#include #include #include #include namespace ProfileEvents { extern const Event SlowRead; extern const Event ReadBackoff; } namespace ErrorCodes { extern const int LOGICAL_ERROR; } namespace DB { MergeTreeReadPool::MergeTreeReadPool( const size_t threads_, const size_t sum_marks_, const size_t min_marks_for_concurrent_read_, RangesInDataParts && parts_, const MergeTreeData & data_, const StorageMetadataPtr & metadata_snapshot_, const PrewhereInfoPtr & prewhere_info_, const bool check_columns_, const Names & column_names_, const BackoffSettings & backoff_settings_, size_t preferred_block_size_bytes_, const bool do_not_steal_tasks_) : backoff_settings{backoff_settings_} , backoff_state{threads_} , data{data_} , metadata_snapshot{metadata_snapshot_} , column_names{column_names_} , do_not_steal_tasks{do_not_steal_tasks_} , predict_block_size_bytes{preferred_block_size_bytes_ > 0} , prewhere_info{prewhere_info_} , parts_ranges{std::move(parts_)} { /// parts don't contain duplicate MergeTreeDataPart's. const auto per_part_sum_marks = fillPerPartInfo(parts_ranges, check_columns_); fillPerThreadInfo(threads_, sum_marks_, per_part_sum_marks, parts_ranges, min_marks_for_concurrent_read_); } MergeTreeReadTaskPtr MergeTreeReadPool::getTask(const size_t min_marks_to_read, const size_t thread, const Names & ordered_names) { const std::lock_guard lock{mutex}; /// If number of threads was lowered due to backoff, then will assign work only for maximum 'backoff_state.current_threads' threads. if (thread >= backoff_state.current_threads) return nullptr; if (remaining_thread_tasks.empty()) return nullptr; const auto tasks_remaining_for_this_thread = !threads_tasks[thread].sum_marks_in_parts.empty(); if (!tasks_remaining_for_this_thread && do_not_steal_tasks) return nullptr; /// Steal task if nothing to do and it's not prohibited auto thread_idx = thread; if (!tasks_remaining_for_this_thread) { auto it = remaining_thread_tasks.lower_bound(backoff_state.current_threads); // Grab the entire tasks of a thread which is killed by backoff if (it != remaining_thread_tasks.end()) { threads_tasks[thread] = std::move(threads_tasks[*it]); remaining_thread_tasks.erase(it); remaining_thread_tasks.insert(thread); } else // Try steal tasks from the next thread { it = remaining_thread_tasks.upper_bound(thread); if (it == remaining_thread_tasks.end()) it = remaining_thread_tasks.begin(); thread_idx = *it; } } auto & thread_tasks = threads_tasks[thread_idx]; auto & thread_task = thread_tasks.parts_and_ranges.back(); const auto part_idx = thread_task.part_idx; auto & part = parts_with_idx[part_idx]; auto & marks_in_part = thread_tasks.sum_marks_in_parts.back(); /// Get whole part to read if it is small enough. auto need_marks = std::min(marks_in_part, min_marks_to_read); /// Do not leave too little rows in part for next time. if (marks_in_part > need_marks && marks_in_part - need_marks < min_marks_to_read) need_marks = marks_in_part; MarkRanges ranges_to_get_from_part; /// Get whole part to read if it is small enough. if (marks_in_part <= need_marks) { const auto marks_to_get_from_range = marks_in_part; ranges_to_get_from_part = thread_task.ranges; marks_in_part -= marks_to_get_from_range; thread_tasks.parts_and_ranges.pop_back(); thread_tasks.sum_marks_in_parts.pop_back(); if (thread_tasks.sum_marks_in_parts.empty()) remaining_thread_tasks.erase(thread_idx); } else { /// Loop through part ranges. while (need_marks > 0 && !thread_task.ranges.empty()) { auto & range = thread_task.ranges.front(); const size_t marks_in_range = range.end - range.begin; const size_t marks_to_get_from_range = std::min(marks_in_range, need_marks); ranges_to_get_from_part.emplace_back(range.begin, range.begin + marks_to_get_from_range); range.begin += marks_to_get_from_range; if (range.begin == range.end) thread_task.ranges.pop_front(); marks_in_part -= marks_to_get_from_range; need_marks -= marks_to_get_from_range; } } auto curr_task_size_predictor = !per_part_size_predictor[part_idx] ? nullptr : std::make_unique(*per_part_size_predictor[part_idx]); /// make a copy return std::make_unique( part.data_part, ranges_to_get_from_part, part.part_index_in_query, ordered_names, per_part_column_name_set[part_idx], per_part_columns[part_idx], per_part_pre_columns[part_idx], prewhere_info && prewhere_info->remove_prewhere_column, per_part_should_reorder[part_idx], std::move(curr_task_size_predictor)); } MarkRanges MergeTreeReadPool::getRestMarks(const IMergeTreeDataPart & part, const MarkRange & from) const { MarkRanges all_part_ranges; /// Inefficient in presence of large number of data parts. for (const auto & part_ranges : parts_ranges) { if (part_ranges.data_part.get() == &part) { all_part_ranges = part_ranges.ranges; break; } } if (all_part_ranges.empty()) throw Exception("Trying to read marks range [" + std::to_string(from.begin) + ", " + std::to_string(from.end) + "] from part '" + part.getFullPath() + "' which has no ranges in this query", ErrorCodes::LOGICAL_ERROR); auto begin = std::lower_bound(all_part_ranges.begin(), all_part_ranges.end(), from, [] (const auto & f, const auto & s) { return f.begin < s.begin; }); if (begin == all_part_ranges.end()) begin = std::prev(all_part_ranges.end()); begin->begin = from.begin; return MarkRanges(begin, all_part_ranges.end()); } Block MergeTreeReadPool::getHeader() const { return metadata_snapshot->getSampleBlockForColumns(column_names, data.getVirtuals(), data.getStorageID()); } void MergeTreeReadPool::profileFeedback(const ReadBufferFromFileBase::ProfileInfo info) { if (backoff_settings.min_read_latency_ms == 0 || do_not_steal_tasks) return; if (info.nanoseconds < backoff_settings.min_read_latency_ms * 1000000) return; std::lock_guard lock(mutex); if (backoff_state.current_threads <= backoff_settings.min_concurrency) return; size_t throughput = info.bytes_read * 1000000000 / info.nanoseconds; if (throughput >= backoff_settings.max_throughput) return; if (backoff_state.time_since_prev_event.elapsed() < backoff_settings.min_interval_between_events_ms * 1000000) return; backoff_state.time_since_prev_event.restart(); ++backoff_state.num_events; ProfileEvents::increment(ProfileEvents::SlowRead); LOG_DEBUG(log, "Slow read, event №{}: read {} bytes in {} sec., {}/s.", backoff_state.num_events, info.bytes_read, info.nanoseconds / 1e9, ReadableSize(throughput)); if (backoff_state.num_events < backoff_settings.min_events) return; backoff_state.num_events = 0; --backoff_state.current_threads; ProfileEvents::increment(ProfileEvents::ReadBackoff); LOG_DEBUG(log, "Will lower number of threads to {}", backoff_state.current_threads); } std::vector MergeTreeReadPool::fillPerPartInfo( const RangesInDataParts & parts, const bool check_columns) { std::vector per_part_sum_marks; Block sample_block = metadata_snapshot->getSampleBlock(); for (const auto i : collections::range(0, parts.size())) { const auto & part = parts[i]; /// Read marks for every data part. size_t sum_marks = 0; for (const auto & range : part.ranges) sum_marks += range.end - range.begin; per_part_sum_marks.push_back(sum_marks); auto [required_columns, required_pre_columns, should_reorder] = getReadTaskColumns(data, metadata_snapshot, part.data_part, column_names, prewhere_info, check_columns); /// will be used to distinguish between PREWHERE and WHERE columns when applying filter const auto & required_column_names = required_columns.getNames(); per_part_column_name_set.emplace_back(required_column_names.begin(), required_column_names.end()); per_part_pre_columns.push_back(std::move(required_pre_columns)); per_part_columns.push_back(std::move(required_columns)); per_part_should_reorder.push_back(should_reorder); parts_with_idx.push_back({ part.data_part, part.part_index_in_query }); if (predict_block_size_bytes) { per_part_size_predictor.emplace_back(std::make_unique( part.data_part, column_names, sample_block)); } else per_part_size_predictor.emplace_back(nullptr); } return per_part_sum_marks; } void MergeTreeReadPool::fillPerThreadInfo( const size_t threads, const size_t sum_marks, std::vector per_part_sum_marks, const RangesInDataParts & parts, const size_t min_marks_for_concurrent_read) { threads_tasks.resize(threads); if (parts.empty()) return; struct PartInfo { RangesInDataPart part; size_t sum_marks; size_t part_idx; }; using PartsInfo = std::vector; std::queue parts_queue; { /// Group parts by disk name. /// We try minimize the number of threads concurrently read from the same disk. /// It improves the performance for JBOD architecture. std::map> parts_per_disk; for (size_t i = 0; i < parts.size(); ++i) { PartInfo part_info{parts[i], per_part_sum_marks[i], i}; if (parts[i].data_part->isStoredOnDisk()) parts_per_disk[parts[i].data_part->volume->getDisk()->getName()].push_back(std::move(part_info)); else parts_per_disk[""].push_back(std::move(part_info)); } for (auto & info : parts_per_disk) parts_queue.push(std::move(info.second)); } const size_t min_marks_per_thread = (sum_marks - 1) / threads + 1; for (size_t i = 0; i < threads && !parts_queue.empty(); ++i) { auto need_marks = min_marks_per_thread; while (need_marks > 0 && !parts_queue.empty()) { auto & current_parts = parts_queue.front(); RangesInDataPart & part = current_parts.back().part; size_t & marks_in_part = current_parts.back().sum_marks; const auto part_idx = current_parts.back().part_idx; /// Do not get too few rows from part. if (marks_in_part >= min_marks_for_concurrent_read && need_marks < min_marks_for_concurrent_read) need_marks = min_marks_for_concurrent_read; /// Do not leave too few rows in part for next time. if (marks_in_part > need_marks && marks_in_part - need_marks < min_marks_for_concurrent_read) need_marks = marks_in_part; MarkRanges ranges_to_get_from_part; size_t marks_in_ranges = need_marks; /// Get whole part to read if it is small enough. if (marks_in_part <= need_marks) { ranges_to_get_from_part = part.ranges; marks_in_ranges = marks_in_part; need_marks -= marks_in_part; current_parts.pop_back(); if (current_parts.empty()) parts_queue.pop(); } else { /// Loop through part ranges. while (need_marks > 0) { if (part.ranges.empty()) throw Exception("Unexpected end of ranges while spreading marks among threads", ErrorCodes::LOGICAL_ERROR); MarkRange & range = part.ranges.front(); const size_t marks_in_range = range.end - range.begin; const size_t marks_to_get_from_range = std::min(marks_in_range, need_marks); ranges_to_get_from_part.emplace_back(range.begin, range.begin + marks_to_get_from_range); range.begin += marks_to_get_from_range; marks_in_part -= marks_to_get_from_range; need_marks -= marks_to_get_from_range; if (range.begin == range.end) part.ranges.pop_front(); } } threads_tasks[i].parts_and_ranges.push_back({ part_idx, ranges_to_get_from_part }); threads_tasks[i].sum_marks_in_parts.push_back(marks_in_ranges); if (marks_in_ranges != 0) remaining_thread_tasks.insert(i); } /// Before processing next thread, change disk if possible. /// Different threads will likely start reading from different disk, /// which may improve read parallelism for JBOD. /// It also may be helpful in case we have backoff threads. /// Backoff threads will likely to reduce load for different disks, not the same one. if (parts_queue.size() > 1) { parts_queue.push(std::move(parts_queue.front())); parts_queue.pop(); } } } }