key.size); } query_count.fetch_add(rows, std::memory_order_relaxed); } }