#include "IPAddressDictionary.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "DictionaryBlockInputStream.h" #include "DictionaryFactory.h" namespace DB { namespace ErrorCodes { extern const int BAD_ARGUMENTS; extern const int CANNOT_PARSE_INPUT_ASSERTION_FAILED; extern const int CANNOT_PARSE_NUMBER; extern const int DICTIONARY_IS_EMPTY; extern const int LOGICAL_ERROR; extern const int TYPE_MISMATCH; } namespace { /// Intermediate structure that are used in loading procedure struct IPRecord { Poco::Net::IPAddress addr; UInt8 prefix; size_t row; bool isv6; IPRecord(const Poco::Net::IPAddress & addr_, UInt8 prefix_, size_t row_) : addr(addr_) , prefix(prefix_) , row(row_) , isv6(addr.family() == Poco::Net::IPAddress::IPv6) { } const uint8_t * asIPv6Binary(uint8_t * buf) const { if (isv6) return reinterpret_cast(addr.addr()); memset(buf, 0, 10); buf[10] = '\xFF'; buf[11] = '\xFF'; memcpy(&buf[12], addr.addr(), 4); return buf; } inline UInt8 prefixIPv6() const { return isv6 ? prefix : prefix + 96; } }; struct IPv4Subnet { UInt32 addr; UInt8 prefix; }; struct IPv6Subnet { const uint8_t * addr; UInt8 prefix; }; } static std::pair parseIPFromString(const std::string_view addr_str) { try { size_t pos = addr_str.find('/'); if (pos != std::string::npos) { Poco::Net::IPAddress addr{std::string(addr_str.substr(0, pos))}; uint8_t prefix = 0; const auto * addr_str_end = addr_str.data() + addr_str.size(); auto [p, ec] = std::from_chars(addr_str.data() + pos + 1, addr_str_end, prefix); if (p != addr_str_end) throw DB::Exception("Extra characters at the end of IP address", ErrorCodes::CANNOT_PARSE_INPUT_ASSERTION_FAILED); if (ec != std::errc()) throw DB::Exception("Mask for IP address is not a valid number", ErrorCodes::CANNOT_PARSE_NUMBER); addr = addr & Poco::Net::IPAddress(prefix, addr.family()); return {addr, prefix}; } Poco::Net::IPAddress addr{std::string(addr_str)}; return {addr, addr.length() * 8}; } catch (Poco::Exception & ex) { throw DB::Exception("Can't parse address \"" + std::string(addr_str) + "\": " + ex.what(), ErrorCodes::CANNOT_PARSE_INPUT_ASSERTION_FAILED); } } static size_t formatIPWithPrefix(const unsigned char * src, UInt8 prefix_len, bool isv4, char * dst) { char * ptr = dst; if (isv4) formatIPv4(src, ptr); else formatIPv6(src, ptr); *(ptr - 1) = '/'; ptr = itoa(prefix_len, ptr); return ptr - dst; } static void validateKeyTypes(const DataTypes & key_types) { if (key_types.empty() || key_types.size() > 2) throw Exception{"Expected a single IP address or IP with mask", ErrorCodes::TYPE_MISMATCH}; const auto * key_ipv4type = typeid_cast(key_types[0].get()); const auto * key_ipv6type = typeid_cast(key_types[0].get()); if (key_ipv4type == nullptr && (key_ipv6type == nullptr || key_ipv6type->getN() != 16)) throw Exception{"Key does not match, expected either `IPv4` (`UInt32`) or `IPv6` (`FixedString(16)`)", ErrorCodes::TYPE_MISMATCH}; if (key_types.size() > 1) { const auto * mask_col_type = typeid_cast(key_types[1].get()); if (mask_col_type == nullptr) throw Exception{"Mask do not match, expected UInt8", ErrorCodes::TYPE_MISMATCH}; } } template size_t sortAndUnique(std::vector & vec, Comp comp) { std::sort(vec.begin(), vec.end(), [&](const auto & a, const auto & b) { return comp(a, b) < 0; }); auto new_end = std::unique(vec.begin(), vec.end(), [&](const auto & a, const auto & b) { return comp(a, b) == 0; }); size_t deleted_count = std::distance(new_end, vec.end()); vec.erase(new_end, vec.end()); return deleted_count; } template static inline int compareTo(T a, T b) { return a > b ? 1 : (a < b ? -1 : 0); } inline static UInt32 IPv4AsUInt32(const void * addr) { return Poco::ByteOrder::fromNetwork(*reinterpret_cast(addr)); } /// Convert mapped IPv6 to IPv4 if possible inline static UInt32 mappedIPv4ToBinary(const uint8_t * addr, bool & success) { success = addr[0] == 0x0 && addr[1] == 0x0 && addr[2] == 0x0 && addr[3] == 0x0 && addr[4] == 0x0 && addr[5] == 0x0 && addr[6] == 0x0 && addr[7] == 0x0 && addr[8] == 0x0 && addr[9] == 0x0 && addr[10] == 0xff && addr[11] == 0xff; if (!success) return 0; return IPv4AsUInt32(&addr[12]); } /// Convert IPv4 to IPv6-mapped and save results to buf inline static void mapIPv4ToIPv6(UInt32 addr, uint8_t * buf) { memset(buf, 0, 10); buf[10] = '\xFF'; buf[11] = '\xFF'; addr = Poco::ByteOrder::toNetwork(addr); memcpy(&buf[12], &addr, 4); } static bool matchIPv4Subnet(UInt32 target, UInt32 addr, UInt8 prefix) { UInt32 mask = (prefix >= 32) ? 0xffffffffu : ~(0xffffffffu >> prefix); return (target & mask) == addr; } #if defined(__SSE2__) #include static bool matchIPv6Subnet(const uint8_t * target, const uint8_t * addr, UInt8 prefix) { uint16_t mask = _mm_movemask_epi8(_mm_cmpeq_epi8( _mm_loadu_si128(reinterpret_cast(target)), _mm_loadu_si128(reinterpret_cast(addr)))); mask = ~mask; if (mask) { auto offset = __builtin_ctz(mask); if (prefix / 8 != offset) return prefix / 8 < offset; auto cmpmask = ~(0xff >> (prefix % 8)); return (target[offset] & cmpmask) == addr[offset]; } return true; } # else static bool matchIPv6Subnet(const uint8_t * target, const uint8_t * addr, UInt8 prefix) { if (prefix > IPV6_BINARY_LENGTH * 8U) prefix = IPV6_BINARY_LENGTH * 8U; size_t i = 0; for (; prefix >= 8; ++i, prefix -= 8) { if (target[i] != addr[i]) return false; } if (prefix == 0) return true; auto mask = ~(0xff >> prefix); return (target[i] & mask) == addr[i]; } #endif // __SSE2__ IPAddressDictionary::IPAddressDictionary( const StorageID & dict_id_, const DictionaryStructure & dict_struct_, DictionarySourcePtr source_ptr_, const DictionaryLifetime dict_lifetime_, bool require_nonempty_, bool access_to_key_from_attributes_) : IDictionaryBase(dict_id_) , dict_struct(dict_struct_) , source_ptr{std::move(source_ptr_)} , dict_lifetime(dict_lifetime_) , require_nonempty(require_nonempty_) , access_to_key_from_attributes(access_to_key_from_attributes_) , logger(&Poco::Logger::get("IPAddressDictionary")) { if (access_to_key_from_attributes) { dict_struct.attributes.emplace_back(dict_struct.key->front()); } createAttributes(); loadData(); calculateBytesAllocated(); } #define DECLARE(TYPE) \ void IPAddressDictionary::get##TYPE( \ const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types, ResultArrayType & out) const \ { \ validateKeyTypes(key_types); \ \ const auto & attribute = getAttribute(attribute_name); \ checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::ut##TYPE); \ \ const auto null_value = std::get(attribute.null_values); \ \ getItemsImpl( \ attribute, \ key_columns, \ [&](const size_t row, const auto value) { out[row] = value; }, \ [&](const size_t) { return null_value; }); \ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(UInt128) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) DECLARE(Decimal32) DECLARE(Decimal64) DECLARE(Decimal128) #undef DECLARE void IPAddressDictionary::getString( const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types, ColumnString * out) const { validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::utString); const auto & null_value = StringRef{std::get(attribute.null_values)}; getItemsImpl( attribute, key_columns, [&](const size_t, const StringRef value) { out->insertData(value.data, value.size); }, [&](const size_t) { return null_value; }); } #define DECLARE(TYPE) \ void IPAddressDictionary::get##TYPE( \ const std::string & attribute_name, \ const Columns & key_columns, \ const DataTypes & key_types, \ const PaddedPODArray & def, \ ResultArrayType & out) const \ { \ validateKeyTypes(key_types); \ \ const auto & attribute = getAttribute(attribute_name); \ checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::ut##TYPE); \ \ getItemsImpl( \ attribute, \ key_columns, \ [&](const size_t row, const auto value) { out[row] = value; }, \ [&](const size_t row) { return def[row]; }); \ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(UInt128) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) DECLARE(Decimal32) DECLARE(Decimal64) DECLARE(Decimal128) #undef DECLARE void IPAddressDictionary::getString( const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types, const ColumnString * const def, ColumnString * const out) const { validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::utString); getItemsImpl( attribute, key_columns, [&](const size_t, const StringRef value) { out->insertData(value.data, value.size); }, [&](const size_t row) { return def->getDataAt(row); }); } #define DECLARE(TYPE) \ void IPAddressDictionary::get##TYPE( \ const std::string & attribute_name, \ const Columns & key_columns, \ const DataTypes & key_types, \ const TYPE def, \ ResultArrayType & out) const \ { \ validateKeyTypes(key_types); \ \ const auto & attribute = getAttribute(attribute_name); \ checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::ut##TYPE); \ \ getItemsImpl( \ attribute, key_columns, [&](const size_t row, const auto value) { out[row] = value; }, [&](const size_t) { return def; }); \ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(UInt128) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) DECLARE(Decimal32) DECLARE(Decimal64) DECLARE(Decimal128) #undef DECLARE void IPAddressDictionary::getString( const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types, const String & def, ColumnString * const out) const { validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::utString); getItemsImpl( attribute, key_columns, [&](const size_t, const StringRef value) { out->insertData(value.data, value.size); }, [&](const size_t) { return StringRef{def}; }); } void IPAddressDictionary::has(const Columns & key_columns, const DataTypes & key_types, PaddedPODArray & out) const { validateKeyTypes(key_types); const auto first_column = key_columns.front(); const auto rows = first_column->size(); if (first_column->isNumeric()) { uint8_t addrv6_buf[IPV6_BINARY_LENGTH]; for (const auto i : ext::range(0, rows)) { auto addrv4 = UInt32(first_column->get64(i)); auto found = tryLookupIPv4(addrv4, addrv6_buf); out[i] = (found != ipNotFound()); } } else { for (const auto i : ext::range(0, rows)) { auto addr = first_column->getDataAt(i); if (unlikely(addr.size != IPV6_BINARY_LENGTH)) throw Exception("Expected key to be FixedString(16)", ErrorCodes::LOGICAL_ERROR); auto found = tryLookupIPv6(reinterpret_cast(addr.data)); out[i] = (found != ipNotFound()); } } query_count.fetch_add(rows, std::memory_order_relaxed); } void IPAddressDictionary::createAttributes() { const auto size = dict_struct.attributes.size(); attributes.reserve(size); for (const auto & attribute : dict_struct.attributes) { attribute_index_by_name.emplace(attribute.name, attributes.size()); attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value)); if (attribute.hierarchical) throw Exception{full_name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(), ErrorCodes::TYPE_MISMATCH}; } } void IPAddressDictionary::loadData() { auto stream = source_ptr->loadAll(); stream->readPrefix(); std::vector ip_records; bool has_ipv6 = false; while (const auto block = stream->read()) { const auto rows = block.rows(); element_count += rows; const ColumnPtr key_column_ptr = block.safeGetByPosition(0).column; size_t attributes_size = dict_struct.attributes.size(); if (access_to_key_from_attributes) { /// last attribute contains key and will be filled in code below attributes_size--; } const auto attribute_column_ptrs = ext::map(ext::range(0, attributes_size), [&](const size_t attribute_idx) { return block.safeGetByPosition(attribute_idx + 1).column; }); for (const auto row : ext::range(0, rows)) { for (const auto attribute_idx : ext::range(0, attribute_column_ptrs.size())) { const auto & attribute_column = *attribute_column_ptrs[attribute_idx]; auto & attribute = attributes[attribute_idx]; setAttributeValue(attribute, attribute_column[row]); } const auto [addr, prefix] = parseIPFromString(std::string_view(key_column_ptr->getDataAt(row))); has_ipv6 = has_ipv6 || (addr.family() == Poco::Net::IPAddress::IPv6); size_t row_number = ip_records.size(); ip_records.emplace_back(addr, prefix, row_number); } } stream->readSuffix(); if (access_to_key_from_attributes) { /// We format key attribute values here instead of filling with data from key_column /// because string representation can be normalized if bits beyond mask are set. /// Also all IPv4 will be displayed as mapped IPv6 if threre are any IPv6. /// It's consistent with representation in table created with `ENGINE = Dictionary` from this dictionary. char str_buffer[48]; if (has_ipv6) { uint8_t ip_buffer[IPV6_BINARY_LENGTH]; for (const auto & record : ip_records) { size_t str_len = formatIPWithPrefix(record.asIPv6Binary(ip_buffer), record.prefixIPv6(), false, str_buffer); setAttributeValue(attributes.back(), String(str_buffer, str_len)); } } else { for (const auto & record : ip_records) { UInt32 addr = IPv4AsUInt32(record.addr.addr()); size_t str_len = formatIPWithPrefix(reinterpret_cast(&addr), record.prefix, true, str_buffer); setAttributeValue(attributes.back(), String(str_buffer, str_len)); } } } row_idx.reserve(ip_records.size()); mask_column.reserve(ip_records.size()); if (has_ipv6) { auto deleted_count = sortAndUnique(ip_records, [](const auto & record_a, const auto & record_b) { uint8_t a_buf[IPV6_BINARY_LENGTH]; uint8_t b_buf[IPV6_BINARY_LENGTH]; auto cmpres = memcmp16(record_a.asIPv6Binary(a_buf), record_b.asIPv6Binary(b_buf)); if (cmpres == 0) return compareTo(record_a.prefixIPv6(), record_b.prefixIPv6()); return cmpres; }); if (deleted_count > 0) LOG_WARNING(logger, "removing {} non-unique subnets from input", deleted_count); auto & ipv6_col = ip_column.emplace(); ipv6_col.resize_fill(IPV6_BINARY_LENGTH * ip_records.size()); for (const auto & record : ip_records) { size_t i = row_idx.size(); IPv6ToRawBinary(record.addr, reinterpret_cast(&ipv6_col[i * IPV6_BINARY_LENGTH])); mask_column.push_back(record.prefixIPv6()); row_idx.push_back(record.row); } } else { auto deleted_count = sortAndUnique(ip_records, [](const auto & record_a, const auto & record_b) { UInt32 a = IPv4AsUInt32(record_a.addr.addr()); UInt32 b = IPv4AsUInt32(record_b.addr.addr()); if (a == b) return compareTo(record_a.prefix, record_b.prefix); return compareTo(a, b); }); if (deleted_count > 0) LOG_WARNING(logger, "removing {} non-unique subnets from input", deleted_count); auto & ipv4_col = ip_column.emplace(); ipv4_col.reserve(ip_records.size()); for (const auto & record : ip_records) { auto addr = IPv4AsUInt32(record.addr.addr()); ipv4_col.push_back(addr); mask_column.push_back(record.prefix); row_idx.push_back(record.row); } } parent_subnet.resize(ip_records.size()); std::stack subnets_stack; for (const auto i : ext::range(0, ip_records.size())) { parent_subnet[i] = i; while (!subnets_stack.empty()) { size_t pi = subnets_stack.top(); if (has_ipv6) { uint8_t a_buf[IPV6_BINARY_LENGTH]; uint8_t b_buf[IPV6_BINARY_LENGTH]; const auto * cur_address = ip_records[i].asIPv6Binary(a_buf); const auto * cur_subnet = ip_records[pi].asIPv6Binary(b_buf); bool is_mask_smaller = ip_records[pi].prefixIPv6() < ip_records[i].prefixIPv6(); if (is_mask_smaller && matchIPv6Subnet(cur_address, cur_subnet, ip_records[pi].prefixIPv6())) { parent_subnet[i] = pi; break; } } else { UInt32 cur_address = IPv4AsUInt32(ip_records[i].addr.addr()); UInt32 cur_subnet = IPv4AsUInt32(ip_records[pi].addr.addr()); bool is_mask_smaller = ip_records[pi].prefix < ip_records[i].prefix; if (is_mask_smaller && matchIPv4Subnet(cur_address, cur_subnet, ip_records[pi].prefix)) { parent_subnet[i] = pi; break; } } subnets_stack.pop(); } subnets_stack.push(i); } LOG_TRACE(logger, "{} ip records are read", ip_records.size()); if (require_nonempty && 0 == element_count) throw Exception{full_name + ": dictionary source is empty and 'require_nonempty' property is set.", ErrorCodes::DICTIONARY_IS_EMPTY}; } template void IPAddressDictionary::addAttributeSize(const Attribute & attribute) { const auto & vec = std::get>(attribute.maps); bytes_allocated += sizeof(ContainerType) + (vec.capacity() * sizeof(T)); bucket_count = vec.size(); } void IPAddressDictionary::calculateBytesAllocated() { if (auto * ipv4_col = std::get_if(&ip_column)) { bytes_allocated += ipv4_col->size() * sizeof((*ipv4_col)[0]); } else if (auto * ipv6_col = std::get_if(&ip_column)) { bytes_allocated += ipv6_col->size() * sizeof((*ipv6_col)[0]); } bytes_allocated += mask_column.size() * sizeof(mask_column[0]); bytes_allocated += parent_subnet.size() * sizeof(parent_subnet[0]); bytes_allocated += row_idx.size() * sizeof(row_idx[0]); bytes_allocated += attributes.size() * sizeof(attributes.front()); for (const auto & attribute : attributes) { switch (attribute.type) { case AttributeUnderlyingType::utUInt8: addAttributeSize(attribute); break; case AttributeUnderlyingType::utUInt16: addAttributeSize(attribute); break; case AttributeUnderlyingType::utUInt32: addAttributeSize(attribute); break; case AttributeUnderlyingType::utUInt64: addAttributeSize(attribute); break; case AttributeUnderlyingType::utUInt128: addAttributeSize(attribute); break; case AttributeUnderlyingType::utInt8: addAttributeSize(attribute); break; case AttributeUnderlyingType::utInt16: addAttributeSize(attribute); break; case AttributeUnderlyingType::utInt32: addAttributeSize(attribute); break; case AttributeUnderlyingType::utInt64: addAttributeSize(attribute); break; case AttributeUnderlyingType::utFloat32: addAttributeSize(attribute); break; case AttributeUnderlyingType::utFloat64: addAttributeSize(attribute); break; case AttributeUnderlyingType::utDecimal32: addAttributeSize(attribute); break; case AttributeUnderlyingType::utDecimal64: addAttributeSize(attribute); break; case AttributeUnderlyingType::utDecimal128: addAttributeSize(attribute); break; case AttributeUnderlyingType::utString: { addAttributeSize(attribute); bytes_allocated += sizeof(Arena) + attribute.string_arena->size(); break; } } } } template void IPAddressDictionary::createAttributeImpl(Attribute & attribute, const Field & null_value) { attribute.null_values = null_value.isNull() ? T{} : T(null_value.get>()); attribute.maps.emplace>(); } IPAddressDictionary::Attribute IPAddressDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value) { Attribute attr{type, {}, {}, {}}; switch (type) { case AttributeUnderlyingType::utUInt8: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utUInt16: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utUInt32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utUInt64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utUInt128: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utInt8: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utInt16: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utInt32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utInt64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utFloat32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utFloat64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utDecimal32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utDecimal64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utDecimal128: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::utString: { attr.null_values = null_value.isNull() ? String() : null_value.get(); attr.maps.emplace>(); attr.string_arena = std::make_unique(); break; } } return attr; } const uint8_t * IPAddressDictionary::getIPv6FromOffset(const IPAddressDictionary::IPv6Container & ipv6_col, size_t i) { return reinterpret_cast(&ipv6_col[i * IPV6_BINARY_LENGTH]); } template void IPAddressDictionary::getItemsByTwoKeyColumnsImpl( const Attribute & attribute, const Columns & key_columns, ValueSetter && set_value, DefaultGetter && get_default) const { const auto first_column = key_columns.front(); const auto rows = first_column->size(); auto & vec = std::get>(attribute.maps); if (const auto * ipv4_col = std::get_if(&ip_column)) { const auto * key_ip_column_ptr = typeid_cast *>(&*key_columns.front()); if (key_ip_column_ptr == nullptr) throw Exception{"Expected a UInt32 IP column", ErrorCodes::TYPE_MISMATCH}; const auto & key_mask_column = assert_cast &>(*key_columns.back()); auto comp_v4 = [&](size_t elem, const IPv4Subnet & target) { UInt32 addr = (*ipv4_col)[elem]; if (addr == target.addr) return mask_column[elem] < target.prefix; return addr < target.addr; }; for (const auto i : ext::range(0, rows)) { UInt32 addr = key_ip_column_ptr->getElement(i); UInt8 mask = key_mask_column.getElement(i); auto range = ext::range(0, row_idx.size()); auto found_it = std::lower_bound(range.begin(), range.end(), IPv4Subnet{addr, mask}, comp_v4); if (likely(found_it != range.end() && (*ipv4_col)[*found_it] == addr && mask_column[*found_it] == mask)) { set_value(i, static_cast(vec[row_idx[*found_it]])); } else set_value(i, get_default(i)); } return; } const auto * key_ip_column_ptr = typeid_cast(&*key_columns.front()); if (key_ip_column_ptr == nullptr || key_ip_column_ptr->getN() != IPV6_BINARY_LENGTH) throw Exception{"Expected a FixedString(16) IP column", ErrorCodes::TYPE_MISMATCH}; const auto & key_mask_column = assert_cast &>(*key_columns.back()); const auto * ipv6_col = std::get_if(&ip_column); auto comp_v6 = [&](size_t i, const IPv6Subnet & target) { auto cmpres = memcmp16(getIPv6FromOffset(*ipv6_col, i), target.addr); if (cmpres == 0) return mask_column[i] < target.prefix; return cmpres < 0; }; for (const auto i : ext::range(0, rows)) { auto addr = key_ip_column_ptr->getDataAt(i); UInt8 mask = key_mask_column.getElement(i); IPv6Subnet target{reinterpret_cast(addr.data), mask}; auto range = ext::range(0, row_idx.size()); auto found_it = std::lower_bound(range.begin(), range.end(), target, comp_v6); if (likely(found_it != range.end() && memequal16(getIPv6FromOffset(*ipv6_col, *found_it), target.addr) && mask_column[*found_it] == mask)) set_value(i, static_cast(vec[row_idx[*found_it]])); else set_value(i, get_default(i)); } } template void IPAddressDictionary::getItemsImpl( const Attribute & attribute, const Columns & key_columns, ValueSetter && set_value, DefaultGetter && get_default) const { const auto first_column = key_columns.front(); const auto rows = first_column->size(); // special case for getBlockInputStream if (unlikely(key_columns.size() == 2)) { getItemsByTwoKeyColumnsImpl( attribute, key_columns, std::forward(set_value), std::forward(get_default)); query_count.fetch_add(rows, std::memory_order_relaxed); return; } auto & vec = std::get>(attribute.maps); if (first_column->isNumeric()) { uint8_t addrv6_buf[IPV6_BINARY_LENGTH]; for (const auto i : ext::range(0, rows)) { // addrv4 has native endianness auto addrv4 = UInt32(first_column->get64(i)); auto found = tryLookupIPv4(addrv4, addrv6_buf); if (found != ipNotFound()) set_value(i, static_cast(vec[*found])); else set_value(i, get_default(i)); } } else { for (const auto i : ext::range(0, rows)) { auto addr = first_column->getDataAt(i); if (addr.size != IPV6_BINARY_LENGTH) throw Exception("Expected key to be FixedString(16)", ErrorCodes::LOGICAL_ERROR); auto found = tryLookupIPv6(reinterpret_cast(addr.data)); if (found != ipNotFound()) set_value(i, static_cast(vec[*found])); else set_value(i, get_default(i)); } } query_count.fetch_add(rows, std::memory_order_relaxed); } template void IPAddressDictionary::setAttributeValueImpl(Attribute & attribute, const T value) { auto & vec = std::get>(attribute.maps); vec.push_back(value); } void IPAddressDictionary::setAttributeValue(Attribute & attribute, const Field & value) { switch (attribute.type) { case AttributeUnderlyingType::utUInt8: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utUInt16: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utUInt32: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utUInt64: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utUInt128: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utInt8: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utInt16: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utInt32: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utInt64: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utFloat32: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utFloat64: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utDecimal32: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utDecimal64: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utDecimal128: return setAttributeValueImpl(attribute, value.get()); case AttributeUnderlyingType::utString: { const auto & string = value.get(); const auto * string_in_arena = attribute.string_arena->insert(string.data(), string.size()); return setAttributeValueImpl(attribute, StringRef{string_in_arena, string.size()}); } } } const IPAddressDictionary::Attribute & IPAddressDictionary::getAttribute(const std::string & attribute_name) const { const auto it = attribute_index_by_name.find(attribute_name); if (it == std::end(attribute_index_by_name)) throw Exception{full_name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS}; return attributes[it->second]; } Columns IPAddressDictionary::getKeyColumns() const { const auto * ipv4_col = std::get_if(&ip_column); if (ipv4_col) { auto key_ip_column = ColumnVector::create(); auto key_mask_column = ColumnVector::create(); for (size_t row : ext::range(0, row_idx.size())) { key_ip_column->insertValue((*ipv4_col)[row]); key_mask_column->insertValue(mask_column[row]); } return {std::move(key_ip_column), std::move(key_mask_column)}; } const auto * ipv6_col = std::get_if(&ip_column); auto key_ip_column = ColumnFixedString::create(IPV6_BINARY_LENGTH); auto key_mask_column = ColumnVector::create(); for (size_t row : ext::range(0, row_idx.size())) { const char * data = reinterpret_cast(getIPv6FromOffset(*ipv6_col, row)); key_ip_column->insertData(data, IPV6_BINARY_LENGTH); key_mask_column->insertValue(mask_column[row]); } return {std::move(key_ip_column), std::move(key_mask_column)}; } template static auto keyViewGetter() { return [](const Columns & columns, const std::vector & dict_attributes) { auto column = ColumnString::create(); const auto & key_ip_column = assert_cast(*columns.front()); const auto & key_mask_column = assert_cast &>(*columns.back()); char buffer[48]; for (size_t row : ext::range(0, key_ip_column.size())) { UInt8 mask = key_mask_column.getElement(row); size_t str_len; if constexpr (IsIPv4) str_len = formatIPWithPrefix(reinterpret_cast(&key_ip_column.getElement(row)), mask, true, buffer); else str_len = formatIPWithPrefix(reinterpret_cast(key_ip_column.getDataAt(row).data), mask, false, buffer); column->insertData(buffer, str_len); } return ColumnsWithTypeAndName{ ColumnWithTypeAndName(std::move(column), std::make_shared(), dict_attributes.front().name)}; }; } BlockInputStreamPtr IPAddressDictionary::getBlockInputStream(const Names & column_names, size_t max_block_size) const { using BlockInputStreamType = DictionaryBlockInputStream; const bool is_ipv4 = std::get_if(&ip_column) != nullptr; auto get_keys = [is_ipv4](const Columns & columns, const std::vector & dict_attributes) { const auto & attr = dict_attributes.front(); std::shared_ptr key_typ; if (is_ipv4) key_typ = std::make_shared(); else key_typ = std::make_shared(IPV6_BINARY_LENGTH); return ColumnsWithTypeAndName({ ColumnWithTypeAndName(columns.front(), key_typ, attr.name), ColumnWithTypeAndName(columns.back(), std::make_shared(), attr.name + ".mask") }); }; if (is_ipv4) { auto get_view = keyViewGetter, true>(); return std::make_shared( shared_from_this(), max_block_size, getKeyColumns(), column_names, std::move(get_keys), std::move(get_view)); } auto get_view = keyViewGetter(); return std::make_shared( shared_from_this(), max_block_size, getKeyColumns(), column_names, std::move(get_keys), std::move(get_view)); } IPAddressDictionary::RowIdxConstIter IPAddressDictionary::ipNotFound() const { return row_idx.end(); } IPAddressDictionary::RowIdxConstIter IPAddressDictionary::tryLookupIPv4(UInt32 addr, uint8_t * buf) const { if (std::get_if(&ip_column)) { mapIPv4ToIPv6(addr, buf); return lookupIP(buf); } return lookupIP(addr); } IPAddressDictionary::RowIdxConstIter IPAddressDictionary::tryLookupIPv6(const uint8_t * addr) const { if (std::get_if(&ip_column)) { bool is_mapped = false; UInt32 addrv4 = mappedIPv4ToBinary(addr, is_mapped); if (!is_mapped) return ipNotFound(); return lookupIP(addrv4); } return lookupIP(addr); } template IPAddressDictionary::RowIdxConstIter IPAddressDictionary::lookupIP(IPValueType target) const { if (row_idx.empty()) return ipNotFound(); const auto * ipv4or6_col = std::get_if(&ip_column); if (ipv4or6_col == nullptr) return ipNotFound(); auto comp = [&](auto value, auto idx) -> bool { if constexpr (std::is_same_v) return value < (*ipv4or6_col)[idx]; else return memcmp16(value, getIPv6FromOffset(*ipv4or6_col, idx)) < 0; }; auto range = ext::range(0, row_idx.size()); auto found_it = std::upper_bound(range.begin(), range.end(), target, comp); if (found_it == range.begin()) return ipNotFound(); --found_it; if constexpr (std::is_same_v) { for (auto idx = *found_it;; idx = parent_subnet[idx]) { if (matchIPv4Subnet(target, (*ipv4or6_col)[idx], mask_column[idx])) return row_idx.begin() + idx; if (idx == parent_subnet[idx]) return ipNotFound(); } } else { for (auto idx = *found_it;; idx = parent_subnet[idx]) { if (matchIPv6Subnet(target, getIPv6FromOffset(*ipv4or6_col, idx), mask_column[idx])) return row_idx.begin() + idx; if (idx == parent_subnet[idx]) return ipNotFound(); } } return ipNotFound(); } void registerDictionaryTrie(DictionaryFactory & factory) { auto create_layout = [=](const std::string &, const DictionaryStructure & dict_struct, const Poco::Util::AbstractConfiguration & config, const std::string & config_prefix, DictionarySourcePtr source_ptr) -> DictionaryPtr { if (!dict_struct.key || dict_struct.key->size() != 1) throw Exception{"Dictionary of layout 'ip_trie' has to have one 'key'", ErrorCodes::BAD_ARGUMENTS}; const auto dict_id = StorageID::fromDictionaryConfig(config, config_prefix); const DictionaryLifetime dict_lifetime{config, config_prefix + ".lifetime"}; const bool require_nonempty = config.getBool(config_prefix + ".require_nonempty", false); const auto & layout_prefix = config_prefix + ".layout.ip_trie"; const bool access_to_key_from_attributes = config.getBool(layout_prefix + ".access_to_key_from_attributes", false); // This is specialised dictionary for storing IPv4 and IPv6 prefixes. return std::make_unique(dict_id, dict_struct, std::move(source_ptr), dict_lifetime, require_nonempty, access_to_key_from_attributes); }; factory.registerLayout("ip_trie", create_layout, true); } }