#include "IPAddressDictionary.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int BAD_ARGUMENTS; extern const int CANNOT_PARSE_INPUT_ASSERTION_FAILED; extern const int CANNOT_PARSE_NUMBER; extern const int DICTIONARY_IS_EMPTY; extern const int TYPE_MISMATCH; extern const int UNSUPPORTED_METHOD; } namespace { /// Intermediate structure that are used in loading procedure struct IPRecord { Poco::Net::IPAddress addr; UInt8 prefix; size_t row; bool isv6; IPRecord(const Poco::Net::IPAddress & addr_, UInt8 prefix_, size_t row_) : addr(addr_) , prefix(prefix_) , row(row_) , isv6(addr.family() == Poco::Net::IPAddress::IPv6) { } const uint8_t * asIPv6Binary(uint8_t * buf) const { if (isv6) return reinterpret_cast(addr.addr()); memset(buf, 0, 10); buf[10] = '\xFF'; buf[11] = '\xFF'; memcpy(&buf[12], addr.addr(), 4); return buf; } inline UInt8 prefixIPv6() const { return isv6 ? prefix : prefix + 96; } }; struct IPv4Subnet { UInt32 addr; UInt8 prefix; }; struct IPv6Subnet { const uint8_t * addr; UInt8 prefix; }; } static std::pair parseIPFromString(const std::string_view addr_str) { try { size_t pos = addr_str.find('/'); if (pos != std::string::npos) { Poco::Net::IPAddress addr{std::string(addr_str.substr(0, pos))}; uint8_t prefix = 0; const auto * addr_str_end = addr_str.data() + addr_str.size(); auto [p, ec] = std::from_chars(addr_str.data() + pos + 1, addr_str_end, prefix); if (p != addr_str_end) throw DB::Exception(ErrorCodes::CANNOT_PARSE_INPUT_ASSERTION_FAILED, "Extra characters at the end of IP address"); if (ec != std::errc()) throw DB::Exception(ErrorCodes::CANNOT_PARSE_NUMBER, "Mask for IP address is not a valid number"); addr = addr & Poco::Net::IPAddress(prefix, addr.family()); return {addr, prefix}; } Poco::Net::IPAddress addr{std::string(addr_str)}; return {addr, addr.length() * 8}; } catch (Poco::Exception & ex) { throw DB::Exception(ErrorCodes::CANNOT_PARSE_INPUT_ASSERTION_FAILED, "Can't parse address \"{}\": {}", std::string(addr_str), ex.what()); } } static size_t formatIPWithPrefix(const unsigned char * src, UInt8 prefix_len, bool isv4, char * dst) { char * ptr = dst; if (isv4) formatIPv4(src, ptr); else formatIPv6(src, ptr); *(ptr - 1) = '/'; ptr = itoa(prefix_len, ptr); return ptr - dst; } static void validateKeyTypes(const DataTypes & key_types) { if (key_types.empty() || key_types.size() > 2) throw Exception(ErrorCodes::TYPE_MISMATCH, "Expected a single IP address or IP with mask"); TypeIndex type_id = key_types[0]->getTypeId(); const auto * key_string = typeid_cast(key_types[0].get()); if (type_id != TypeIndex::IPv4 && type_id != TypeIndex::UInt32 && type_id != TypeIndex::IPv6 && !(key_string && key_string->getN() == IPV6_BINARY_LENGTH)) throw Exception(ErrorCodes::TYPE_MISMATCH, "Key does not match, expected either IPv4 (or UInt32) or IPv6 (or FixedString(16))"); if (key_types.size() > 1) { const auto * mask_col_type = typeid_cast(key_types[1].get()); if (mask_col_type == nullptr) throw Exception(ErrorCodes::TYPE_MISMATCH, "Mask do not match, expected UInt8"); } } template size_t sortAndUnique(std::vector & vec, Comp comp) { ::sort(vec.begin(), vec.end(), [&](const auto & a, const auto & b) { return comp(a, b) < 0; }); auto new_end = std::unique(vec.begin(), vec.end(), [&](const auto & a, const auto & b) { return comp(a, b) == 0; }); size_t deleted_count = std::distance(new_end, vec.end()); vec.erase(new_end, vec.end()); return deleted_count; } template static inline int compareTo(T a, T b) { return a > b ? 1 : (a < b ? -1 : 0); } inline static UInt32 IPv4AsUInt32(const void * addr) { return Poco::ByteOrder::fromNetwork(*reinterpret_cast(addr)); } /// Convert mapped IPv6 to IPv4 if possible inline static UInt32 mappedIPv4ToBinary(const uint8_t * addr, bool & success) { success = addr[0] == 0x0 && addr[1] == 0x0 && addr[2] == 0x0 && addr[3] == 0x0 && addr[4] == 0x0 && addr[5] == 0x0 && addr[6] == 0x0 && addr[7] == 0x0 && addr[8] == 0x0 && addr[9] == 0x0 && addr[10] == 0xff && addr[11] == 0xff; if (!success) return 0; return IPv4AsUInt32(&addr[12]); } /// Convert IPv4 to IPv6-mapped and save results to buf inline static void mapIPv4ToIPv6(UInt32 addr, uint8_t * buf) { memset(buf, 0, 10); buf[10] = '\xFF'; buf[11] = '\xFF'; addr = Poco::ByteOrder::toNetwork(addr); memcpy(&buf[12], &addr, 4); } IPAddressDictionary::IPAddressDictionary( const StorageID & dict_id_, const DictionaryStructure & dict_struct_, DictionarySourcePtr source_ptr_, const DictionaryLifetime dict_lifetime_, bool require_nonempty_) : IDictionary(dict_id_) , dict_struct(dict_struct_) , source_ptr{std::move(source_ptr_)} , dict_lifetime(dict_lifetime_) , require_nonempty(require_nonempty_) , access_to_key_from_attributes(dict_struct_.access_to_key_from_attributes) , logger(&Poco::Logger::get("IPAddressDictionary")) { createAttributes(); loadData(); calculateBytesAllocated(); } void IPAddressDictionary::convertKeyColumns(Columns &, DataTypes &) const { /// Do not perform any implicit keys conversion for IPAddressDictionary } ColumnPtr IPAddressDictionary::getColumn( const std::string & attribute_name, const DataTypePtr & result_type, const Columns & key_columns, const DataTypes & key_types, const ColumnPtr & default_values_column) const { validateKeyTypes(key_types); ColumnPtr result; const auto & attribute = getAttribute(attribute_name); const auto & dictionary_attribute = dict_struct.getAttribute(attribute_name, result_type); auto size = key_columns.front()->size(); auto type_call = [&](const auto &dictionary_attribute_type) { using Type = std::decay_t; using AttributeType = typename Type::AttributeType; using ValueType = DictionaryValueType; using ColumnProvider = DictionaryAttributeColumnProvider; const auto & null_value = std::get(attribute.null_values); DictionaryDefaultValueExtractor default_value_extractor(null_value, default_values_column); auto column = ColumnProvider::getColumn(dictionary_attribute, size); if constexpr (std::is_same_v) { auto * out = column.get(); getItemsImpl( attribute, key_columns, [&](const size_t, const Array & value) { out->insert(value); }, default_value_extractor); } else if constexpr (std::is_same_v) { auto * out = column.get(); getItemsImpl( attribute, key_columns, [&](const size_t, StringRef value) { out->insertData(value.data, value.size); }, default_value_extractor); } else { auto & out = column->getData(); getItemsImpl( attribute, key_columns, [&](const size_t row, const auto value) { return out[row] = value; }, default_value_extractor); } result = std::move(column); }; callOnDictionaryAttributeType(attribute.type, type_call); return result; } ColumnUInt8::Ptr IPAddressDictionary::hasKeys(const Columns & key_columns, const DataTypes & key_types) const { validateKeyTypes(key_types); const auto & first_column = key_columns.front(); const size_t rows = first_column->size(); auto result = ColumnUInt8::create(rows); auto & out = result->getData(); size_t keys_found = 0; TypeIndex type_id = first_column->getDataType(); if (type_id == TypeIndex::IPv4 || type_id == TypeIndex::UInt32) { uint8_t addrv6_buf[IPV6_BINARY_LENGTH]; for (const auto i : collections::range(0, rows)) { auto addrv4 = *reinterpret_cast(first_column->getDataAt(i).data); auto found = tryLookupIPv4(addrv4, addrv6_buf); out[i] = (found != ipNotFound()); keys_found += out[i]; } } else if (type_id == TypeIndex::IPv6 || type_id == TypeIndex::FixedString) { for (const auto i : collections::range(0, rows)) { auto addr = first_column->getDataAt(i); if (addr.size != IPV6_BINARY_LENGTH) throw Exception(ErrorCodes::TYPE_MISMATCH, "Expected key FixedString(16)"); auto found = tryLookupIPv6(reinterpret_cast(addr.data)); out[i] = (found != ipNotFound()); keys_found += out[i]; } } else throw Exception(ErrorCodes::TYPE_MISMATCH, "Expected key to be IPv4 (or UInt32) or IPv6 (or FixedString(16))"); query_count.fetch_add(rows, std::memory_order_relaxed); found_count.fetch_add(keys_found, std::memory_order_relaxed); return result; } void IPAddressDictionary::createAttributes() { auto create_attributes_from_dictionary_attributes = [this](const std::vector & dict_attrs) { attributes.reserve(attributes.size() + dict_attrs.size()); for (const auto & attribute : dict_attrs) { if (attribute.is_nullable) throw Exception(ErrorCodes::UNSUPPORTED_METHOD, "{}: array or nullable attributes not supported for dictionary of type {}", getFullName(), getTypeName()); attribute_index_by_name.emplace(attribute.name, attributes.size()); attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value)); if (attribute.hierarchical) throw Exception(ErrorCodes::TYPE_MISMATCH, "{}: hierarchical attributes not supported for dictionary of type {}", getFullName(), getTypeName()); } }; create_attributes_from_dictionary_attributes(dict_struct.attributes); if (access_to_key_from_attributes) create_attributes_from_dictionary_attributes(*dict_struct.key); } void IPAddressDictionary::loadData() { QueryPipeline pipeline(source_ptr->loadAll()); std::vector ip_records; bool has_ipv6 = false; PullingPipelineExecutor executor(pipeline); Block block; while (executor.pull(block)) { const auto rows = block.rows(); element_count += rows; const ColumnPtr key_column_ptr = block.safeGetByPosition(0).column; const auto attribute_column_ptrs = collections::map( collections::range(0, dict_struct.attributes.size()), [&](const size_t attribute_idx) { return block.safeGetByPosition(attribute_idx + 1).column; }); for (const auto row : collections::range(0, rows)) { for (const auto attribute_idx : collections::range(0, dict_struct.attributes.size())) { const auto & attribute_column = *attribute_column_ptrs[attribute_idx]; auto & attribute = attributes[attribute_idx]; setAttributeValue(attribute, attribute_column[row]); } const auto [addr, prefix] = parseIPFromString(key_column_ptr->getDataAt(row).toView()); has_ipv6 = has_ipv6 || (addr.family() == Poco::Net::IPAddress::IPv6); size_t row_number = ip_records.size(); ip_records.emplace_back(addr, prefix, row_number); } } if (access_to_key_from_attributes) { /// We format key attribute values here instead of filling with data from key_column /// because string representation can be normalized if bits beyond mask are set. /// Also all IPv4 will be displayed as mapped IPv6 if there are any IPv6. /// It's consistent with representation in table created with `ENGINE = Dictionary` from this dictionary. char str_buffer[48]; if (has_ipv6) { uint8_t ip_buffer[IPV6_BINARY_LENGTH]; for (const auto & record : ip_records) { size_t str_len = formatIPWithPrefix(record.asIPv6Binary(ip_buffer), record.prefixIPv6(), false, str_buffer); setAttributeValue(attributes.back(), String(str_buffer, str_len)); } } else { for (const auto & record : ip_records) { UInt32 addr = IPv4AsUInt32(record.addr.addr()); size_t str_len = formatIPWithPrefix(reinterpret_cast(&addr), record.prefix, true, str_buffer); setAttributeValue(attributes.back(), String(str_buffer, str_len)); } } } row_idx.reserve(ip_records.size()); mask_column.reserve(ip_records.size()); if (has_ipv6) { auto deleted_count = sortAndUnique(ip_records, [](const auto & record_a, const auto & record_b) { uint8_t a_buf[IPV6_BINARY_LENGTH]; uint8_t b_buf[IPV6_BINARY_LENGTH]; auto cmpres = memcmp16(record_a.asIPv6Binary(a_buf), record_b.asIPv6Binary(b_buf)); if (cmpres == 0) return compareTo(record_a.prefixIPv6(), record_b.prefixIPv6()); return cmpres; }); if (deleted_count > 0) LOG_TRACE(logger, "removing {} non-unique subnets from input", deleted_count); auto & ipv6_col = ip_column.emplace(); ipv6_col.resize_fill(IPV6_BINARY_LENGTH * ip_records.size()); for (const auto & record : ip_records) { size_t i = row_idx.size(); IPv6ToRawBinary(record.addr, reinterpret_cast(&ipv6_col[i * IPV6_BINARY_LENGTH])); mask_column.push_back(record.prefixIPv6()); row_idx.push_back(record.row); } } else { auto deleted_count = sortAndUnique(ip_records, [](const auto & record_a, const auto & record_b) { UInt32 a = IPv4AsUInt32(record_a.addr.addr()); UInt32 b = IPv4AsUInt32(record_b.addr.addr()); if (a == b) return compareTo(record_a.prefix, record_b.prefix); return compareTo(a, b); }); if (deleted_count > 0) LOG_TRACE(logger, "removing {} non-unique subnets from input", deleted_count); auto & ipv4_col = ip_column.emplace(); ipv4_col.reserve(ip_records.size()); for (const auto & record : ip_records) { auto addr = IPv4AsUInt32(record.addr.addr()); ipv4_col.push_back(addr); mask_column.push_back(record.prefix); row_idx.push_back(record.row); } } parent_subnet.resize(ip_records.size()); std::stack subnets_stack; for (const auto i : collections::range(0, ip_records.size())) { parent_subnet[i] = i; while (!subnets_stack.empty()) { size_t pi = subnets_stack.top(); if (has_ipv6) { uint8_t a_buf[IPV6_BINARY_LENGTH]; uint8_t b_buf[IPV6_BINARY_LENGTH]; const auto * cur_address = ip_records[i].asIPv6Binary(a_buf); const auto * cur_subnet = ip_records[pi].asIPv6Binary(b_buf); bool is_mask_smaller = ip_records[pi].prefixIPv6() < ip_records[i].prefixIPv6(); if (is_mask_smaller && matchIPv6Subnet(cur_address, cur_subnet, ip_records[pi].prefixIPv6())) { parent_subnet[i] = pi; break; } } else { UInt32 cur_address = IPv4AsUInt32(ip_records[i].addr.addr()); UInt32 cur_subnet = IPv4AsUInt32(ip_records[pi].addr.addr()); bool is_mask_smaller = ip_records[pi].prefix < ip_records[i].prefix; if (is_mask_smaller && matchIPv4Subnet(cur_address, cur_subnet, ip_records[pi].prefix)) { parent_subnet[i] = pi; break; } } subnets_stack.pop(); } subnets_stack.push(i); } LOG_TRACE(logger, "{} ip records are read", ip_records.size()); if (require_nonempty && 0 == element_count) throw Exception(ErrorCodes::DICTIONARY_IS_EMPTY, "{}: dictionary source is empty and 'require_nonempty' property is set.", getFullName()); } template void IPAddressDictionary::addAttributeSize(const Attribute & attribute) { const auto & vec = std::get>(attribute.maps); bytes_allocated += sizeof(ContainerType) + (vec.capacity() * sizeof(T)); bucket_count = vec.size(); } template <> void IPAddressDictionary::addAttributeSize(const Attribute & attribute) { addAttributeSize(attribute); bytes_allocated += sizeof(Arena) + attribute.string_arena->size(); } void IPAddressDictionary::calculateBytesAllocated() { if (auto * ipv4_col = std::get_if(&ip_column)) { bytes_allocated += ipv4_col->size() * sizeof((*ipv4_col)[0]); } else if (auto * ipv6_col = std::get_if(&ip_column)) { bytes_allocated += ipv6_col->size() * sizeof((*ipv6_col)[0]); } bytes_allocated += mask_column.size() * sizeof(mask_column[0]); bytes_allocated += parent_subnet.size() * sizeof(parent_subnet[0]); bytes_allocated += row_idx.size() * sizeof(row_idx[0]); bytes_allocated += attributes.size() * sizeof(attributes.front()); for (const auto & attribute : attributes) { auto type_call = [&](const auto & dictionary_attribute_type) { using Type = std::decay_t; using AttributeType = typename Type::AttributeType; addAttributeSize(attribute); }; callOnDictionaryAttributeType(attribute.type, type_call); } } template void IPAddressDictionary::createAttributeImpl(Attribute & attribute, const Field & null_value) { attribute.null_values = null_value.isNull() ? T{} : T(null_value.get()); attribute.maps.emplace>(); } template <> void IPAddressDictionary::createAttributeImpl(Attribute & attribute, const Field & null_value) { attribute.null_values = null_value.isNull() ? String() : null_value.get(); attribute.maps.emplace>(); attribute.string_arena = std::make_unique(); } IPAddressDictionary::Attribute IPAddressDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value) { Attribute attr{type, {}, {}, {}}; auto type_call = [&](const auto & dictionary_attribute_type) { using Type = std::decay_t; using AttributeType = typename Type::AttributeType; createAttributeImpl(attr, null_value); }; callOnDictionaryAttributeType(type, type_call); return attr; } const uint8_t * IPAddressDictionary::getIPv6FromOffset(const IPAddressDictionary::IPv6Container & ipv6_col, size_t i) { return reinterpret_cast(&ipv6_col[i * IPV6_BINARY_LENGTH]); } template void IPAddressDictionary::getItemsByTwoKeyColumnsImpl( const Attribute & attribute, const Columns & key_columns, ValueSetter && set_value, DefaultValueExtractor & default_value_extractor) const { const auto & first_column = key_columns.front(); const size_t rows = first_column->size(); auto & vec = std::get>(attribute.maps); if (const auto * ipv4_col = std::get_if(&ip_column)) { const auto * key_ip_column_ptr = typeid_cast *>(&*key_columns.front()); if (key_ip_column_ptr == nullptr) throw Exception(ErrorCodes::TYPE_MISMATCH, "Expected a UInt32 IP column"); const auto & key_mask_column = assert_cast &>(*key_columns.back()); auto comp_v4 = [&](size_t elem, const IPv4Subnet & target) { UInt32 addr = (*ipv4_col)[elem]; if (addr == target.addr) return mask_column[elem] < target.prefix; return addr < target.addr; }; for (const auto i : collections::range(0, rows)) { UInt32 addr = key_ip_column_ptr->getElement(i); UInt8 mask = key_mask_column.getElement(i); auto range = collections::range(0, row_idx.size()); auto found_it = std::lower_bound(range.begin(), range.end(), IPv4Subnet{addr, mask}, comp_v4); if (likely(found_it != range.end() && (*ipv4_col)[*found_it] == addr && mask_column[*found_it] == mask)) { set_value(i, vec[row_idx[*found_it]]); } else set_value(i, default_value_extractor[i]); } return; } const auto * key_ip_column_ptr = typeid_cast(&*key_columns.front()); if (key_ip_column_ptr == nullptr || key_ip_column_ptr->getN() != IPV6_BINARY_LENGTH) throw Exception(ErrorCodes::TYPE_MISMATCH, "Expected a FixedString(16) IP column"); const auto & key_mask_column = assert_cast &>(*key_columns.back()); const auto * ipv6_col = std::get_if(&ip_column); auto comp_v6 = [&](size_t i, const IPv6Subnet & target) { auto cmpres = memcmp16(getIPv6FromOffset(*ipv6_col, i), target.addr); if (cmpres == 0) return mask_column[i] < target.prefix; return cmpres < 0; }; for (const auto i : collections::range(0, rows)) { auto addr = key_ip_column_ptr->getDataAt(i); UInt8 mask = key_mask_column.getElement(i); IPv6Subnet target{reinterpret_cast(addr.data), mask}; auto range = collections::range(0, row_idx.size()); auto found_it = std::lower_bound(range.begin(), range.end(), target, comp_v6); if (likely(found_it != range.end() && memequal16(getIPv6FromOffset(*ipv6_col, *found_it), target.addr) && mask_column[*found_it] == mask)) set_value(i, vec[row_idx[*found_it]]); else set_value(i, default_value_extractor[i]); } } template void IPAddressDictionary::getItemsImpl( const Attribute & attribute, const Columns & key_columns, ValueSetter && set_value, DefaultValueExtractor & default_value_extractor) const { const auto & first_column = key_columns.front(); const size_t rows = first_column->size(); if (unlikely(key_columns.size() == 2)) { getItemsByTwoKeyColumnsImpl( attribute, key_columns, std::forward(set_value), default_value_extractor); query_count.fetch_add(rows, std::memory_order_relaxed); return; } auto & vec = std::get>(attribute.maps); size_t keys_found = 0; TypeIndex type_id = first_column->getDataType(); if (type_id == TypeIndex::IPv4 || type_id == TypeIndex::UInt32) { uint8_t addrv6_buf[IPV6_BINARY_LENGTH]; for (const auto i : collections::range(0, rows)) { // addrv4 has native endianness auto addrv4 = *reinterpret_cast(first_column->getDataAt(i).data); auto found = tryLookupIPv4(addrv4, addrv6_buf); if (found != ipNotFound()) { set_value(i, vec[*found]); ++keys_found; } else set_value(i, default_value_extractor[i]); } } else if (type_id == TypeIndex::IPv6 || type_id == TypeIndex::FixedString) { for (const auto i : collections::range(0, rows)) { auto addr = first_column->getDataAt(i); if (addr.size != IPV6_BINARY_LENGTH) throw Exception(ErrorCodes::TYPE_MISMATCH, "Expected key to be FixedString(16)"); auto found = tryLookupIPv6(reinterpret_cast(addr.data)); if (found != ipNotFound()) { set_value(i, vec[*found]); ++keys_found; } else set_value(i, default_value_extractor[i]); } } else throw Exception(ErrorCodes::TYPE_MISMATCH, "Expected key to be IPv4 (or UInt32) or IPv6 (or FixedString(16))"); query_count.fetch_add(rows, std::memory_order_relaxed); found_count.fetch_add(keys_found, std::memory_order_relaxed); } template void IPAddressDictionary::setAttributeValueImpl(Attribute & attribute, const T value) { auto & vec = std::get>(attribute.maps); vec.push_back(value); } void IPAddressDictionary::setAttributeValue(Attribute & attribute, const Field & value) { auto type_call = [&](const auto & dictionary_attribute_type) { using Type = std::decay_t; using AttributeType = typename Type::AttributeType; if constexpr (std::is_same_v) { const auto & string = value.get(); const auto * string_in_arena = attribute.string_arena->insert(string.data(), string.size()); setAttributeValueImpl(attribute, StringRef{string_in_arena, string.size()}); } else { setAttributeValueImpl(attribute, static_cast(value.get())); } }; callOnDictionaryAttributeType(attribute.type, type_call); } const IPAddressDictionary::Attribute & IPAddressDictionary::getAttribute(const std::string & attribute_name) const { const auto it = attribute_index_by_name.find(attribute_name); if (it == std::end(attribute_index_by_name)) throw Exception(ErrorCodes::BAD_ARGUMENTS, "{}: no such attribute '{}'", getFullName(), attribute_name); return attributes[it->second]; } Columns IPAddressDictionary::getKeyColumns() const { const auto * ipv4_col = std::get_if(&ip_column); if (ipv4_col) { auto key_ip_column = ColumnVector::create(); auto key_mask_column = ColumnVector::create(); for (size_t row : collections::range(0, row_idx.size())) { key_ip_column->insertValue((*ipv4_col)[row]); key_mask_column->insertValue(mask_column[row]); } return {std::move(key_ip_column), std::move(key_mask_column)}; } const auto * ipv6_col = std::get_if(&ip_column); auto key_ip_column = ColumnFixedString::create(IPV6_BINARY_LENGTH); auto key_mask_column = ColumnVector::create(); for (size_t row : collections::range(0, row_idx.size())) { const char * data = reinterpret_cast(getIPv6FromOffset(*ipv6_col, row)); key_ip_column->insertData(data, IPV6_BINARY_LENGTH); key_mask_column->insertValue(mask_column[row]); } return {std::move(key_ip_column), std::move(key_mask_column)}; } template static auto keyViewGetter() { return [](const Columns & columns, const std::vector & dictonary_key_attributes) { auto column = ColumnString::create(); const auto & key_ip_column = assert_cast(*columns.front()); const auto & key_mask_column = assert_cast &>(*columns.back()); char buffer[48]; for (size_t row : collections::range(0, key_ip_column.size())) { UInt8 mask = key_mask_column.getElement(row); size_t str_len; if constexpr (IsIPv4) str_len = formatIPWithPrefix(reinterpret_cast(&key_ip_column.getElement(row)), mask, true, buffer); else str_len = formatIPWithPrefix(reinterpret_cast(key_ip_column.getDataAt(row).data), mask, false, buffer); column->insertData(buffer, str_len); } return ColumnsWithTypeAndName{ ColumnWithTypeAndName(std::move(column), std::make_shared(), dictonary_key_attributes.front().name)}; }; } Pipe IPAddressDictionary::read(const Names & column_names, size_t max_block_size, size_t num_streams) const { const bool is_ipv4 = std::get_if(&ip_column) != nullptr; auto key_columns = getKeyColumns(); std::shared_ptr key_type; if (is_ipv4) key_type = std::make_shared(); else key_type = std::make_shared(IPV6_BINARY_LENGTH); ColumnsWithTypeAndName key_columns_with_type = { ColumnWithTypeAndName(key_columns.front(), key_type, ""), ColumnWithTypeAndName(key_columns.back(), std::make_shared(), "") }; ColumnsWithTypeAndName view_columns; if (is_ipv4) { auto get_view = keyViewGetter, true>(); view_columns = get_view(key_columns, *dict_struct.key); } else { auto get_view = keyViewGetter(); view_columns = get_view(key_columns, *dict_struct.key); } std::shared_ptr dictionary = shared_from_this(); auto coordinator = std::make_shared(dictionary, column_names, std::move(key_columns_with_type), std::move(view_columns), max_block_size); auto result = coordinator->read(num_streams); return result; } IPAddressDictionary::RowIdxConstIter IPAddressDictionary::ipNotFound() const { return row_idx.end(); } IPAddressDictionary::RowIdxConstIter IPAddressDictionary::tryLookupIPv4(UInt32 addr, uint8_t * buf) const { if (std::get_if(&ip_column)) { mapIPv4ToIPv6(addr, buf); return lookupIP(buf); } return lookupIP(addr); } IPAddressDictionary::RowIdxConstIter IPAddressDictionary::tryLookupIPv6(const uint8_t * addr) const { if (std::get_if(&ip_column)) { bool is_mapped = false; UInt32 addrv4 = mappedIPv4ToBinary(addr, is_mapped); if (!is_mapped) return ipNotFound(); return lookupIP(addrv4); } return lookupIP(addr); } template IPAddressDictionary::RowIdxConstIter IPAddressDictionary::lookupIP(IPValueType target) const { if (row_idx.empty()) return ipNotFound(); const auto * ipv4or6_col = std::get_if(&ip_column); if (ipv4or6_col == nullptr) return ipNotFound(); auto comp = [&](auto value, auto idx) -> bool { if constexpr (std::is_same_v) return value < (*ipv4or6_col)[idx]; else return memcmp16(value, getIPv6FromOffset(*ipv4or6_col, idx)) < 0; }; auto range = collections::range(0, row_idx.size()); auto found_it = std::upper_bound(range.begin(), range.end(), target, comp); if (found_it == range.begin()) return ipNotFound(); --found_it; if constexpr (std::is_same_v) { for (auto idx = *found_it;; idx = parent_subnet[idx]) { if (matchIPv4Subnet(target, (*ipv4or6_col)[idx], mask_column[idx])) return row_idx.begin() + idx; if (idx == parent_subnet[idx]) return ipNotFound(); } } else { for (auto idx = *found_it;; idx = parent_subnet[idx]) { if (matchIPv6Subnet(target, getIPv6FromOffset(*ipv4or6_col, idx), mask_column[idx])) return row_idx.begin() + idx; if (idx == parent_subnet[idx]) return ipNotFound(); } } return ipNotFound(); } void registerDictionaryTrie(DictionaryFactory & factory) { auto create_layout = [=](const std::string &, const DictionaryStructure & dict_struct, const Poco::Util::AbstractConfiguration & config, const std::string & config_prefix, DictionarySourcePtr source_ptr, ContextPtr /* global_context */, bool /*created_from_ddl*/) -> DictionaryPtr { if (!dict_struct.key || dict_struct.key->size() != 1) throw Exception(ErrorCodes::BAD_ARGUMENTS, "Dictionary of layout 'ip_trie' has to have one 'key'"); const auto dict_id = StorageID::fromDictionaryConfig(config, config_prefix); const DictionaryLifetime dict_lifetime{config, config_prefix + ".lifetime"}; const bool require_nonempty = config.getBool(config_prefix + ".require_nonempty", false); // This is specialised dictionary for storing IPv4 and IPv6 prefixes. return std::make_unique(dict_id, dict_struct, std::move(source_ptr), dict_lifetime, require_nonempty); }; factory.registerLayout("ip_trie", create_layout, true); } }