#include /// For calculations related to sampling coefficients. #include #include #include #include #include #include #include #include #include #include /// Allow to use __uint128_t as a template parameter for boost::rational. // https://stackoverflow.com/questions/41198673/uint128-t-not-working-with-clang-and-libstdc #if !defined(__GLIBCXX_BITSIZE_INT_N_0) && defined(__SIZEOF_INT128__) namespace std { template <> struct numeric_limits<__uint128_t> { static constexpr bool is_specialized = true; static constexpr bool is_signed = false; static constexpr bool is_integer = true; static constexpr int radix = 2; static constexpr int digits = 128; static constexpr __uint128_t min () { return 0; } // used in boost 1.65.1+ }; } #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace ProfileEvents { extern const Event SelectedParts; extern const Event SelectedRanges; extern const Event SelectedMarks; } namespace DB { namespace ErrorCodes { extern const int INDEX_NOT_USED; extern const int SAMPLING_NOT_SUPPORTED; extern const int ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER; extern const int ILLEGAL_COLUMN; extern const int ARGUMENT_OUT_OF_BOUND; } MergeTreeDataSelectExecutor::MergeTreeDataSelectExecutor(MergeTreeData & data_) : data(data_), log(&Logger::get(data.getLogName() + " (SelectExecutor)")) { } /// Construct a block consisting only of possible values of virtual columns static Block getBlockWithPartColumn(const MergeTreeData::DataPartsVector & parts) { auto column = ColumnString::create(); for (const auto & part : parts) column->insert(part->name); return Block{ColumnWithTypeAndName(std::move(column), std::make_shared(), "_part")}; } size_t MergeTreeDataSelectExecutor::getApproximateTotalRowsToRead( const MergeTreeData::DataPartsVector & parts, const PKCondition & key_condition, const Settings & settings) const { size_t full_marks_count = 0; /// We will find out how many rows we would have read without sampling. LOG_DEBUG(log, "Preliminary index scan with condition: " << key_condition.toString()); for (size_t i = 0; i < parts.size(); ++i) { const MergeTreeData::DataPartPtr & part = parts[i]; MarkRanges ranges = markRangesFromPKRange(part->index, key_condition, settings); /** In order to get a lower bound on the number of rows that match the condition on PK, * consider only guaranteed full marks. * That is, do not take into account the first and last marks, which may be incomplete. */ for (size_t j = 0; j < ranges.size(); ++j) if (ranges[j].end - ranges[j].begin > 2) full_marks_count += ranges[j].end - ranges[j].begin - 2; } return full_marks_count * data.index_granularity; } using RelativeSize = boost::rational; std::string toString(const RelativeSize & x) { return ASTSampleRatio::toString(x.numerator()) + "/" + ASTSampleRatio::toString(x.denominator()); } /// Converts sample size to an approximate number of rows (ex. `SAMPLE 1000000`) to relative value (ex. `SAMPLE 0.1`). static RelativeSize convertAbsoluteSampleSizeToRelative(const ASTPtr & node, size_t approx_total_rows) { if (approx_total_rows == 0) return 1; const ASTSampleRatio & node_sample = typeid_cast(*node); auto absolute_sample_size = node_sample.ratio.numerator / node_sample.ratio.denominator; return std::min(RelativeSize(1), RelativeSize(absolute_sample_size) / RelativeSize(approx_total_rows)); } BlockInputStreams MergeTreeDataSelectExecutor::read( const Names & column_names_to_return, const SelectQueryInfo & query_info, const Context & context, QueryProcessingStage::Enum & processed_stage, const size_t max_block_size, const unsigned num_streams, Int64 max_block_number_to_read) const { size_t part_index = 0; MergeTreeData::DataPartsVector parts = data.getDataPartsVector(); /// If query contains restrictions on the virtual column `_part` or `_part_index`, select only parts suitable for it. /// The virtual column `_sample_factor` (which is equal to 1 / used sample rate) can be requested in the query. Names virt_column_names; Names real_column_names; bool part_column_queried = false; bool sample_factor_column_queried = false; Float64 used_sample_factor = 1; for (const String & name : column_names_to_return) { if (name == "_part") { part_column_queried = true; virt_column_names.push_back(name); } else if (name == "_part_index") { virt_column_names.push_back(name); } else if (name == "_sample_factor") { sample_factor_column_queried = true; virt_column_names.push_back(name); } else { real_column_names.push_back(name); } } NamesAndTypesList available_real_columns = data.getColumnsList(); NamesAndTypesList available_real_and_virtual_columns = available_real_columns; for (const auto & name : virt_column_names) available_real_and_virtual_columns.emplace_back(data.getColumn(name)); /// If there are only virtual columns in the query, you must request at least one non-virtual one. if (real_column_names.empty()) real_column_names.push_back(ExpressionActions::getSmallestColumn(available_real_columns)); /// If `_part` virtual column is requested, we try to use it as an index. Block virtual_columns_block = getBlockWithPartColumn(parts); if (part_column_queried) VirtualColumnUtils::filterBlockWithQuery(query_info.query, virtual_columns_block, context); std::multiset part_values = VirtualColumnUtils::extractSingleValueFromBlock(virtual_columns_block, "_part"); data.check(real_column_names); processed_stage = QueryProcessingStage::FetchColumns; const Settings & settings = context.getSettingsRef(); SortDescription sort_descr = data.getPrimarySortDescription(); PKCondition key_condition(query_info, context, available_real_and_virtual_columns, sort_descr, data.getPrimaryExpression()); if (settings.force_primary_key && key_condition.alwaysUnknownOrTrue()) { std::stringstream exception_message; exception_message << "Primary key ("; for (size_t i = 0, size = sort_descr.size(); i < size; ++i) exception_message << (i == 0 ? "" : ", ") << sort_descr[i].column_name; exception_message << ") is not used and setting 'force_primary_key' is set."; throw Exception(exception_message.str(), ErrorCodes::INDEX_NOT_USED); } std::optional minmax_idx_condition; if (data.minmax_idx_expr) { minmax_idx_condition.emplace( query_info, context, available_real_and_virtual_columns, data.minmax_idx_sort_descr, data.minmax_idx_expr); if (settings.force_index_by_date && minmax_idx_condition->alwaysUnknownOrTrue()) { String msg = "MinMax index by columns ("; bool first = true; for (const String & col : data.minmax_idx_columns) { if (first) first = false; else msg += ", "; msg += col; } msg += ") is not used and setting 'force_index_by_date' is set"; throw Exception(msg, ErrorCodes::INDEX_NOT_USED); } } /// Select the parts in which there can be data that satisfy `minmax_idx_condition` and that match the condition on `_part`, /// as well as `max_block_number_to_read`. { auto prev_parts = parts; parts.clear(); for (const auto & part : prev_parts) { if (part_values.find(part->name) == part_values.end()) continue; if (minmax_idx_condition && !minmax_idx_condition->mayBeTrueInRange( data.minmax_idx_columns.size(), &part->minmax_idx.min_values[0], &part->minmax_idx.max_values[0], data.minmax_idx_column_types)) continue; if (max_block_number_to_read && part->info.max_block > max_block_number_to_read) continue; parts.push_back(part); } } /// Sampling. Names column_names_to_read = real_column_names; std::shared_ptr filter_function; ExpressionActionsPtr filter_expression; RelativeSize relative_sample_size = 0; RelativeSize relative_sample_offset = 0; ASTSelectQuery & select = typeid_cast(*query_info.query); auto select_sample_size = select.sample_size(); auto select_sample_offset = select.sample_offset(); if (select_sample_size) { relative_sample_size.assign( typeid_cast(*select_sample_size).ratio.numerator, typeid_cast(*select_sample_size).ratio.denominator); if (relative_sample_size < 0) throw Exception("Negative sample size", ErrorCodes::ARGUMENT_OUT_OF_BOUND); relative_sample_offset = 0; if (select_sample_offset) relative_sample_offset.assign( typeid_cast(*select_sample_offset).ratio.numerator, typeid_cast(*select_sample_offset).ratio.denominator); if (relative_sample_offset < 0) throw Exception("Negative sample offset", ErrorCodes::ARGUMENT_OUT_OF_BOUND); /// Convert absolute value of the sampling (in form `SAMPLE 1000000` - how many rows to read) into the relative `SAMPLE 0.1` (how much data to read). size_t approx_total_rows = 0; if (relative_sample_size > 1 || relative_sample_offset > 1) approx_total_rows = getApproximateTotalRowsToRead(parts, key_condition, settings); if (relative_sample_size > 1) { relative_sample_size = convertAbsoluteSampleSizeToRelative(select_sample_size, approx_total_rows); LOG_DEBUG(log, "Selected relative sample size: " << toString(relative_sample_size)); } /// SAMPLE 1 is the same as the absence of SAMPLE. if (relative_sample_size == RelativeSize(1)) relative_sample_size = 0; if (relative_sample_offset > 0 && 0 == relative_sample_size) throw Exception("Sampling offset is incorrect because no sampling", ErrorCodes::ARGUMENT_OUT_OF_BOUND); if (relative_sample_offset > 1) { relative_sample_offset = convertAbsoluteSampleSizeToRelative(select_sample_offset, approx_total_rows); LOG_DEBUG(log, "Selected relative sample offset: " << toString(relative_sample_offset)); } } /** Which range of sampling key values do I need to read? * First, in the whole range ("universe") we select the interval * of relative `relative_sample_size` size, offset from the beginning by `relative_sample_offset`. * * Example: SAMPLE 0.4 OFFSET 0.3 * * [------********------] * ^ - offset * <------> - size * * If the interval passes through the end of the universe, then cut its right side. * * Example: SAMPLE 0.4 OFFSET 0.8 * * [----------------****] * ^ - offset * <------> - size * * Next, if the `parallel_replicas_count`, `parallel_replica_offset` settings are set, * then it is necessary to break the received interval into pieces of the number `parallel_replicas_count`, * and select a piece with the number `parallel_replica_offset` (from zero). * * Example: SAMPLE 0.4 OFFSET 0.3, parallel_replicas_count = 2, parallel_replica_offset = 1 * * [----------****------] * ^ - offset * <------> - size * <--><--> - pieces for different `parallel_replica_offset`, select the second one. * * It is very important that the intervals for different `parallel_replica_offset` cover the entire range without gaps and overlaps. * It is also important that the entire universe can be covered using SAMPLE 0.1 OFFSET 0, ... OFFSET 0.9 and similar decimals. */ bool use_sampling = relative_sample_size > 0 || settings.parallel_replicas_count > 1; bool no_data = false; /// There is nothing left after sampling. if (use_sampling) { if (!data.sampling_expression) throw Exception("Illegal SAMPLE: table doesn't support sampling", ErrorCodes::SAMPLING_NOT_SUPPORTED); if (sample_factor_column_queried && relative_sample_size != 0) used_sample_factor = 1.0 / boost::rational_cast(relative_sample_size); RelativeSize size_of_universum = 0; DataTypePtr type = data.getPrimaryExpression()->getSampleBlock().getByName(data.sampling_expression->getColumnName()).type; if (typeid_cast(type.get())) size_of_universum = RelativeSize(std::numeric_limits::max()) + RelativeSize(1); else if (typeid_cast(type.get())) size_of_universum = RelativeSize(std::numeric_limits::max()) + RelativeSize(1); else if (typeid_cast(type.get())) size_of_universum = RelativeSize(std::numeric_limits::max()) + RelativeSize(1); else if (typeid_cast(type.get())) size_of_universum = RelativeSize(std::numeric_limits::max()) + RelativeSize(1); else throw Exception("Invalid sampling column type in storage parameters: " + type->getName() + ". Must be unsigned integer type.", ErrorCodes::ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER); if (settings.parallel_replicas_count > 1) { if (relative_sample_size == RelativeSize(0)) relative_sample_size = 1; relative_sample_size /= settings.parallel_replicas_count.value; relative_sample_offset += relative_sample_size * RelativeSize(settings.parallel_replica_offset.value); } if (relative_sample_offset >= RelativeSize(1)) no_data = true; /// Calculate the half-interval of `[lower, upper)` column values. bool has_lower_limit = false; bool has_upper_limit = false; RelativeSize lower_limit_rational = relative_sample_offset * size_of_universum; RelativeSize upper_limit_rational = (relative_sample_offset + relative_sample_size) * size_of_universum; UInt64 lower = boost::rational_cast(lower_limit_rational); UInt64 upper = boost::rational_cast(upper_limit_rational); if (lower > 0) has_lower_limit = true; if (upper_limit_rational < size_of_universum) has_upper_limit = true; /*std::cerr << std::fixed << std::setprecision(100) << "relative_sample_size: " << relative_sample_size << "\n" << "relative_sample_offset: " << relative_sample_offset << "\n" << "lower_limit_float: " << lower_limit_rational << "\n" << "upper_limit_float: " << upper_limit_rational << "\n" << "lower: " << lower << "\n" << "upper: " << upper << "\n";*/ if ((has_upper_limit && upper == 0) || (has_lower_limit && has_upper_limit && lower == upper)) no_data = true; if (no_data || (!has_lower_limit && !has_upper_limit)) { use_sampling = false; } else { /// Let's add the conditions to cut off something else when the index is scanned again and when the request is processed. std::shared_ptr lower_function; std::shared_ptr upper_function; if (has_lower_limit) { if (!key_condition.addCondition(data.sampling_expression->getColumnName(), Range::createLeftBounded(lower, true))) throw Exception("Sampling column not in primary key", ErrorCodes::ILLEGAL_COLUMN); ASTPtr args = std::make_shared(); args->children.push_back(data.sampling_expression); args->children.push_back(std::make_shared(StringRange(), lower)); lower_function = std::make_shared(); lower_function->name = "greaterOrEquals"; lower_function->arguments = args; lower_function->children.push_back(lower_function->arguments); filter_function = lower_function; } if (has_upper_limit) { if (!key_condition.addCondition(data.sampling_expression->getColumnName(), Range::createRightBounded(upper, false))) throw Exception("Sampling column not in primary key", ErrorCodes::ILLEGAL_COLUMN); ASTPtr args = std::make_shared(); args->children.push_back(data.sampling_expression); args->children.push_back(std::make_shared(StringRange(), upper)); upper_function = std::make_shared(); upper_function->name = "less"; upper_function->arguments = args; upper_function->children.push_back(upper_function->arguments); filter_function = upper_function; } if (has_lower_limit && has_upper_limit) { ASTPtr args = std::make_shared(); args->children.push_back(lower_function); args->children.push_back(upper_function); filter_function = std::make_shared(); filter_function->name = "and"; filter_function->arguments = args; filter_function->children.push_back(filter_function->arguments); } filter_expression = ExpressionAnalyzer(filter_function, context, nullptr, available_real_columns).getActions(false); /// Add columns needed for `sampling_expression` to `column_names_to_read`. std::vector add_columns = filter_expression->getRequiredColumns(); column_names_to_read.insert(column_names_to_read.end(), add_columns.begin(), add_columns.end()); std::sort(column_names_to_read.begin(), column_names_to_read.end()); column_names_to_read.erase(std::unique(column_names_to_read.begin(), column_names_to_read.end()), column_names_to_read.end()); } } if (no_data) { LOG_DEBUG(log, "Sampling yields no data."); return {}; } LOG_DEBUG(log, "Key condition: " << key_condition.toString()); if (minmax_idx_condition) LOG_DEBUG(log, "MinMax index condition: " << minmax_idx_condition->toString()); /// PREWHERE ExpressionActionsPtr prewhere_actions; String prewhere_column; if (select.prewhere_expression) { ExpressionAnalyzer analyzer(select.prewhere_expression, context, nullptr, available_real_columns); prewhere_actions = analyzer.getActions(false); prewhere_column = select.prewhere_expression->getColumnName(); SubqueriesForSets prewhere_subqueries = analyzer.getSubqueriesForSets(); /** Compute the subqueries right now. * NOTE Disadvantage - these calculations do not fit into the query execution pipeline. * They are done before the execution of the pipeline; they can not be interrupted; during the computation, packets of progress are not sent. */ if (!prewhere_subqueries.empty()) CreatingSetsBlockInputStream(std::make_shared(Block()), prewhere_subqueries, settings.limits).read(); } RangesInDataParts parts_with_ranges; /// Let's find what range to read from each part. size_t sum_marks = 0; size_t sum_ranges = 0; for (auto & part : parts) { RangesInDataPart ranges(part, part_index++); if (data.hasPrimaryKey()) ranges.ranges = markRangesFromPKRange(part->index, key_condition, settings); else ranges.ranges = MarkRanges{MarkRange{0, part->marks_count}}; if (!ranges.ranges.empty()) { parts_with_ranges.push_back(ranges); sum_ranges += ranges.ranges.size(); for (const auto & range : ranges.ranges) sum_marks += range.end - range.begin; } } LOG_DEBUG(log, "Selected " << parts.size() << " parts by date, " << parts_with_ranges.size() << " parts by key, " << sum_marks << " marks to read from " << sum_ranges << " ranges"); if (parts_with_ranges.empty()) return {}; ProfileEvents::increment(ProfileEvents::SelectedParts, parts_with_ranges.size()); ProfileEvents::increment(ProfileEvents::SelectedRanges, sum_ranges); ProfileEvents::increment(ProfileEvents::SelectedMarks, sum_marks); BlockInputStreams res; if (select.final()) { /// Add columns needed to calculate primary key and the sign. std::vector add_columns = data.getPrimaryExpression()->getRequiredColumns(); column_names_to_read.insert(column_names_to_read.end(), add_columns.begin(), add_columns.end()); if (!data.merging_params.sign_column.empty()) column_names_to_read.push_back(data.merging_params.sign_column); if (!data.merging_params.version_column.empty()) column_names_to_read.push_back(data.merging_params.version_column); std::sort(column_names_to_read.begin(), column_names_to_read.end()); column_names_to_read.erase(std::unique(column_names_to_read.begin(), column_names_to_read.end()), column_names_to_read.end()); res = spreadMarkRangesAmongStreamsFinal( std::move(parts_with_ranges), column_names_to_read, max_block_size, settings.use_uncompressed_cache, prewhere_actions, prewhere_column, virt_column_names, settings, context); } else { res = spreadMarkRangesAmongStreams( std::move(parts_with_ranges), num_streams, column_names_to_read, max_block_size, settings.use_uncompressed_cache, prewhere_actions, prewhere_column, virt_column_names, settings); } if (use_sampling) for (auto & stream : res) stream = std::make_shared(stream, filter_expression, filter_function->getColumnName()); /// By the way, if a distributed query or query to a Merge table is made, then the `_sample_factor` column can have different values. if (sample_factor_column_queried) for (auto & stream : res) stream = std::make_shared>( stream, std::make_shared(), used_sample_factor, "_sample_factor"); return res; } BlockInputStreams MergeTreeDataSelectExecutor::spreadMarkRangesAmongStreams( RangesInDataParts && parts, size_t num_streams, const Names & column_names, size_t max_block_size, bool use_uncompressed_cache, ExpressionActionsPtr prewhere_actions, const String & prewhere_column, const Names & virt_columns, const Settings & settings) const { const size_t min_marks_for_concurrent_read = (settings.merge_tree_min_rows_for_concurrent_read + data.index_granularity - 1) / data.index_granularity; const size_t max_marks_to_use_cache = (settings.merge_tree_max_rows_to_use_cache + data.index_granularity - 1) / data.index_granularity; /// Count marks for each part. std::vector sum_marks_in_parts(parts.size()); size_t sum_marks = 0; for (size_t i = 0; i < parts.size(); ++i) { /// Let the ranges be listed from right to left so that the leftmost range can be dropped using `pop_back()`. std::reverse(parts[i].ranges.begin(), parts[i].ranges.end()); for (const auto & range : parts[i].ranges) sum_marks_in_parts[i] += range.end - range.begin; sum_marks += sum_marks_in_parts[i]; } if (sum_marks > max_marks_to_use_cache) use_uncompressed_cache = false; BlockInputStreams res; if (sum_marks > 0 && settings.merge_tree_uniform_read_distribution == 1) { /// Reduce the number of num_streams if the data is small. if (sum_marks < num_streams * min_marks_for_concurrent_read && parts.size() < num_streams) num_streams = std::max((sum_marks + min_marks_for_concurrent_read - 1) / min_marks_for_concurrent_read, parts.size()); MergeTreeReadPoolPtr pool = std::make_shared( num_streams, sum_marks, min_marks_for_concurrent_read, parts, data, prewhere_actions, prewhere_column, true, column_names, MergeTreeReadPool::BackoffSettings(settings), settings.preferred_block_size_bytes, false); /// Let's estimate total number of rows for progress bar. const size_t total_rows = data.index_granularity * sum_marks; LOG_TRACE(log, "Reading approx. " << total_rows << " rows"); for (size_t i = 0; i < num_streams; ++i) { res.emplace_back(std::make_shared( i, pool, min_marks_for_concurrent_read, max_block_size, settings.preferred_block_size_bytes, settings.preferred_max_column_in_block_size_bytes, data, use_uncompressed_cache, prewhere_actions, prewhere_column, settings, virt_columns)); if (i == 0) { /// Set the approximate number of rows for the first source only static_cast(*res.front()).setTotalRowsApprox(total_rows); } } } else if (sum_marks > 0) { const size_t min_marks_per_stream = (sum_marks - 1) / num_streams + 1; for (size_t i = 0; i < num_streams && !parts.empty(); ++i) { size_t need_marks = min_marks_per_stream; /// Loop over parts. /// We will iteratively take part or some subrange of a part from the back /// and assign a stream to read from it. while (need_marks > 0 && !parts.empty()) { RangesInDataPart part = parts.back(); size_t & marks_in_part = sum_marks_in_parts.back(); /// We will not take too few rows from a part. if (marks_in_part >= min_marks_for_concurrent_read && need_marks < min_marks_for_concurrent_read) need_marks = min_marks_for_concurrent_read; /// Do not leave too few rows in the part. if (marks_in_part > need_marks && marks_in_part - need_marks < min_marks_for_concurrent_read) need_marks = marks_in_part; MarkRanges ranges_to_get_from_part; /// We take the whole part if it is small enough. if (marks_in_part <= need_marks) { /// Restore the order of segments. std::reverse(part.ranges.begin(), part.ranges.end()); ranges_to_get_from_part = part.ranges; need_marks -= marks_in_part; parts.pop_back(); sum_marks_in_parts.pop_back(); } else { /// Loop through ranges in part. Take enough ranges to cover "need_marks". while (need_marks > 0) { if (part.ranges.empty()) throw Exception("Unexpected end of ranges while spreading marks among streams", ErrorCodes::LOGICAL_ERROR); MarkRange & range = part.ranges.back(); const size_t marks_in_range = range.end - range.begin; const size_t marks_to_get_from_range = std::min(marks_in_range, need_marks); ranges_to_get_from_part.emplace_back(range.begin, range.begin + marks_to_get_from_range); range.begin += marks_to_get_from_range; marks_in_part -= marks_to_get_from_range; need_marks -= marks_to_get_from_range; if (range.begin == range.end) part.ranges.pop_back(); } } BlockInputStreamPtr source_stream = std::make_shared( data, part.data_part, max_block_size, settings.preferred_block_size_bytes, settings.preferred_max_column_in_block_size_bytes, column_names, ranges_to_get_from_part, use_uncompressed_cache, prewhere_actions, prewhere_column, true, settings.min_bytes_to_use_direct_io, settings.max_read_buffer_size, true, virt_columns, part.part_index_in_query); res.push_back(source_stream); } } if (!parts.empty()) throw Exception("Couldn't spread marks among streams", ErrorCodes::LOGICAL_ERROR); } return res; } BlockInputStreams MergeTreeDataSelectExecutor::spreadMarkRangesAmongStreamsFinal( RangesInDataParts && parts, const Names & column_names, size_t max_block_size, bool use_uncompressed_cache, ExpressionActionsPtr prewhere_actions, const String & prewhere_column, const Names & virt_columns, const Settings & settings, const Context & context) const { const size_t max_marks_to_use_cache = (settings.merge_tree_max_rows_to_use_cache + data.index_granularity - 1) / data.index_granularity; size_t sum_marks = 0; for (size_t i = 0; i < parts.size(); ++i) for (size_t j = 0; j < parts[i].ranges.size(); ++j) sum_marks += parts[i].ranges[j].end - parts[i].ranges[j].begin; if (sum_marks > max_marks_to_use_cache) use_uncompressed_cache = false; BlockInputStreams to_merge; /// NOTE `merge_tree_uniform_read_distribution` is not used for FINAL for (size_t part_index = 0; part_index < parts.size(); ++part_index) { RangesInDataPart & part = parts[part_index]; BlockInputStreamPtr source_stream = std::make_shared( data, part.data_part, max_block_size, settings.preferred_block_size_bytes, settings.preferred_max_column_in_block_size_bytes, column_names, part.ranges, use_uncompressed_cache, prewhere_actions, prewhere_column, true, settings.min_bytes_to_use_direct_io, settings.max_read_buffer_size, true, virt_columns, part.part_index_in_query); to_merge.emplace_back(std::make_shared(source_stream, data.getPrimaryExpression())); } BlockInputStreams res; if (to_merge.size() == 1) { if (data.merging_params.mode == MergeTreeData::MergingParams::Collapsing) { ExpressionActionsPtr sign_filter_expression; String sign_filter_column; createPositiveSignCondition(sign_filter_expression, sign_filter_column, context); res.emplace_back(std::make_shared(to_merge[0], sign_filter_expression, sign_filter_column)); } else res = to_merge; } else if (to_merge.size() > 1) { BlockInputStreamPtr merged; switch (data.merging_params.mode) { case MergeTreeData::MergingParams::Ordinary: merged = std::make_shared(to_merge, data.getSortDescription(), max_block_size); break; case MergeTreeData::MergingParams::Collapsing: merged = std::make_shared( to_merge, data.getSortDescription(), data.merging_params.sign_column); break; case MergeTreeData::MergingParams::Summing: merged = std::make_shared(to_merge, data.getSortDescription(), data.merging_params.columns_to_sum, max_block_size); break; case MergeTreeData::MergingParams::Aggregating: merged = std::make_shared(to_merge, data.getSortDescription(), max_block_size); break; case MergeTreeData::MergingParams::Replacing: /// TODO Make ReplacingFinalBlockInputStream merged = std::make_shared(to_merge, data.getSortDescription(), data.merging_params.version_column, max_block_size); break; case MergeTreeData::MergingParams::VersionedCollapsing: /// TODO Make VersionedCollapsingFinalBlockInputStream merged = std::make_shared( to_merge, data.getSortDescription(), data.merging_params.sign_column, max_block_size, true); break; case MergeTreeData::MergingParams::Graphite: throw Exception("GraphiteMergeTree doesn't support FINAL", ErrorCodes::LOGICAL_ERROR); } res.emplace_back(merged); } return res; } void MergeTreeDataSelectExecutor::createPositiveSignCondition( ExpressionActionsPtr & out_expression, String & out_column, const Context & context) const { auto function = std::make_shared(); auto arguments = std::make_shared(); auto sign = std::make_shared(); auto one = std::make_shared(); function->name = "equals"; function->arguments = arguments; function->children.push_back(arguments); arguments->children.push_back(sign); arguments->children.push_back(one); sign->name = data.merging_params.sign_column; sign->kind = ASTIdentifier::Column; one->value = Field(static_cast(1)); out_expression = ExpressionAnalyzer(function, context, {}, data.getColumnsList()).getActions(false); out_column = function->getColumnName(); } /// Calculates a set of mark ranges, that could possibly contain keys, required by condition. /// In other words, it removes subranges from whole range, that definitely could not contain required keys. MarkRanges MergeTreeDataSelectExecutor::markRangesFromPKRange( const MergeTreeData::DataPart::Index & index, const PKCondition & key_condition, const Settings & settings) const { size_t min_marks_for_seek = (settings.merge_tree_min_rows_for_seek + data.index_granularity - 1) / data.index_granularity; MarkRanges res; size_t used_key_size = key_condition.getMaxKeyColumn() + 1; size_t marks_count = index.at(0)->size(); /// If index is not used. if (key_condition.alwaysUnknownOrTrue()) { res.push_back(MarkRange(0, marks_count)); } else { /** There will always be disjoint suspicious segments on the stack, the leftmost one at the top (back). * At each step, take the left segment and check if it fits. * If fits, split it into smaller ones and put them on the stack. If not, discard it. * If the segment is already of one mark length, add it to response and discard it. */ std::vector ranges_stack{ {0, marks_count} }; /// NOTE Creating temporary Field objects to pass to PKCondition. Row index_left(used_key_size); Row index_right(used_key_size); while (!ranges_stack.empty()) { MarkRange range = ranges_stack.back(); ranges_stack.pop_back(); bool may_be_true; if (range.end == marks_count) { for (size_t i = 0; i < used_key_size; ++i) { index[i]->get(range.begin, index_left[i]); } may_be_true = key_condition.mayBeTrueAfter( used_key_size, &index_left[0], data.primary_key_data_types); } else { for (size_t i = 0; i < used_key_size; ++i) { index[i]->get(range.begin, index_left[i]); index[i]->get(range.end, index_right[i]); } may_be_true = key_condition.mayBeTrueInRange( used_key_size, &index_left[0], &index_right[0], data.primary_key_data_types); } if (!may_be_true) continue; if (range.end == range.begin + 1) { /// We saw a useful gap between neighboring marks. Either add it to the last range, or start a new range. if (res.empty() || range.begin - res.back().end > min_marks_for_seek) res.push_back(range); else res.back().end = range.end; } else { /// Break the segment and put the result on the stack from right to left. size_t step = (range.end - range.begin - 1) / settings.merge_tree_coarse_index_granularity + 1; size_t end; for (end = range.end; end > range.begin + step; end -= step) ranges_stack.push_back(MarkRange(end - step, end)); ranges_stack.push_back(MarkRange(range.begin, end)); } } } return res; } }