#include "CatBoostModel.h" #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int BAD_ARGUMENTS; extern const int CANNOT_LOAD_CATBOOST_MODEL; extern const int CANNOT_APPLY_CATBOOST_MODEL; } /// CatBoost wrapper interface functions. struct CatBoostWrapperAPI { using ModelCalcerHandle = void; ModelCalcerHandle * (* ModelCalcerCreate)(); // NOLINT void (* ModelCalcerDelete)(ModelCalcerHandle * calcer); // NOLINT const char * (* GetErrorString)(); // NOLINT bool (* LoadFullModelFromFile)(ModelCalcerHandle * calcer, const char * filename); // NOLINT bool (* CalcModelPredictionFlat)(ModelCalcerHandle * calcer, size_t docCount, // NOLINT const float ** floatFeatures, size_t floatFeaturesSize, double * result, size_t resultSize); bool (* CalcModelPrediction)(ModelCalcerHandle * calcer, size_t docCount, // NOLINT const float ** floatFeatures, size_t floatFeaturesSize, const char *** catFeatures, size_t catFeaturesSize, double * result, size_t resultSize); bool (* CalcModelPredictionWithHashedCatFeatures)(ModelCalcerHandle * calcer, size_t docCount, // NOLINT const float ** floatFeatures, size_t floatFeaturesSize, const int ** catFeatures, size_t catFeaturesSize, double * result, size_t resultSize); int (* GetStringCatFeatureHash)(const char * data, size_t size); // NOLINT int (* GetIntegerCatFeatureHash)(uint64_t val); // NOLINT size_t (* GetFloatFeaturesCount)(ModelCalcerHandle* calcer); // NOLINT size_t (* GetCatFeaturesCount)(ModelCalcerHandle* calcer); // NOLINT size_t (* GetTreeCount)(ModelCalcerHandle* modelHandle); // NOLINT size_t (* GetDimensionsCount)(ModelCalcerHandle* modelHandle); // NOLINT bool (* CheckModelMetadataHasKey)(ModelCalcerHandle* modelHandle, const char* keyPtr, size_t keySize); // NOLINT size_t (*GetModelInfoValueSize)(ModelCalcerHandle* modelHandle, const char* keyPtr, size_t keySize); // NOLINT const char* (*GetModelInfoValue)(ModelCalcerHandle* modelHandle, const char* keyPtr, size_t keySize); // NOLINT }; namespace { class CatBoostModelHolder { private: CatBoostWrapperAPI::ModelCalcerHandle * handle; const CatBoostWrapperAPI * api; public: explicit CatBoostModelHolder(const CatBoostWrapperAPI * api_) : api(api_) { handle = api->ModelCalcerCreate(); } ~CatBoostModelHolder() { api->ModelCalcerDelete(handle); } CatBoostWrapperAPI::ModelCalcerHandle * get() { return handle; } }; class CatBoostModelImpl : public ICatBoostModel { public: CatBoostModelImpl(const CatBoostWrapperAPI * api_, const std::string & model_path) : api(api_) { handle = std::make_unique(api); if (!handle) { std::string msg = "Cannot create CatBoost model: "; throw Exception(msg + api->GetErrorString(), ErrorCodes::CANNOT_LOAD_CATBOOST_MODEL); } if (!api->LoadFullModelFromFile(handle->get(), model_path.c_str())) { std::string msg = "Cannot load CatBoost model: "; throw Exception(msg + api->GetErrorString(), ErrorCodes::CANNOT_LOAD_CATBOOST_MODEL); } float_features_count = api->GetFloatFeaturesCount(handle->get()); cat_features_count = api->GetCatFeaturesCount(handle->get()); tree_count = 1; if (api->GetDimensionsCount) tree_count = api->GetDimensionsCount(handle->get()); } ColumnPtr evaluate(const ColumnRawPtrs & columns) const override { if (columns.empty()) throw Exception("Got empty columns list for CatBoost model.", ErrorCodes::BAD_ARGUMENTS); if (columns.size() != float_features_count + cat_features_count) { std::string msg; { WriteBufferFromString buffer(msg); buffer << "Number of columns is different with number of features: "; buffer << columns.size() << " vs " << float_features_count << " + " << cat_features_count; } throw Exception(msg, ErrorCodes::BAD_ARGUMENTS); } for (size_t i = 0; i < float_features_count; ++i) { if (!columns[i]->isNumeric()) { std::string msg; { WriteBufferFromString buffer(msg); buffer << "Column " << i << " should be numeric to make float feature."; } throw Exception(msg, ErrorCodes::BAD_ARGUMENTS); } } bool cat_features_are_strings = true; for (size_t i = float_features_count; i < float_features_count + cat_features_count; ++i) { const auto * column = columns[i]; if (column->isNumeric()) cat_features_are_strings = false; else if (!(typeid_cast(column) || typeid_cast(column))) { std::string msg; { WriteBufferFromString buffer(msg); buffer << "Column " << i << " should be numeric or string."; } throw Exception(msg, ErrorCodes::BAD_ARGUMENTS); } } auto result = evalImpl(columns, cat_features_are_strings); if (tree_count == 1) return result; size_t column_size = columns.front()->size(); auto * result_buf = result->getData().data(); /// Multiple trees case. Copy data to several columns. MutableColumns mutable_columns(tree_count); std::vector column_ptrs(tree_count); for (size_t i = 0; i < tree_count; ++i) { auto col = ColumnFloat64::create(column_size); column_ptrs[i] = col->getData().data(); mutable_columns[i] = std::move(col); } Float64 * data = result_buf; for (size_t row = 0; row < column_size; ++row) { for (size_t i = 0; i < tree_count; ++i) { *column_ptrs[i] = *data; ++column_ptrs[i]; ++data; } } return ColumnTuple::create(std::move(mutable_columns)); } size_t getFloatFeaturesCount() const override { return float_features_count; } size_t getCatFeaturesCount() const override { return cat_features_count; } size_t getTreeCount() const override { return tree_count; } private: std::unique_ptr handle; const CatBoostWrapperAPI * api; size_t float_features_count; size_t cat_features_count; size_t tree_count; /// Buffer should be allocated with features_count * column->size() elements. /// Place column elements in positions buffer[0], buffer[features_count], ... , buffer[size * features_count] template void placeColumnAsNumber(const IColumn * column, T * buffer, size_t features_count) const { size_t size = column->size(); FieldVisitorConvertToNumber visitor; for (size_t i = 0; i < size; ++i) { /// TODO: Replace with column visitor. Field field; column->get(i, field); *buffer = applyVisitor(visitor, field); buffer += features_count; } } /// Buffer should be allocated with features_count * column->size() elements. /// Place string pointers in positions buffer[0], buffer[features_count], ... , buffer[size * features_count] static void placeStringColumn(const ColumnString & column, const char ** buffer, size_t features_count) { size_t size = column.size(); for (size_t i = 0; i < size; ++i) { *buffer = const_cast(column.getDataAtWithTerminatingZero(i).data); buffer += features_count; } } /// Buffer should be allocated with features_count * column->size() elements. /// Place string pointers in positions buffer[0], buffer[features_count], ... , buffer[size * features_count] /// Returns PODArray which holds data (because ColumnFixedString doesn't store terminating zero). static PODArray placeFixedStringColumn( const ColumnFixedString & column, const char ** buffer, size_t features_count) { size_t size = column.size(); size_t str_size = column.getN(); PODArray data(size * (str_size + 1)); char * data_ptr = data.data(); for (size_t i = 0; i < size; ++i) { auto ref = column.getDataAt(i); memcpy(data_ptr, ref.data, ref.size); data_ptr[ref.size] = 0; *buffer = data_ptr; data_ptr += ref.size + 1; buffer += features_count; } return data; } /// Place columns into buffer, returns column which holds placed data. Buffer should contains column->size() values. template ColumnPtr placeNumericColumns(const ColumnRawPtrs & columns, size_t offset, size_t size, const T** buffer) const { if (size == 0) return nullptr; size_t column_size = columns[offset]->size(); auto data_column = ColumnVector::create(size * column_size); T * data = data_column->getData().data(); for (size_t i = 0; i < size; ++i) { const auto * column = columns[offset + i]; if (column->isNumeric()) placeColumnAsNumber(column, data + i, size); } for (size_t i = 0; i < column_size; ++i) { *buffer = data; ++buffer; data += size; } return data_column; } /// Place columns into buffer, returns data which was used for fixed string columns. /// Buffer should contains column->size() values, each value contains size strings. static std::vector> placeStringColumns( const ColumnRawPtrs & columns, size_t offset, size_t size, const char ** buffer) { if (size == 0) return {}; std::vector> data; for (size_t i = 0; i < size; ++i) { const auto * column = columns[offset + i]; if (const auto * column_string = typeid_cast(column)) placeStringColumn(*column_string, buffer + i, size); else if (const auto * column_fixed_string = typeid_cast(column)) data.push_back(placeFixedStringColumn(*column_fixed_string, buffer + i, size)); else throw Exception("Cannot place string column.", ErrorCodes::LOGICAL_ERROR); } return data; } /// Calc hash for string cat feature at ps positions. template void calcStringHashes(const Column * column, size_t ps, const int ** buffer) const { size_t column_size = column->size(); for (size_t j = 0; j < column_size; ++j) { auto ref = column->getDataAt(j); const_cast(*buffer)[ps] = api->GetStringCatFeatureHash(ref.data, ref.size); ++buffer; } } /// Calc hash for int cat feature at ps position. Buffer at positions ps should contains unhashed values. void calcIntHashes(size_t column_size, size_t ps, const int ** buffer) const { for (size_t j = 0; j < column_size; ++j) { const_cast(*buffer)[ps] = api->GetIntegerCatFeatureHash((*buffer)[ps]); ++buffer; } } /// buffer contains column->size() rows and size columns. /// For int cat features calc hash inplace. /// For string cat features calc hash from column rows. void calcHashes(const ColumnRawPtrs & columns, size_t offset, size_t size, const int ** buffer) const { if (size == 0) return; size_t column_size = columns[offset]->size(); std::vector> data; for (size_t i = 0; i < size; ++i) { const auto * column = columns[offset + i]; if (const auto * column_string = typeid_cast(column)) calcStringHashes(column_string, i, buffer); else if (const auto * column_fixed_string = typeid_cast(column)) calcStringHashes(column_fixed_string, i, buffer); else calcIntHashes(column_size, i, buffer); } } /// buffer[column_size * cat_features_count] -> char * => cat_features[column_size][cat_features_count] -> char * void fillCatFeaturesBuffer(const char *** cat_features, const char ** buffer, size_t column_size) const { for (size_t i = 0; i < column_size; ++i) { *cat_features = buffer; ++cat_features; buffer += cat_features_count; } } /// Convert values to row-oriented format and call evaluation function from CatBoost wrapper api. /// * CalcModelPredictionFlat if no cat features /// * CalcModelPrediction if all cat features are strings /// * CalcModelPredictionWithHashedCatFeatures if has int cat features. ColumnFloat64::MutablePtr evalImpl( const ColumnRawPtrs & columns, bool cat_features_are_strings) const { std::string error_msg = "Error occurred while applying CatBoost model: "; size_t column_size = columns.front()->size(); auto result = ColumnFloat64::create(column_size * tree_count); auto * result_buf = result->getData().data(); if (!column_size) return result; /// Prepare float features. PODArray float_features(column_size); auto * float_features_buf = float_features.data(); /// Store all float data into single column. float_features is a list of pointers to it. auto float_features_col = placeNumericColumns(columns, 0, float_features_count, float_features_buf); if (cat_features_count == 0) { if (!api->CalcModelPredictionFlat(handle->get(), column_size, float_features_buf, float_features_count, result_buf, column_size * tree_count)) { throw Exception(error_msg + api->GetErrorString(), ErrorCodes::CANNOT_APPLY_CATBOOST_MODEL); } return result; } /// Prepare cat features. if (cat_features_are_strings) { /// cat_features_holder stores pointers to ColumnString data or fixed_strings_data. PODArray cat_features_holder(cat_features_count * column_size); PODArray cat_features(column_size); auto * cat_features_buf = cat_features.data(); fillCatFeaturesBuffer(cat_features_buf, cat_features_holder.data(), column_size); /// Fixed strings are stored without termination zero, so have to copy data into fixed_strings_data. auto fixed_strings_data = placeStringColumns(columns, float_features_count, cat_features_count, cat_features_holder.data()); if (!api->CalcModelPrediction(handle->get(), column_size, float_features_buf, float_features_count, cat_features_buf, cat_features_count, result_buf, column_size * tree_count)) { throw Exception(error_msg + api->GetErrorString(), ErrorCodes::CANNOT_APPLY_CATBOOST_MODEL); } } else { PODArray cat_features(column_size); auto * cat_features_buf = cat_features.data(); auto cat_features_col = placeNumericColumns(columns, float_features_count, cat_features_count, cat_features_buf); calcHashes(columns, float_features_count, cat_features_count, cat_features_buf); if (!api->CalcModelPredictionWithHashedCatFeatures( handle->get(), column_size, float_features_buf, float_features_count, cat_features_buf, cat_features_count, result_buf, column_size * tree_count)) { throw Exception(error_msg + api->GetErrorString(), ErrorCodes::CANNOT_APPLY_CATBOOST_MODEL); } } return result; } }; /// Holds CatBoost wrapper library and provides wrapper interface. class CatBoostLibHolder: public CatBoostWrapperAPIProvider { public: explicit CatBoostLibHolder(std::string lib_path_) : lib_path(std::move(lib_path_)), lib(lib_path) { initAPI(); } const CatBoostWrapperAPI & getAPI() const override { return api; } const std::string & getCurrentPath() const { return lib_path; } private: CatBoostWrapperAPI api; std::string lib_path; SharedLibrary lib; void initAPI(); template void load(T& func, const std::string & name) { func = lib.get(name); } template void tryLoad(T& func, const std::string & name) { func = lib.tryGet(name); } }; void CatBoostLibHolder::initAPI() { load(api.ModelCalcerCreate, "ModelCalcerCreate"); load(api.ModelCalcerDelete, "ModelCalcerDelete"); load(api.GetErrorString, "GetErrorString"); load(api.LoadFullModelFromFile, "LoadFullModelFromFile"); load(api.CalcModelPredictionFlat, "CalcModelPredictionFlat"); load(api.CalcModelPrediction, "CalcModelPrediction"); load(api.CalcModelPredictionWithHashedCatFeatures, "CalcModelPredictionWithHashedCatFeatures"); load(api.GetStringCatFeatureHash, "GetStringCatFeatureHash"); load(api.GetIntegerCatFeatureHash, "GetIntegerCatFeatureHash"); load(api.GetFloatFeaturesCount, "GetFloatFeaturesCount"); load(api.GetCatFeaturesCount, "GetCatFeaturesCount"); tryLoad(api.CheckModelMetadataHasKey, "CheckModelMetadataHasKey"); tryLoad(api.GetModelInfoValueSize, "GetModelInfoValueSize"); tryLoad(api.GetModelInfoValue, "GetModelInfoValue"); tryLoad(api.GetTreeCount, "GetTreeCount"); tryLoad(api.GetDimensionsCount, "GetDimensionsCount"); } std::shared_ptr getCatBoostWrapperHolder(const std::string & lib_path) { static std::weak_ptr ptr; static std::mutex mutex; std::lock_guard lock(mutex); auto result = ptr.lock(); if (!result || result->getCurrentPath() != lib_path) { result = std::make_shared(lib_path); /// This assignment is not atomic, which prevents from creating lock only inside 'if'. ptr = result; } return result; } } CatBoostModel::CatBoostModel(std::string name_, std::string model_path_, std::string lib_path_, const ExternalLoadableLifetime & lifetime_) : name(std::move(name_)), model_path(std::move(model_path_)), lib_path(std::move(lib_path_)), lifetime(lifetime_) { api_provider = getCatBoostWrapperHolder(lib_path); api = &api_provider->getAPI(); model = std::make_unique(api, model_path); float_features_count = model->getFloatFeaturesCount(); cat_features_count = model->getCatFeaturesCount(); tree_count = model->getTreeCount(); } const ExternalLoadableLifetime & CatBoostModel::getLifetime() const { return lifetime; } bool CatBoostModel::isModified() const { return true; } std::shared_ptr CatBoostModel::clone() const { return std::make_shared(name, model_path, lib_path, lifetime); } size_t CatBoostModel::getFloatFeaturesCount() const { return float_features_count; } size_t CatBoostModel::getCatFeaturesCount() const { return cat_features_count; } size_t CatBoostModel::getTreeCount() const { return tree_count; } DataTypePtr CatBoostModel::getReturnType() const { auto type = std::make_shared(); if (tree_count == 1) return type; DataTypes types(tree_count, type); return std::make_shared(types); } ColumnPtr CatBoostModel::evaluate(const ColumnRawPtrs & columns) const { if (!model) throw Exception("CatBoost model was not loaded.", ErrorCodes::LOGICAL_ERROR); return model->evaluate(columns); } }