--- slug: /ru/sql-reference/aggregate-functions/reference/stochasticlinearregression sidebar_position: 221 --- # stochasticLinearRegression {#agg_functions-stochasticlinearregression} Функция реализует стохастическую линейную регрессию. Поддерживает пользовательские параметры для скорости обучения, коэффициента регуляризации L2, размера mini-batch и имеет несколько методов обновления весов ([Adam](https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Adam) (по умолчанию), [simple SGD](https://en.wikipedia.org/wiki/Stochastic_gradient_descent), [Momentum](https://en.wikipedia.org/wiki/Stochastic_gradient_descent#Momentum), [Nesterov](https://mipt.ru/upload/medialibrary/d7e/41-91.pdf)). ### Параметры {#agg_functions-stochasticlinearregression-parameters} Есть 4 настраиваемых параметра. Они передаются в функцию последовательно, однако не обязательно указывать все, используются значения по умолчанию, однако хорошая модель требует некоторой настройки параметров. ``` text stochasticLinearRegression(1.0, 1.0, 10, 'SGD') ``` 1. Скорость обучения — коэффициент длины шага, при выполнении градиентного спуска. Слишком большая скорость обучения может привести к бесконечным весам модели. По умолчанию `0.00001`. 2. Коэффициент регуляризации l2. Помогает предотвратить подгонку. По умолчанию `0.1`. 3. Размер mini-batch задаёт количество элементов, чьи градиенты будут вычислены и просуммированы при выполнении одного шага градиентного спуска. Чистый стохастический спуск использует один элемент, однако использование mini-batch (около 10 элементов) делает градиентные шаги более стабильными. По умолчанию `15`. 4. Метод обновления весов, можно выбрать один из следующих: `Adam` (по умолчанию), `SGD`, `Momentum`, `Nesterov`. `Momentum` и `Nesterov` более требовательные к вычислительным ресурсам и памяти, однако они имеют высокую скорость схождения и устойчивости методов стохастического градиента. ### Использование {#agg_functions-stochasticlinearregression-usage} `stochasticLinearRegression` используется на двух этапах: построение модели и предсказание новых данных. Чтобы построить модель и сохранить её состояние для дальнейшего использования, мы используем комбинатор `-State`. Для прогнозирования мы используем функцию [evalMLMethod](../../functions/machine-learning-functions.md#machine_learning_methods-evalmlmethod), которая принимает в качестве аргументов состояние и свойства для прогнозирования. **1.** Построение модели Пример запроса: ``` sql CREATE TABLE IF NOT EXISTS train_data ( param1 Float64, param2 Float64, target Float64 ) ENGINE = Memory; CREATE TABLE your_model ENGINE = Memory AS SELECT stochasticLinearRegressionState(0.1, 0.0, 5, 'SGD')(target, param1, param2) AS state FROM train_data; ``` Здесь нам также нужно вставить данные в таблицу `train_data`. Количество параметров не фиксировано, оно зависит только от количества аргументов, перешедших в `linearRegressionState`. Все они должны быть числовыми значениями. Обратите внимание, что столбец с целевым значением (которое мы хотели бы научиться предсказывать) вставляется в качестве первого аргумента. **2.** Прогнозирование После сохранения состояния в таблице мы можем использовать его несколько раз для прогнозирования или смёржить с другими состояниями и создать новые, улучшенные модели. ```sql WITH (SELECT state FROM your_model) AS model SELECT evalMLMethod(model, param1, param2) FROM test_data ``` Запрос возвращает столбец прогнозируемых значений. Обратите внимание, что первый аргумент `evalMLMethod` это объект `AggregateFunctionState`, далее идут столбцы свойств. `test_data` — это таблица, подобная `train_data`, но при этом может не содержать целевое значение. ### Примечания {#agg_functions-stochasticlinearregression-notes} 1. Объединить две модели можно следующим запросом: ```sql SELECT state1 + state2 FROM your_models ``` где таблица `your_models` содержит обе модели. Запрос вернёт новый объект `AggregateFunctionState`. 1. Пользователь может получать веса созданной модели для своих целей без сохранения модели, если не использовать комбинатор `-State`. ```sql SELECT stochasticLinearRegression(0.01)(target, param1, param2) FROM train_data ``` Подобный запрос строит модель и возвращает её веса, отвечающие параметрам моделей и смещение. Таким образом, в приведенном выше примере запрос вернет столбец с тремя значениями. **Смотрите также** - [stochasticLogisticRegression](../../../sql-reference/aggregate-functions/reference/stochasticlinearregression.md#agg_functions-stochasticlogisticregression) - [Отличие линейной от логистической регрессии.](https://stackoverflow.com/questions/12146914/what-is-the-difference-between-linear-regression-and-logistic-regression)