#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fs = std::filesystem; namespace ProfileEvents { extern const Event RejectedInserts; extern const Event DelayedInserts; extern const Event DelayedInsertsMilliseconds; extern const Event DuplicatedInsertedBlocks; } namespace CurrentMetrics { extern const Metric DelayedInserts; } namespace { constexpr UInt64 RESERVATION_MIN_ESTIMATION_SIZE = 1u * 1024u * 1024u; /// 1MB } namespace DB { namespace ErrorCodes { extern const int NO_SUCH_DATA_PART; extern const int NOT_IMPLEMENTED; extern const int DIRECTORY_ALREADY_EXISTS; extern const int TOO_MANY_UNEXPECTED_DATA_PARTS; extern const int DUPLICATE_DATA_PART; extern const int NO_SUCH_COLUMN_IN_TABLE; extern const int LOGICAL_ERROR; extern const int ILLEGAL_COLUMN; extern const int ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER; extern const int CORRUPTED_DATA; extern const int BAD_TYPE_OF_FIELD; extern const int BAD_ARGUMENTS; extern const int INVALID_PARTITION_VALUE; extern const int METADATA_MISMATCH; extern const int PART_IS_TEMPORARILY_LOCKED; extern const int TOO_MANY_PARTS; extern const int INCOMPATIBLE_COLUMNS; extern const int BAD_TTL_EXPRESSION; extern const int INCORRECT_FILE_NAME; extern const int BAD_DATA_PART_NAME; extern const int READONLY_SETTING; extern const int ABORTED; extern const int UNKNOWN_PART_TYPE; extern const int UNKNOWN_DISK; extern const int NOT_ENOUGH_SPACE; extern const int ALTER_OF_COLUMN_IS_FORBIDDEN; extern const int SUPPORT_IS_DISABLED; extern const int TOO_MANY_SIMULTANEOUS_QUERIES; extern const int INCORRECT_QUERY; } static void checkSampleExpression(const StorageInMemoryMetadata & metadata, bool allow_sampling_expression_not_in_primary_key, bool check_sample_column_is_correct) { if (metadata.sampling_key.column_names.empty()) throw Exception("There are no columns in sampling expression", ErrorCodes::INCORRECT_QUERY); const auto & pk_sample_block = metadata.getPrimaryKey().sample_block; if (!pk_sample_block.has(metadata.sampling_key.column_names[0]) && !allow_sampling_expression_not_in_primary_key) throw Exception("Sampling expression must be present in the primary key", ErrorCodes::BAD_ARGUMENTS); if (!check_sample_column_is_correct) return; const auto & sampling_key = metadata.getSamplingKey(); DataTypePtr sampling_column_type = sampling_key.data_types[0]; bool is_correct_sample_condition = false; if (sampling_key.data_types.size() == 1) { if (typeid_cast(sampling_column_type.get())) is_correct_sample_condition = true; else if (typeid_cast(sampling_column_type.get())) is_correct_sample_condition = true; else if (typeid_cast(sampling_column_type.get())) is_correct_sample_condition = true; else if (typeid_cast(sampling_column_type.get())) is_correct_sample_condition = true; } if (!is_correct_sample_condition) throw Exception( "Invalid sampling column type in storage parameters: " + sampling_column_type->getName() + ". Must be one unsigned integer type", ErrorCodes::ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER); } inline UInt64 time_in_microseconds(std::chrono::time_point timepoint) { return std::chrono::duration_cast(timepoint.time_since_epoch()).count(); } inline UInt64 time_in_seconds(std::chrono::time_point timepoint) { return std::chrono::duration_cast(timepoint.time_since_epoch()).count(); } MergeTreeData::MergeTreeData( const StorageID & table_id_, const String & relative_data_path_, const StorageInMemoryMetadata & metadata_, ContextMutablePtr context_, const String & date_column_name, const MergingParams & merging_params_, std::unique_ptr storage_settings_, bool require_part_metadata_, bool attach, BrokenPartCallback broken_part_callback_) : IStorage(table_id_) , WithMutableContext(context_->getGlobalContext()) , merging_params(merging_params_) , require_part_metadata(require_part_metadata_) , relative_data_path(relative_data_path_) , broken_part_callback(broken_part_callback_) , log_name(table_id_.getNameForLogs()) , log(&Poco::Logger::get(log_name)) , storage_settings(std::move(storage_settings_)) , pinned_part_uuids(std::make_shared()) , data_parts_by_info(data_parts_indexes.get()) , data_parts_by_state_and_info(data_parts_indexes.get()) , parts_mover(this) , background_operations_assignee(*this, BackgroundJobsAssignee::Type::DataProcessing, getContext()) , background_moves_assignee(*this, BackgroundJobsAssignee::Type::Moving, getContext()) { context_->getGlobalContext()->initializeBackgroundExecutorsIfNeeded(); const auto settings = getSettings(); allow_nullable_key = attach || settings->allow_nullable_key; if (relative_data_path.empty()) throw Exception("MergeTree storages require data path", ErrorCodes::INCORRECT_FILE_NAME); /// Check sanity of MergeTreeSettings. Only when table is created. if (!attach) settings->sanityCheck(getContext()->getSettingsRef()); MergeTreeDataFormatVersion min_format_version(0); if (!date_column_name.empty()) { try { checkPartitionKeyAndInitMinMax(metadata_.partition_key); setProperties(metadata_, metadata_, attach); if (minmax_idx_date_column_pos == -1) throw Exception("Could not find Date column", ErrorCodes::BAD_TYPE_OF_FIELD); } catch (Exception & e) { /// Better error message. e.addMessage("(while initializing MergeTree partition key from date column " + backQuote(date_column_name) + ")"); throw; } } else { is_custom_partitioned = true; checkPartitionKeyAndInitMinMax(metadata_.partition_key); min_format_version = MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING; } setProperties(metadata_, metadata_, attach); /// NOTE: using the same columns list as is read when performing actual merges. merging_params.check(metadata_); if (metadata_.sampling_key.definition_ast != nullptr) { /// This is for backward compatibility. checkSampleExpression(metadata_, attach || settings->compatibility_allow_sampling_expression_not_in_primary_key, settings->check_sample_column_is_correct && !attach); } checkTTLExpressions(metadata_, metadata_); /// format_file always contained on any data path PathWithDisk version_file; /// Creating directories, if not exist. for (const auto & disk : getDisks()) { disk->createDirectories(relative_data_path); disk->createDirectories(fs::path(relative_data_path) / MergeTreeData::DETACHED_DIR_NAME); String current_version_file_path = fs::path(relative_data_path) / MergeTreeData::FORMAT_VERSION_FILE_NAME; if (disk->exists(current_version_file_path)) { if (!version_file.first.empty()) { LOG_ERROR(log, "Duplication of version file {} and {}", fullPath(version_file.second, version_file.first), current_version_file_path); throw Exception("Multiple format_version.txt file", ErrorCodes::CORRUPTED_DATA); } version_file = {current_version_file_path, disk}; } } /// If not choose any if (version_file.first.empty()) version_file = {fs::path(relative_data_path) / MergeTreeData::FORMAT_VERSION_FILE_NAME, getStoragePolicy()->getAnyDisk()}; bool version_file_exists = version_file.second->exists(version_file.first); // When data path or file not exists, ignore the format_version check if (!attach || !version_file_exists) { format_version = min_format_version; if (!version_file.second->isReadOnly()) { auto buf = version_file.second->writeFile(version_file.first); writeIntText(format_version.toUnderType(), *buf); if (getContext()->getSettingsRef().fsync_metadata) buf->sync(); } } else { auto buf = version_file.second->readFile(version_file.first); UInt32 read_format_version; readIntText(read_format_version, *buf); format_version = read_format_version; if (!buf->eof()) throw Exception("Bad version file: " + fullPath(version_file.second, version_file.first), ErrorCodes::CORRUPTED_DATA); } if (format_version < min_format_version) { if (min_format_version == MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING.toUnderType()) throw Exception( "MergeTree data format version on disk doesn't support custom partitioning", ErrorCodes::METADATA_MISMATCH); } String reason; if (!canUsePolymorphicParts(*settings, &reason) && !reason.empty()) LOG_WARNING(log, "{} Settings 'min_rows_for_wide_part', 'min_bytes_for_wide_part', " "'min_rows_for_compact_part' and 'min_bytes_for_compact_part' will be ignored.", reason); common_assignee_trigger = [this] (bool delay) noexcept { if (delay) background_operations_assignee.postpone(); else background_operations_assignee.trigger(); }; moves_assignee_trigger = [this] (bool delay) noexcept { if (delay) background_moves_assignee.postpone(); else background_moves_assignee.trigger(); }; } StoragePolicyPtr MergeTreeData::getStoragePolicy() const { return getContext()->getStoragePolicy(getSettings()->storage_policy); } static void checkKeyExpression(const ExpressionActions & expr, const Block & sample_block, const String & key_name, bool allow_nullable_key) { if (expr.hasArrayJoin()) throw Exception(key_name + " key cannot contain array joins", ErrorCodes::ILLEGAL_COLUMN); try { expr.assertDeterministic(); } catch (Exception & e) { e.addMessage(fmt::format("for {} key", key_name)); throw; } for (const ColumnWithTypeAndName & element : sample_block) { const ColumnPtr & column = element.column; if (column && (isColumnConst(*column) || column->isDummy())) throw Exception{key_name + " key cannot contain constants", ErrorCodes::ILLEGAL_COLUMN}; if (!allow_nullable_key && element.type->isNullable()) throw Exception{key_name + " key cannot contain nullable columns", ErrorCodes::ILLEGAL_COLUMN}; } } void MergeTreeData::checkProperties( const StorageInMemoryMetadata & new_metadata, const StorageInMemoryMetadata & old_metadata, bool attach) const { if (!new_metadata.sorting_key.definition_ast) throw Exception("ORDER BY cannot be empty", ErrorCodes::BAD_ARGUMENTS); KeyDescription new_sorting_key = new_metadata.sorting_key; KeyDescription new_primary_key = new_metadata.primary_key; size_t sorting_key_size = new_sorting_key.column_names.size(); size_t primary_key_size = new_primary_key.column_names.size(); if (primary_key_size > sorting_key_size) throw Exception("Primary key must be a prefix of the sorting key, but its length: " + toString(primary_key_size) + " is greater than the sorting key length: " + toString(sorting_key_size), ErrorCodes::BAD_ARGUMENTS); NameSet primary_key_columns_set; for (size_t i = 0; i < sorting_key_size; ++i) { const String & sorting_key_column = new_sorting_key.column_names[i]; if (i < primary_key_size) { const String & pk_column = new_primary_key.column_names[i]; if (pk_column != sorting_key_column) throw Exception("Primary key must be a prefix of the sorting key, but the column in the position " + toString(i) + " is " + sorting_key_column +", not " + pk_column, ErrorCodes::BAD_ARGUMENTS); if (!primary_key_columns_set.emplace(pk_column).second) throw Exception("Primary key contains duplicate columns", ErrorCodes::BAD_ARGUMENTS); } } auto all_columns = new_metadata.columns.getAllPhysical(); /// Order by check AST if (old_metadata.hasSortingKey()) { /// This is ALTER, not CREATE/ATTACH TABLE. Let us check that all new columns used in the sorting key /// expression have just been added (so that the sorting order is guaranteed to be valid with the new key). Names new_primary_key_columns = new_primary_key.column_names; Names new_sorting_key_columns = new_sorting_key.column_names; ASTPtr added_key_column_expr_list = std::make_shared(); const auto & old_sorting_key_columns = old_metadata.getSortingKeyColumns(); for (size_t new_i = 0, old_i = 0; new_i < sorting_key_size; ++new_i) { if (old_i < old_sorting_key_columns.size()) { if (new_sorting_key_columns[new_i] != old_sorting_key_columns[old_i]) added_key_column_expr_list->children.push_back(new_sorting_key.expression_list_ast->children[new_i]); else ++old_i; } else added_key_column_expr_list->children.push_back(new_sorting_key.expression_list_ast->children[new_i]); } if (!added_key_column_expr_list->children.empty()) { auto syntax = TreeRewriter(getContext()).analyze(added_key_column_expr_list, all_columns); Names used_columns = syntax->requiredSourceColumns(); NamesAndTypesList deleted_columns; NamesAndTypesList added_columns; old_metadata.getColumns().getAllPhysical().getDifference(all_columns, deleted_columns, added_columns); for (const String & col : used_columns) { if (!added_columns.contains(col) || deleted_columns.contains(col)) throw Exception("Existing column " + backQuoteIfNeed(col) + " is used in the expression that was " "added to the sorting key. You can add expressions that use only the newly added columns", ErrorCodes::BAD_ARGUMENTS); if (new_metadata.columns.getDefaults().count(col)) throw Exception("Newly added column " + backQuoteIfNeed(col) + " has a default expression, so adding " "expressions that use it to the sorting key is forbidden", ErrorCodes::BAD_ARGUMENTS); } } } if (!new_metadata.secondary_indices.empty()) { std::unordered_set indices_names; for (const auto & index : new_metadata.secondary_indices) { MergeTreeIndexFactory::instance().validate(index, attach); if (indices_names.find(index.name) != indices_names.end()) throw Exception( "Index with name " + backQuote(index.name) + " already exists", ErrorCodes::LOGICAL_ERROR); indices_names.insert(index.name); } } if (!new_metadata.projections.empty()) { std::unordered_set projections_names; for (const auto & projection : new_metadata.projections) { if (projections_names.find(projection.name) != projections_names.end()) throw Exception( "Projection with name " + backQuote(projection.name) + " already exists", ErrorCodes::LOGICAL_ERROR); projections_names.insert(projection.name); } } checkKeyExpression(*new_sorting_key.expression, new_sorting_key.sample_block, "Sorting", allow_nullable_key); } void MergeTreeData::setProperties(const StorageInMemoryMetadata & new_metadata, const StorageInMemoryMetadata & old_metadata, bool attach) { checkProperties(new_metadata, old_metadata, attach); setInMemoryMetadata(new_metadata); } namespace { ExpressionActionsPtr getCombinedIndicesExpression( const KeyDescription & key, const IndicesDescription & indices, const ColumnsDescription & columns, ContextPtr context) { ASTPtr combined_expr_list = key.expression_list_ast->clone(); for (const auto & index : indices) for (const auto & index_expr : index.expression_list_ast->children) combined_expr_list->children.push_back(index_expr->clone()); auto syntax_result = TreeRewriter(context).analyze(combined_expr_list, columns.getAllPhysical()); return ExpressionAnalyzer(combined_expr_list, syntax_result, context).getActions(false); } } ExpressionActionsPtr MergeTreeData::getMinMaxExpr(const KeyDescription & partition_key, const ExpressionActionsSettings & settings) { NamesAndTypesList partition_key_columns; if (!partition_key.column_names.empty()) partition_key_columns = partition_key.expression->getRequiredColumnsWithTypes(); return std::make_shared(std::make_shared(partition_key_columns), settings); } Names MergeTreeData::getMinMaxColumnsNames(const KeyDescription & partition_key) { if (!partition_key.column_names.empty()) return partition_key.expression->getRequiredColumns(); return {}; } DataTypes MergeTreeData::getMinMaxColumnsTypes(const KeyDescription & partition_key) { if (!partition_key.column_names.empty()) return partition_key.expression->getRequiredColumnsWithTypes().getTypes(); return {}; } ExpressionActionsPtr MergeTreeData::getPrimaryKeyAndSkipIndicesExpression(const StorageMetadataPtr & metadata_snapshot) const { return getCombinedIndicesExpression(metadata_snapshot->getPrimaryKey(), metadata_snapshot->getSecondaryIndices(), metadata_snapshot->getColumns(), getContext()); } ExpressionActionsPtr MergeTreeData::getSortingKeyAndSkipIndicesExpression(const StorageMetadataPtr & metadata_snapshot) const { return getCombinedIndicesExpression(metadata_snapshot->getSortingKey(), metadata_snapshot->getSecondaryIndices(), metadata_snapshot->getColumns(), getContext()); } void MergeTreeData::checkPartitionKeyAndInitMinMax(const KeyDescription & new_partition_key) { if (new_partition_key.expression_list_ast->children.empty()) return; checkKeyExpression(*new_partition_key.expression, new_partition_key.sample_block, "Partition", allow_nullable_key); /// Add all columns used in the partition key to the min-max index. DataTypes minmax_idx_columns_types = getMinMaxColumnsTypes(new_partition_key); /// Try to find the date column in columns used by the partition key (a common case). /// If there are no - DateTime or DateTime64 would also suffice. bool has_date_column = false; bool has_datetime_column = false; for (size_t i = 0; i < minmax_idx_columns_types.size(); ++i) { if (isDate(minmax_idx_columns_types[i])) { if (!has_date_column) { minmax_idx_date_column_pos = i; has_date_column = true; } else { /// There is more than one Date column in partition key and we don't know which one to choose. minmax_idx_date_column_pos = -1; } } } if (!has_date_column) { for (size_t i = 0; i < minmax_idx_columns_types.size(); ++i) { if (isDateTime(minmax_idx_columns_types[i]) || isDateTime64(minmax_idx_columns_types[i]) ) { if (!has_datetime_column) { minmax_idx_time_column_pos = i; has_datetime_column = true; } else { /// There is more than one DateTime column in partition key and we don't know which one to choose. minmax_idx_time_column_pos = -1; } } } } } void MergeTreeData::checkTTLExpressions(const StorageInMemoryMetadata & new_metadata, const StorageInMemoryMetadata & old_metadata) const { auto new_column_ttls = new_metadata.column_ttls_by_name; if (!new_column_ttls.empty()) { NameSet columns_ttl_forbidden; if (old_metadata.hasPartitionKey()) for (const auto & col : old_metadata.getColumnsRequiredForPartitionKey()) columns_ttl_forbidden.insert(col); if (old_metadata.hasSortingKey()) for (const auto & col : old_metadata.getColumnsRequiredForSortingKey()) columns_ttl_forbidden.insert(col); for (const auto & [name, ttl_description] : new_column_ttls) { if (columns_ttl_forbidden.count(name)) throw Exception("Trying to set TTL for key column " + name, ErrorCodes::ILLEGAL_COLUMN); } } auto new_table_ttl = new_metadata.table_ttl; if (new_table_ttl.definition_ast) { for (const auto & move_ttl : new_table_ttl.move_ttl) { if (!getDestinationForMoveTTL(move_ttl)) { String message; if (move_ttl.destination_type == DataDestinationType::DISK) message = "No such disk " + backQuote(move_ttl.destination_name) + " for given storage policy."; else message = "No such volume " + backQuote(move_ttl.destination_name) + " for given storage policy."; throw Exception(message, ErrorCodes::BAD_TTL_EXPRESSION); } } } } void MergeTreeData::checkStoragePolicy(const StoragePolicyPtr & new_storage_policy) const { const auto old_storage_policy = getStoragePolicy(); old_storage_policy->checkCompatibleWith(new_storage_policy); } void MergeTreeData::MergingParams::check(const StorageInMemoryMetadata & metadata) const { const auto columns = metadata.getColumns().getAllPhysical(); if (!sign_column.empty() && mode != MergingParams::Collapsing && mode != MergingParams::VersionedCollapsing) throw Exception("Sign column for MergeTree cannot be specified in modes except Collapsing or VersionedCollapsing.", ErrorCodes::LOGICAL_ERROR); if (!version_column.empty() && mode != MergingParams::Replacing && mode != MergingParams::VersionedCollapsing) throw Exception("Version column for MergeTree cannot be specified in modes except Replacing or VersionedCollapsing.", ErrorCodes::LOGICAL_ERROR); if (!columns_to_sum.empty() && mode != MergingParams::Summing) throw Exception("List of columns to sum for MergeTree cannot be specified in all modes except Summing.", ErrorCodes::LOGICAL_ERROR); /// Check that if the sign column is needed, it exists and is of type Int8. auto check_sign_column = [this, & columns](bool is_optional, const std::string & storage) { if (sign_column.empty()) { if (is_optional) return; throw Exception("Logical error: Sign column for storage " + storage + " is empty", ErrorCodes::LOGICAL_ERROR); } bool miss_column = true; for (const auto & column : columns) { if (column.name == sign_column) { if (!typeid_cast(column.type.get())) throw Exception("Sign column (" + sign_column + ") for storage " + storage + " must have type Int8." " Provided column of type " + column.type->getName() + ".", ErrorCodes::BAD_TYPE_OF_FIELD); miss_column = false; break; } } if (miss_column) throw Exception("Sign column " + sign_column + " does not exist in table declaration.", ErrorCodes::NO_SUCH_COLUMN_IN_TABLE); }; /// that if the version_column column is needed, it exists and is of unsigned integer type. auto check_version_column = [this, & columns](bool is_optional, const std::string & storage) { if (version_column.empty()) { if (is_optional) return; throw Exception("Logical error: Version column for storage " + storage + " is empty", ErrorCodes::LOGICAL_ERROR); } bool miss_column = true; for (const auto & column : columns) { if (column.name == version_column) { if (!column.type->canBeUsedAsVersion()) throw Exception("The column " + version_column + " cannot be used as a version column for storage " + storage + " because it is of type " + column.type->getName() + " (must be of an integer type or of type Date/DateTime/DateTime64)", ErrorCodes::BAD_TYPE_OF_FIELD); miss_column = false; break; } } if (miss_column) throw Exception("Version column " + version_column + " does not exist in table declaration.", ErrorCodes::NO_SUCH_COLUMN_IN_TABLE); }; if (mode == MergingParams::Collapsing) check_sign_column(false, "CollapsingMergeTree"); if (mode == MergingParams::Summing) { /// If columns_to_sum are set, then check that such columns exist. for (const auto & column_to_sum : columns_to_sum) { auto check_column_to_sum_exists = [& column_to_sum](const NameAndTypePair & name_and_type) { return column_to_sum == Nested::extractTableName(name_and_type.name); }; if (columns.end() == std::find_if(columns.begin(), columns.end(), check_column_to_sum_exists)) throw Exception( "Column " + column_to_sum + " listed in columns to sum does not exist in table declaration.", ErrorCodes::NO_SUCH_COLUMN_IN_TABLE); } /// Check that summing columns are not in partition key. if (metadata.isPartitionKeyDefined()) { auto partition_key_columns = metadata.getPartitionKey().column_names; Names names_intersection; std::set_intersection(columns_to_sum.begin(), columns_to_sum.end(), partition_key_columns.begin(), partition_key_columns.end(), std::back_inserter(names_intersection)); if (!names_intersection.empty()) throw Exception("Columns: " + boost::algorithm::join(names_intersection, ", ") + " listed both in columns to sum and in partition key. That is not allowed.", ErrorCodes::BAD_ARGUMENTS); } } if (mode == MergingParams::Replacing) check_version_column(true, "ReplacingMergeTree"); if (mode == MergingParams::VersionedCollapsing) { check_sign_column(false, "VersionedCollapsingMergeTree"); check_version_column(false, "VersionedCollapsingMergeTree"); } /// TODO Checks for Graphite mode. } DataTypePtr MergeTreeData::getPartitionValueType() const { DataTypePtr partition_value_type; auto partition_types = getInMemoryMetadataPtr()->partition_key.sample_block.getDataTypes(); if (partition_types.empty()) partition_value_type = std::make_shared(); else partition_value_type = std::make_shared(std::move(partition_types)); return partition_value_type; } Block MergeTreeData::getSampleBlockWithVirtualColumns() const { DataTypePtr partition_value_type = getPartitionValueType(); return { ColumnWithTypeAndName(ColumnString::create(), std::make_shared(), "_part"), ColumnWithTypeAndName(ColumnString::create(), std::make_shared(), "_partition_id"), ColumnWithTypeAndName(ColumnUUID::create(), std::make_shared(), "_part_uuid"), ColumnWithTypeAndName(partition_value_type->createColumn(), partition_value_type, "_partition_value")}; } Block MergeTreeData::getBlockWithVirtualPartColumns(const MergeTreeData::DataPartsVector & parts, bool one_part, bool ignore_empty) const { auto block = getSampleBlockWithVirtualColumns(); MutableColumns columns = block.mutateColumns(); auto & part_column = columns[0]; auto & partition_id_column = columns[1]; auto & part_uuid_column = columns[2]; auto & partition_value_column = columns[3]; bool has_partition_value = typeid_cast(partition_value_column.get()); for (const auto & part_or_projection : parts) { if (ignore_empty && part_or_projection->isEmpty()) continue; const auto * part = part_or_projection->isProjectionPart() ? part_or_projection->getParentPart() : part_or_projection.get(); part_column->insert(part->name); partition_id_column->insert(part->info.partition_id); part_uuid_column->insert(part->uuid); Tuple tuple(part->partition.value.begin(), part->partition.value.end()); if (has_partition_value) partition_value_column->insert(tuple); if (one_part) { part_column = ColumnConst::create(std::move(part_column), 1); partition_id_column = ColumnConst::create(std::move(partition_id_column), 1); part_uuid_column = ColumnConst::create(std::move(part_uuid_column), 1); if (has_partition_value) partition_value_column = ColumnConst::create(std::move(partition_value_column), 1); break; } } block.setColumns(std::move(columns)); if (!has_partition_value) block.erase("_partition_value"); return block; } std::optional MergeTreeData::totalRowsByPartitionPredicateImpl( const SelectQueryInfo & query_info, ContextPtr local_context, const DataPartsVector & parts) const { if (parts.empty()) return 0u; auto metadata_snapshot = getInMemoryMetadataPtr(); ASTPtr expression_ast; Block virtual_columns_block = getBlockWithVirtualPartColumns(parts, true /* one_part */); // Generate valid expressions for filtering bool valid = VirtualColumnUtils::prepareFilterBlockWithQuery(query_info.query, local_context, virtual_columns_block, expression_ast); PartitionPruner partition_pruner(metadata_snapshot, query_info, local_context, true /* strict */); if (partition_pruner.isUseless() && !valid) return {}; std::unordered_set part_values; if (valid && expression_ast) { virtual_columns_block = getBlockWithVirtualPartColumns(parts, false /* one_part */); VirtualColumnUtils::filterBlockWithQuery(query_info.query, virtual_columns_block, local_context, expression_ast); part_values = VirtualColumnUtils::extractSingleValueFromBlock(virtual_columns_block, "_part"); if (part_values.empty()) return 0; } // At this point, empty `part_values` means all parts. size_t res = 0; for (const auto & part : parts) { if ((part_values.empty() || part_values.find(part->name) != part_values.end()) && !partition_pruner.canBePruned(*part)) res += part->rows_count; } return res; } String MergeTreeData::MergingParams::getModeName() const { switch (mode) { case Ordinary: return ""; case Collapsing: return "Collapsing"; case Summing: return "Summing"; case Aggregating: return "Aggregating"; case Replacing: return "Replacing"; case Graphite: return "Graphite"; case VersionedCollapsing: return "VersionedCollapsing"; } __builtin_unreachable(); } Int64 MergeTreeData::getMaxBlockNumber() const { auto lock = lockParts(); Int64 max_block_num = 0; for (const DataPartPtr & part : data_parts_by_info) max_block_num = std::max({max_block_num, part->info.max_block, part->info.mutation}); return max_block_num; } void MergeTreeData::loadDataPartsFromDisk( DataPartsVector & broken_parts_to_detach, DataPartsVector & duplicate_parts_to_remove, ThreadPool & pool, size_t num_parts, std::queue>> & parts_queue, bool skip_sanity_checks, const MergeTreeSettingsPtr & settings) { /// Parallel loading of data parts. pool.setMaxThreads(std::min(size_t(settings->max_part_loading_threads), num_parts)); size_t num_threads = pool.getMaxThreads(); std::vector parts_per_thread(num_threads, num_parts / num_threads); for (size_t i = 0ul; i < num_parts % num_threads; ++i) ++parts_per_thread[i]; /// Prepare data parts for parallel loading. Threads will focus on given disk first, then steal /// others' tasks when finish current disk part loading process. std::vector>> threads_parts(num_threads); std::set remaining_thread_parts; std::queue threads_queue; for (size_t i = 0; i < num_threads; ++i) { remaining_thread_parts.insert(i); threads_queue.push(i); } while (!parts_queue.empty()) { assert(!threads_queue.empty()); size_t i = threads_queue.front(); auto & need_parts = parts_per_thread[i]; assert(need_parts > 0); auto & thread_parts = threads_parts[i]; auto & current_parts = parts_queue.front(); assert(!current_parts.empty()); auto parts_to_grab = std::min(need_parts, current_parts.size()); thread_parts.insert(thread_parts.end(), current_parts.end() - parts_to_grab, current_parts.end()); current_parts.resize(current_parts.size() - parts_to_grab); need_parts -= parts_to_grab; /// Before processing next thread, change disk if possible. /// Different threads will likely start loading parts from different disk, /// which may improve read parallelism for JBOD. /// If current disk still has some parts, push it to the tail. if (!current_parts.empty()) parts_queue.push(std::move(current_parts)); parts_queue.pop(); /// If current thread still want some parts, push it to the tail. if (need_parts > 0) threads_queue.push(i); threads_queue.pop(); } assert(threads_queue.empty()); assert(std::all_of(threads_parts.begin(), threads_parts.end(), [](const std::vector> & parts) { return !parts.empty(); })); size_t suspicious_broken_parts = 0; size_t suspicious_broken_parts_bytes = 0; std::atomic has_adaptive_parts = false; std::atomic has_non_adaptive_parts = false; std::mutex mutex; auto load_part = [&](const String & part_name, const DiskPtr & part_disk_ptr) { auto part_opt = MergeTreePartInfo::tryParsePartName(part_name, format_version); if (!part_opt) return; const auto & part_info = *part_opt; auto single_disk_volume = std::make_shared("volume_" + part_name, part_disk_ptr, 0); auto part = createPart(part_name, part_info, single_disk_volume, part_name); bool broken = false; String part_path = fs::path(relative_data_path) / part_name; String marker_path = fs::path(part_path) / IMergeTreeDataPart::DELETE_ON_DESTROY_MARKER_FILE_NAME; if (part_disk_ptr->exists(marker_path)) { /// NOTE: getBytesOnDisk() cannot be used here, since it maybe zero of checksums.txt will not exist size_t size_of_part = IMergeTreeDataPart::calculateTotalSizeOnDisk(part->volume->getDisk(), part->getFullRelativePath()); LOG_WARNING(log, "Detaching stale part {}{} (size: {}), which should have been deleted after a move. " "That can only happen after unclean restart of ClickHouse after move of a part having an operation blocking that stale copy of part.", getFullPathOnDisk(part_disk_ptr), part_name, formatReadableSizeWithBinarySuffix(size_of_part)); std::lock_guard loading_lock(mutex); broken_parts_to_detach.push_back(part); ++suspicious_broken_parts; suspicious_broken_parts_bytes += size_of_part; return; } try { part->loadColumnsChecksumsIndexes(require_part_metadata, true); } catch (const Exception & e) { /// Don't count the part as broken if there is not enough memory to load it. /// In fact, there can be many similar situations. /// But it is OK, because there is a safety guard against deleting too many parts. if (isNotEnoughMemoryErrorCode(e.code())) throw; broken = true; tryLogCurrentException(__PRETTY_FUNCTION__); } catch (...) { broken = true; tryLogCurrentException(__PRETTY_FUNCTION__); } /// Ignore broken parts that can appear as a result of hard server restart. if (broken) { /// NOTE: getBytesOnDisk() cannot be used here, since it maybe zero of checksums.txt will not exist size_t size_of_part = IMergeTreeDataPart::calculateTotalSizeOnDisk(part->volume->getDisk(), part->getFullRelativePath()); LOG_ERROR(log, "Detaching broken part {}{} (size: {}). " "If it happened after update, it is likely because of backward incompability. " "You need to resolve this manually", getFullPathOnDisk(part_disk_ptr), part_name, formatReadableSizeWithBinarySuffix(size_of_part)); std::lock_guard loading_lock(mutex); broken_parts_to_detach.push_back(part); ++suspicious_broken_parts; suspicious_broken_parts_bytes += size_of_part; return; } if (!part->index_granularity_info.is_adaptive) has_non_adaptive_parts.store(true, std::memory_order_relaxed); else has_adaptive_parts.store(true, std::memory_order_relaxed); part->modification_time = part_disk_ptr->getLastModified(fs::path(relative_data_path) / part_name).epochTime(); /// Assume that all parts are Committed, covered parts will be detected and marked as Outdated later part->setState(DataPartState::Committed); std::lock_guard loading_lock(mutex); auto [it, inserted] = data_parts_indexes.insert(part); /// Remove duplicate parts with the same checksum. if (!inserted) { if ((*it)->checksums.getTotalChecksumHex() == part->checksums.getTotalChecksumHex()) { LOG_ERROR(log, "Remove duplicate part {}", part->getFullPath()); duplicate_parts_to_remove.push_back(part); } else throw Exception("Part " + part->name + " already exists but with different checksums", ErrorCodes::DUPLICATE_DATA_PART); } addPartContributionToDataVolume(part); }; std::mutex part_select_mutex; try { for (size_t thread = 0; thread < num_threads; ++thread) { pool.scheduleOrThrowOnError([&, thread] { while (true) { std::pair thread_part; { const std::lock_guard lock{part_select_mutex}; if (remaining_thread_parts.empty()) return; /// Steal task if nothing to do auto thread_idx = thread; if (threads_parts[thread].empty()) { // Try random steal tasks from the next thread std::uniform_int_distribution distribution(0, remaining_thread_parts.size() - 1); auto it = remaining_thread_parts.begin(); std::advance(it, distribution(thread_local_rng)); thread_idx = *it; } auto & thread_parts = threads_parts[thread_idx]; thread_part = thread_parts.back(); thread_parts.pop_back(); if (thread_parts.empty()) remaining_thread_parts.erase(thread_idx); } load_part(thread_part.first, thread_part.second); } }); } } catch (...) { /// If this is not done, then in case of an exception, tasks will be destroyed before the threads are completed, and it will be bad. pool.wait(); throw; } pool.wait(); if (has_non_adaptive_parts && has_adaptive_parts && !settings->enable_mixed_granularity_parts) throw Exception( "Table contains parts with adaptive and non adaptive marks, but `setting enable_mixed_granularity_parts` is disabled", ErrorCodes::LOGICAL_ERROR); has_non_adaptive_index_granularity_parts = has_non_adaptive_parts; if (suspicious_broken_parts > settings->max_suspicious_broken_parts && !skip_sanity_checks) throw Exception(ErrorCodes::TOO_MANY_UNEXPECTED_DATA_PARTS, "Suspiciously many ({}) broken parts to remove.", suspicious_broken_parts); if (suspicious_broken_parts_bytes > settings->max_suspicious_broken_parts_bytes && !skip_sanity_checks) throw Exception(ErrorCodes::TOO_MANY_UNEXPECTED_DATA_PARTS, "Suspiciously big size ({}) of all broken parts to remove.", formatReadableSizeWithBinarySuffix(suspicious_broken_parts_bytes)); } void MergeTreeData::loadDataPartsFromWAL( DataPartsVector & /* broken_parts_to_detach */, DataPartsVector & duplicate_parts_to_remove, MutableDataPartsVector & parts_from_wal, DataPartsLock & part_lock) { for (auto & part : parts_from_wal) { if (getActiveContainingPart(part->info, DataPartState::Committed, part_lock)) continue; part->modification_time = time(nullptr); /// Assume that all parts are Committed, covered parts will be detected and marked as Outdated later part->setState(DataPartState::Committed); auto [it, inserted] = data_parts_indexes.insert(part); if (!inserted) { if ((*it)->checksums.getTotalChecksumHex() == part->checksums.getTotalChecksumHex()) { LOG_ERROR(log, "Remove duplicate part {}", part->getFullPath()); duplicate_parts_to_remove.push_back(part); } else throw Exception("Part " + part->name + " already exists but with different checksums", ErrorCodes::DUPLICATE_DATA_PART); } addPartContributionToDataVolume(part); } } void MergeTreeData::loadDataParts(bool skip_sanity_checks) { LOG_DEBUG(log, "Loading data parts"); auto metadata_snapshot = getInMemoryMetadataPtr(); const auto settings = getSettings(); MutableDataPartsVector parts_from_wal; Strings part_file_names; auto disks = getStoragePolicy()->getDisks(); /// Only check if user did touch storage configuration for this table. if (!getStoragePolicy()->isDefaultPolicy() && !skip_sanity_checks) { /// Check extra parts at different disks, in order to not allow to miss data parts at undefined disks. std::unordered_set defined_disk_names; for (const auto & disk_ptr : disks) defined_disk_names.insert(disk_ptr->getName()); for (const auto & [disk_name, disk] : getContext()->getDisksMap()) { if (defined_disk_names.count(disk_name) == 0 && disk->exists(relative_data_path)) { for (const auto it = disk->iterateDirectory(relative_data_path); it->isValid(); it->next()) { if (MergeTreePartInfo::tryParsePartName(it->name(), format_version)) throw Exception(ErrorCodes::UNKNOWN_DISK, "Part {} was found on disk {} which is not defined in the storage policy", backQuote(it->name()), backQuote(disk_name)); } } } } /// Collect part names by disk. std::map>> disk_part_map; std::map disk_wal_part_map; ThreadPool pool(disks.size()); std::mutex wal_init_lock; for (const auto & disk_ptr : disks) { auto & disk_parts = disk_part_map[disk_ptr->getName()]; auto & disk_wal_parts = disk_wal_part_map[disk_ptr->getName()]; pool.scheduleOrThrowOnError([&, disk_ptr]() { for (auto it = disk_ptr->iterateDirectory(relative_data_path); it->isValid(); it->next()) { /// Skip temporary directories, file 'format_version.txt' and directory 'detached'. if (startsWith(it->name(), "tmp") || it->name() == MergeTreeData::FORMAT_VERSION_FILE_NAME || it->name() == MergeTreeData::DETACHED_DIR_NAME) continue; if (!startsWith(it->name(), MergeTreeWriteAheadLog::WAL_FILE_NAME)) disk_parts.emplace_back(std::make_pair(it->name(), disk_ptr)); else if (it->name() == MergeTreeWriteAheadLog::DEFAULT_WAL_FILE_NAME && settings->in_memory_parts_enable_wal) { std::unique_lock lock(wal_init_lock); if (write_ahead_log != nullptr) throw Exception( "There are multiple WAL files appeared in current storage policy. You need to resolve this manually", ErrorCodes::CORRUPTED_DATA); write_ahead_log = std::make_shared(*this, disk_ptr, it->name()); for (auto && part : write_ahead_log->restore(metadata_snapshot, getContext())) disk_wal_parts.push_back(std::move(part)); } else if (settings->in_memory_parts_enable_wal) { MergeTreeWriteAheadLog wal(*this, disk_ptr, it->name()); for (auto && part : wal.restore(metadata_snapshot, getContext())) disk_wal_parts.push_back(std::move(part)); } } }); } pool.wait(); for (auto & [_, disk_wal_parts] : disk_wal_part_map) parts_from_wal.insert( parts_from_wal.end(), std::make_move_iterator(disk_wal_parts.begin()), std::make_move_iterator(disk_wal_parts.end())); size_t num_parts = 0; std::queue>> parts_queue; for (auto & [_, disk_parts] : disk_part_map) { if (disk_parts.empty()) continue; num_parts += disk_parts.size(); parts_queue.push(std::move(disk_parts)); } auto part_lock = lockParts(); data_parts_indexes.clear(); if (num_parts == 0 && parts_from_wal.empty()) { LOG_DEBUG(log, "There are no data parts"); return; } DataPartsVector broken_parts_to_detach; DataPartsVector duplicate_parts_to_remove; if (num_parts > 0) loadDataPartsFromDisk( broken_parts_to_detach, duplicate_parts_to_remove, pool, num_parts, parts_queue, skip_sanity_checks, settings); if (!parts_from_wal.empty()) loadDataPartsFromWAL(broken_parts_to_detach, duplicate_parts_to_remove, parts_from_wal, part_lock); for (auto & part : broken_parts_to_detach) part->renameToDetached("broken-on-start"); /// detached parts must not have '_' in prefixes for (auto & part : duplicate_parts_to_remove) part->remove(); for (const auto & part : data_parts_by_state_and_info) { /// We do not have version metadata and transactions history for old parts, /// so let's consider that such parts were created by some ancient transaction /// and were committed with some prehistoric CSN. /// TODO Transactions: distinguish "prehistoric" parts from uncommitted parts in case of hard restart part->versions.setMinTID(Tx::PrehistoricTID); part->versions.mincsn.store(Tx::PrehistoricCSN, std::memory_order_relaxed); } /// Delete from the set of current parts those parts that are covered by another part (those parts that /// were merged), but that for some reason are still not deleted from the filesystem. /// Deletion of files will be performed later in the clearOldParts() method. if (data_parts_indexes.size() >= 2) { /// Now all parts are committed, so data_parts_by_state_and_info == committed_parts_range auto prev_jt = data_parts_by_state_and_info.begin(); auto curr_jt = std::next(prev_jt); auto deactivate_part = [&] (DataPartIteratorByStateAndInfo it) { (*it)->remove_time.store((*it)->modification_time, std::memory_order_relaxed); modifyPartState(it, DataPartState::Outdated); (*it)->versions.lockMaxTID(Tx::PrehistoricTID); (*it)->versions.maxcsn.store(Tx::PrehistoricCSN, std::memory_order_relaxed); removePartContributionToDataVolume(*it); }; (*prev_jt)->assertState({DataPartState::Committed}); while (curr_jt != data_parts_by_state_and_info.end() && (*curr_jt)->getState() == DataPartState::Committed) { /// Don't consider data parts belonging to different partitions. if ((*curr_jt)->info.partition_id != (*prev_jt)->info.partition_id) { ++prev_jt; ++curr_jt; continue; } if ((*curr_jt)->contains(**prev_jt)) { deactivate_part(prev_jt); prev_jt = curr_jt; ++curr_jt; } else if ((*prev_jt)->contains(**curr_jt)) { auto next = std::next(curr_jt); deactivate_part(curr_jt); curr_jt = next; } else { ++prev_jt; ++curr_jt; } } } calculateColumnAndSecondaryIndexSizesImpl(); LOG_DEBUG(log, "Loaded data parts ({} items)", data_parts_indexes.size()); } /// Is the part directory old. /// True if its modification time and the modification time of all files inside it is less then threshold. /// (Only files on the first level of nesting are considered). static bool isOldPartDirectory(const DiskPtr & disk, const String & directory_path, time_t threshold) { if (disk->getLastModified(directory_path).epochTime() >= threshold) return false; for (auto it = disk->iterateDirectory(directory_path); it->isValid(); it->next()) if (disk->getLastModified(it->path()).epochTime() >= threshold) return false; return true; } size_t MergeTreeData::clearOldTemporaryDirectories(const MergeTreeDataMergerMutator & merger_mutator, size_t custom_directories_lifetime_seconds) { /// If the method is already called from another thread, then we don't need to do anything. std::unique_lock lock(clear_old_temporary_directories_mutex, std::defer_lock); if (!lock.try_lock()) return 0; const auto settings = getSettings(); time_t current_time = time(nullptr); ssize_t deadline = current_time - custom_directories_lifetime_seconds; size_t cleared_count = 0; /// Delete temporary directories older than a day. for (const auto & disk : getDisks()) { for (auto it = disk->iterateDirectory(relative_data_path); it->isValid(); it->next()) { const std::string & basename = it->name(); if (!startsWith(basename, "tmp_")) { continue; } const std::string & full_path = fullPath(disk, it->path()); try { if (disk->isDirectory(it->path()) && isOldPartDirectory(disk, it->path(), deadline)) { if (merger_mutator.hasTemporaryPart(basename)) { LOG_WARNING(log, "{} is an active destination for one of merge/mutation (consider increasing temporary_directories_lifetime setting)", full_path); continue; } else { LOG_WARNING(log, "Removing temporary directory {}", full_path); disk->removeRecursive(it->path()); ++cleared_count; } } } /// see getModificationTime() catch (const ErrnoException & e) { if (e.getErrno() == ENOENT) { /// If the file is already deleted, do nothing. } else throw; } catch (const fs::filesystem_error & e) { if (e.code() == std::errc::no_such_file_or_directory) { /// If the file is already deleted, do nothing. } else throw; } } } return cleared_count; } MergeTreeData::DataPartsVector MergeTreeData::grabOldParts(bool force) { DataPartsVector res; /// If the method is already called from another thread, then we don't need to do anything. std::unique_lock lock(grab_old_parts_mutex, std::defer_lock); if (!lock.try_lock()) return res; time_t now = time(nullptr); std::vector parts_to_delete; { auto parts_lock = lockParts(); auto outdated_parts_range = getDataPartsStateRange(DataPartState::Outdated); for (auto it = outdated_parts_range.begin(); it != outdated_parts_range.end(); ++it) { const DataPartPtr & part = *it; /// Do not remove outdated part if it may be visible for some transaction if (!part->versions.canBeRemoved(TransactionLog::instance().getOldestSnapshot())) continue; auto part_remove_time = part->remove_time.load(std::memory_order_relaxed); if (part.unique() && /// Grab only parts that are not used by anyone (SELECTs for example). ((part_remove_time < now && now - part_remove_time > getSettings()->old_parts_lifetime.totalSeconds()) || force || isInMemoryPart(part))) /// Remove in-memory parts immediately to not store excessive data in RAM { parts_to_delete.emplace_back(it); } } res.reserve(parts_to_delete.size()); for (const auto & it_to_delete : parts_to_delete) { res.emplace_back(*it_to_delete); modifyPartState(it_to_delete, DataPartState::Deleting); } } if (!res.empty()) LOG_TRACE(log, "Found {} old parts to remove.", res.size()); return res; } void MergeTreeData::rollbackDeletingParts(const MergeTreeData::DataPartsVector & parts) { auto lock = lockParts(); for (const auto & part : parts) { /// We should modify it under data_parts_mutex part->assertState({DataPartState::Deleting}); modifyPartState(part, DataPartState::Outdated); } } void MergeTreeData::removePartsFinally(const MergeTreeData::DataPartsVector & parts) { { auto lock = lockParts(); /// TODO: use data_parts iterators instead of pointers for (const auto & part : parts) { /// Temporary does not present in data_parts_by_info. if (part->getState() == DataPartState::Temporary) continue; auto it = data_parts_by_info.find(part->info); if (it == data_parts_by_info.end()) throw Exception("Deleting data part " + part->name + " doesn't exist", ErrorCodes::LOGICAL_ERROR); (*it)->assertState({DataPartState::Deleting}); data_parts_indexes.erase(it); } } /// Data parts is still alive (since DataPartsVector holds shared_ptrs) and contain useful metainformation for logging /// NOTE: There is no need to log parts deletion somewhere else, all deleting parts pass through this function and pass away auto table_id = getStorageID(); if (auto part_log = getContext()->getPartLog(table_id.database_name)) { PartLogElement part_log_elem; part_log_elem.event_type = PartLogElement::REMOVE_PART; const auto time_now = std::chrono::system_clock::now(); part_log_elem.event_time = time_in_seconds(time_now); part_log_elem.event_time_microseconds = time_in_microseconds(time_now); part_log_elem.duration_ms = 0; //-V1048 part_log_elem.database_name = table_id.database_name; part_log_elem.table_name = table_id.table_name; for (const auto & part : parts) { part_log_elem.partition_id = part->info.partition_id; part_log_elem.part_name = part->name; part_log_elem.bytes_compressed_on_disk = part->getBytesOnDisk(); part_log_elem.rows = part->rows_count; part_log->add(part_log_elem); } } } size_t MergeTreeData::clearOldPartsFromFilesystem(bool force) { DataPartsVector parts_to_remove = grabOldParts(force); clearPartsFromFilesystem(parts_to_remove); removePartsFinally(parts_to_remove); /// This is needed to close files to avoid they reside on disk after being deleted. /// NOTE: we can drop files from cache more selectively but this is good enough. if (!parts_to_remove.empty()) getContext()->dropMMappedFileCache(); return parts_to_remove.size(); } void MergeTreeData::clearPartsFromFilesystem(const DataPartsVector & parts_to_remove) { const auto settings = getSettings(); if (parts_to_remove.size() > 1 && settings->max_part_removal_threads > 1 && parts_to_remove.size() > settings->concurrent_part_removal_threshold) { /// Parallel parts removal. size_t num_threads = std::min(settings->max_part_removal_threads, parts_to_remove.size()); ThreadPool pool(num_threads); /// NOTE: Under heavy system load you may get "Cannot schedule a task" from ThreadPool. for (const DataPartPtr & part : parts_to_remove) { pool.scheduleOrThrowOnError([&, thread_group = CurrentThread::getGroup()] { SCOPE_EXIT_SAFE( if (thread_group) CurrentThread::detachQueryIfNotDetached(); ); if (thread_group) CurrentThread::attachTo(thread_group); LOG_DEBUG(log, "Removing part from filesystem {}", part->name); part->remove(); }); } pool.wait(); } else { for (const DataPartPtr & part : parts_to_remove) { LOG_DEBUG(log, "Removing part from filesystem {}", part->name); part->remove(); } } } size_t MergeTreeData::clearOldWriteAheadLogs() { DataPartsVector parts = getDataPartsVector(); std::vector> all_block_numbers_on_disk; std::vector> block_numbers_on_disk; for (const auto & part : parts) if (part->isStoredOnDisk()) all_block_numbers_on_disk.emplace_back(part->info.min_block, part->info.max_block); if (all_block_numbers_on_disk.empty()) return 0; std::sort(all_block_numbers_on_disk.begin(), all_block_numbers_on_disk.end()); block_numbers_on_disk.push_back(all_block_numbers_on_disk[0]); for (size_t i = 1; i < all_block_numbers_on_disk.size(); ++i) { if (all_block_numbers_on_disk[i].first == all_block_numbers_on_disk[i - 1].second + 1) block_numbers_on_disk.back().second = all_block_numbers_on_disk[i].second; else block_numbers_on_disk.push_back(all_block_numbers_on_disk[i]); } auto is_range_on_disk = [&block_numbers_on_disk](Int64 min_block, Int64 max_block) { auto lower = std::lower_bound(block_numbers_on_disk.begin(), block_numbers_on_disk.end(), std::make_pair(min_block, Int64(-1L))); if (lower != block_numbers_on_disk.end() && min_block >= lower->first && max_block <= lower->second) return true; if (lower != block_numbers_on_disk.begin()) { --lower; if (min_block >= lower->first && max_block <= lower->second) return true; } return false; }; size_t cleared_count = 0; auto disks = getStoragePolicy()->getDisks(); for (auto disk_it = disks.rbegin(); disk_it != disks.rend(); ++disk_it) { auto disk_ptr = *disk_it; for (auto it = disk_ptr->iterateDirectory(relative_data_path); it->isValid(); it->next()) { auto min_max_block_number = MergeTreeWriteAheadLog::tryParseMinMaxBlockNumber(it->name()); if (min_max_block_number && is_range_on_disk(min_max_block_number->first, min_max_block_number->second)) { LOG_DEBUG(log, "Removing from filesystem the outdated WAL file " + it->name()); disk_ptr->removeFile(relative_data_path + it->name()); ++cleared_count; } } } return cleared_count; } size_t MergeTreeData::clearEmptyParts() { if (!getSettings()->remove_empty_parts) return 0; size_t cleared_count = 0; auto parts = getDataPartsVector(); for (const auto & part : parts) { if (part->rows_count == 0) { dropPartNoWaitNoThrow(part->name); ++cleared_count; } } return cleared_count; } void MergeTreeData::rename(const String & new_table_path, const StorageID & new_table_id) { auto disks = getStoragePolicy()->getDisks(); for (const auto & disk : disks) { if (disk->exists(new_table_path)) throw Exception{"Target path already exists: " + fullPath(disk, new_table_path), ErrorCodes::DIRECTORY_ALREADY_EXISTS}; } for (const auto & disk : disks) { auto new_table_path_parent = parentPath(new_table_path); disk->createDirectories(new_table_path_parent); disk->moveDirectory(relative_data_path, new_table_path); } if (!getStorageID().hasUUID()) getContext()->dropCaches(); relative_data_path = new_table_path; renameInMemory(new_table_id); } void MergeTreeData::dropAllData() { LOG_TRACE(log, "dropAllData: waiting for locks."); auto lock = lockParts(); LOG_TRACE(log, "dropAllData: removing data from memory."); DataPartsVector all_parts(data_parts_by_info.begin(), data_parts_by_info.end()); data_parts_indexes.clear(); column_sizes.clear(); /// Tables in atomic databases have UUID and stored in persistent locations. /// No need to drop caches (that are keyed by filesystem path) because collision is not possible. if (!getStorageID().hasUUID()) getContext()->dropCaches(); LOG_TRACE(log, "dropAllData: removing data from filesystem."); /// Removing of each data part before recursive removal of directory is to speed-up removal, because there will be less number of syscalls. clearPartsFromFilesystem(all_parts); for (const auto & disk : getDisks()) { try { disk->removeRecursive(relative_data_path); } catch (const fs::filesystem_error & e) { if (e.code() == std::errc::no_such_file_or_directory) { /// If the file is already deleted, log the error message and do nothing. tryLogCurrentException(__PRETTY_FUNCTION__); } else throw; } } setDataVolume(0, 0, 0); LOG_TRACE(log, "dropAllData: done."); } void MergeTreeData::dropIfEmpty() { LOG_TRACE(log, "dropIfEmpty"); auto lock = lockParts(); if (!data_parts_by_info.empty()) return; try { for (const auto & disk : getDisks()) { /// Non recursive, exception is thrown if there are more files. disk->removeFileIfExists(fs::path(relative_data_path) / MergeTreeData::FORMAT_VERSION_FILE_NAME); disk->removeDirectory(fs::path(relative_data_path) / MergeTreeData::DETACHED_DIR_NAME); disk->removeDirectory(relative_data_path); } } catch (...) { // On unsuccessful creation of ReplicatedMergeTree table with multidisk configuration some files may not exist. tryLogCurrentException(__PRETTY_FUNCTION__); } } namespace { /// Conversion that is allowed for serializable key (primary key, sorting key). /// Key should be serialized in the same way after conversion. /// NOTE: The list is not complete. bool isSafeForKeyConversion(const IDataType * from, const IDataType * to) { if (from->getName() == to->getName()) return true; /// Enums are serialized in partition key as numbers - so conversion from Enum to number is Ok. /// But only for types of identical width because they are serialized as binary in minmax index. /// But not from number to Enum because Enum does not necessarily represents all numbers. if (const auto * from_enum8 = typeid_cast(from)) { if (const auto * to_enum8 = typeid_cast(to)) return to_enum8->contains(*from_enum8); if (typeid_cast(to)) return true; // NOLINT return false; } if (const auto * from_enum16 = typeid_cast(from)) { if (const auto * to_enum16 = typeid_cast(to)) return to_enum16->contains(*from_enum16); if (typeid_cast(to)) return true; // NOLINT return false; } if (const auto * from_lc = typeid_cast(from)) return from_lc->getDictionaryType()->equals(*to); if (const auto * to_lc = typeid_cast(to)) return to_lc->getDictionaryType()->equals(*from); return false; } /// Special check for alters of VersionedCollapsingMergeTree version column void checkVersionColumnTypesConversion(const IDataType * old_type, const IDataType * new_type, const String column_name) { /// Check new type can be used as version if (!new_type->canBeUsedAsVersion()) throw Exception("Cannot alter version column " + backQuoteIfNeed(column_name) + " to type " + new_type->getName() + " because version column must be of an integer type or of type Date or DateTime" , ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); auto which_new_type = WhichDataType(new_type); auto which_old_type = WhichDataType(old_type); /// Check alter to different sign or float -> int and so on if ((which_old_type.isInt() && !which_new_type.isInt()) || (which_old_type.isUInt() && !which_new_type.isUInt()) || (which_old_type.isDate() && !which_new_type.isDate()) || (which_old_type.isDate32() && !which_new_type.isDate32()) || (which_old_type.isDateTime() && !which_new_type.isDateTime()) || (which_old_type.isFloat() && !which_new_type.isFloat())) { throw Exception("Cannot alter version column " + backQuoteIfNeed(column_name) + " from type " + old_type->getName() + " to type " + new_type->getName() + " because new type will change sort order of version column." + " The only possible conversion is expansion of the number of bytes of the current type." , ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } /// Check alter to smaller size: UInt64 -> UInt32 and so on if (new_type->getSizeOfValueInMemory() < old_type->getSizeOfValueInMemory()) { throw Exception("Cannot alter version column " + backQuoteIfNeed(column_name) + " from type " + old_type->getName() + " to type " + new_type->getName() + " because new type is smaller than current in the number of bytes." + " The only possible conversion is expansion of the number of bytes of the current type." , ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } } } void MergeTreeData::checkAlterIsPossible(const AlterCommands & commands, ContextPtr local_context) const { /// Check that needed transformations can be applied to the list of columns without considering type conversions. StorageInMemoryMetadata new_metadata = getInMemoryMetadata(); StorageInMemoryMetadata old_metadata = getInMemoryMetadata(); const auto & settings = local_context->getSettingsRef(); if (!settings.allow_non_metadata_alters) { auto mutation_commands = commands.getMutationCommands(new_metadata, settings.materialize_ttl_after_modify, getContext()); if (!mutation_commands.empty()) throw Exception(ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN, "The following alter commands: '{}' will modify data on disk, but setting `allow_non_metadata_alters` is disabled", queryToString(mutation_commands.ast())); } commands.apply(new_metadata, getContext()); /// Set of columns that shouldn't be altered. NameSet columns_alter_type_forbidden; /// Primary key columns can be ALTERed only if they are used in the key as-is /// (and not as a part of some expression) and if the ALTER only affects column metadata. NameSet columns_alter_type_metadata_only; /// Columns to check that the type change is safe for partition key. NameSet columns_alter_type_check_safe_for_partition; if (old_metadata.hasPartitionKey()) { /// Forbid altering columns inside partition key expressions because it can change partition ID format. auto partition_key_expr = old_metadata.getPartitionKey().expression; for (const auto & action : partition_key_expr->getActions()) { for (const auto * child : action.node->children) columns_alter_type_forbidden.insert(child->result_name); } /// But allow to alter columns without expressions under certain condition. for (const String & col : partition_key_expr->getRequiredColumns()) columns_alter_type_check_safe_for_partition.insert(col); } for (const auto & index : old_metadata.getSecondaryIndices()) { for (const String & col : index.expression->getRequiredColumns()) columns_alter_type_forbidden.insert(col); } if (old_metadata.hasSortingKey()) { auto sorting_key_expr = old_metadata.getSortingKey().expression; for (const auto & action : sorting_key_expr->getActions()) { for (const auto * child : action.node->children) columns_alter_type_forbidden.insert(child->result_name); } for (const String & col : sorting_key_expr->getRequiredColumns()) columns_alter_type_metadata_only.insert(col); /// We don't process sample_by_ast separately because it must be among the primary key columns /// and we don't process primary_key_expr separately because it is a prefix of sorting_key_expr. } if (!merging_params.sign_column.empty()) columns_alter_type_forbidden.insert(merging_params.sign_column); /// All of the above. NameSet columns_in_keys; columns_in_keys.insert(columns_alter_type_forbidden.begin(), columns_alter_type_forbidden.end()); columns_in_keys.insert(columns_alter_type_metadata_only.begin(), columns_alter_type_metadata_only.end()); columns_in_keys.insert(columns_alter_type_check_safe_for_partition.begin(), columns_alter_type_check_safe_for_partition.end()); NameSet dropped_columns; std::map old_types; for (const auto & column : old_metadata.getColumns().getAllPhysical()) old_types.emplace(column.name, column.type.get()); NamesAndTypesList columns_to_check_conversion; auto name_deps = getDependentViewsByColumn(local_context); for (const AlterCommand & command : commands) { /// Just validate partition expression if (command.partition) { getPartitionIDFromQuery(command.partition, getContext()); } if (command.column_name == merging_params.version_column) { /// Some type changes for version column is allowed despite it's a part of sorting key if (command.type == AlterCommand::MODIFY_COLUMN) { const IDataType * new_type = command.data_type.get(); const IDataType * old_type = old_types[command.column_name]; if (new_type) checkVersionColumnTypesConversion(old_type, new_type, command.column_name); /// No other checks required continue; } else if (command.type == AlterCommand::DROP_COLUMN) { throw Exception( "Trying to ALTER DROP version " + backQuoteIfNeed(command.column_name) + " column", ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } else if (command.type == AlterCommand::RENAME_COLUMN) { throw Exception( "Trying to ALTER RENAME version " + backQuoteIfNeed(command.column_name) + " column", ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } } if (command.type == AlterCommand::MODIFY_ORDER_BY && !is_custom_partitioned) { throw Exception( "ALTER MODIFY ORDER BY is not supported for default-partitioned tables created with the old syntax", ErrorCodes::BAD_ARGUMENTS); } if (command.type == AlterCommand::MODIFY_TTL && !is_custom_partitioned) { throw Exception( "ALTER MODIFY TTL is not supported for default-partitioned tables created with the old syntax", ErrorCodes::BAD_ARGUMENTS); } if (command.type == AlterCommand::MODIFY_SAMPLE_BY) { if (!is_custom_partitioned) throw Exception( "ALTER MODIFY SAMPLE BY is not supported for default-partitioned tables created with the old syntax", ErrorCodes::BAD_ARGUMENTS); checkSampleExpression(new_metadata, getSettings()->compatibility_allow_sampling_expression_not_in_primary_key, getSettings()->check_sample_column_is_correct); } if (command.type == AlterCommand::ADD_INDEX && !is_custom_partitioned) { throw Exception( "ALTER ADD INDEX is not supported for tables with the old syntax", ErrorCodes::BAD_ARGUMENTS); } if (command.type == AlterCommand::ADD_PROJECTION && !is_custom_partitioned) { throw Exception( "ALTER ADD PROJECTION is not supported for tables with the old syntax", ErrorCodes::BAD_ARGUMENTS); } if (command.type == AlterCommand::RENAME_COLUMN) { if (columns_in_keys.count(command.column_name)) { throw Exception( "Trying to ALTER RENAME key " + backQuoteIfNeed(command.column_name) + " column which is a part of key expression", ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } } else if (command.type == AlterCommand::DROP_COLUMN) { if (columns_in_keys.count(command.column_name)) { throw Exception( "Trying to ALTER DROP key " + backQuoteIfNeed(command.column_name) + " column which is a part of key expression", ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } if (!command.clear) { const auto & deps_mv = name_deps[command.column_name]; if (!deps_mv.empty()) { throw Exception( "Trying to ALTER DROP column " + backQuoteIfNeed(command.column_name) + " which is referenced by materialized view " + toString(deps_mv), ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } } dropped_columns.emplace(command.column_name); } else if (command.isRequireMutationStage(getInMemoryMetadata())) { /// This alter will override data on disk. Let's check that it doesn't /// modify immutable column. if (columns_alter_type_forbidden.count(command.column_name)) throw Exception("ALTER of key column " + backQuoteIfNeed(command.column_name) + " is forbidden", ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); if (command.type == AlterCommand::MODIFY_COLUMN) { if (columns_alter_type_check_safe_for_partition.count(command.column_name)) { auto it = old_types.find(command.column_name); assert(it != old_types.end()); if (!isSafeForKeyConversion(it->second, command.data_type.get())) throw Exception("ALTER of partition key column " + backQuoteIfNeed(command.column_name) + " from type " + it->second->getName() + " to type " + command.data_type->getName() + " is not safe because it can change the representation of partition key", ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } if (columns_alter_type_metadata_only.count(command.column_name)) { auto it = old_types.find(command.column_name); assert(it != old_types.end()); if (!isSafeForKeyConversion(it->second, command.data_type.get())) throw Exception("ALTER of key column " + backQuoteIfNeed(command.column_name) + " from type " + it->second->getName() + " to type " + command.data_type->getName() + " is not safe because it can change the representation of primary key", ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } if (old_metadata.getColumns().has(command.column_name)) { columns_to_check_conversion.push_back( new_metadata.getColumns().getPhysical(command.column_name)); } } } } checkProperties(new_metadata, old_metadata); checkTTLExpressions(new_metadata, old_metadata); if (!columns_to_check_conversion.empty()) { auto old_header = old_metadata.getSampleBlock(); performRequiredConversions(old_header, columns_to_check_conversion, getContext()); } if (old_metadata.hasSettingsChanges()) { const auto current_changes = old_metadata.getSettingsChanges()->as().changes; const auto & new_changes = new_metadata.settings_changes->as().changes; for (const auto & changed_setting : new_changes) { const auto & setting_name = changed_setting.name; const auto & new_value = changed_setting.value; MergeTreeSettings::checkCanSet(setting_name, new_value); const Field * current_value = current_changes.tryGet(setting_name); if ((!current_value || *current_value != new_value) && MergeTreeSettings::isReadonlySetting(setting_name)) { throw Exception{"Setting '" + setting_name + "' is readonly for storage '" + getName() + "'", ErrorCodes::READONLY_SETTING}; } if (!current_value && MergeTreeSettings::isPartFormatSetting(setting_name)) { MergeTreeSettings copy = *getSettings(); copy.applyChange(changed_setting); String reason; if (!canUsePolymorphicParts(copy, &reason) && !reason.empty()) throw Exception("Can't change settings. Reason: " + reason, ErrorCodes::NOT_IMPLEMENTED); } if (setting_name == "storage_policy") checkStoragePolicy(getContext()->getStoragePolicy(new_value.safeGet())); } /// Check if it is safe to reset the settings for (const auto & current_setting : current_changes) { const auto & setting_name = current_setting.name; const Field * new_value = new_changes.tryGet(setting_name); /// Prevent unsetting readonly setting if (MergeTreeSettings::isReadonlySetting(setting_name) && !new_value) { throw Exception{"Setting '" + setting_name + "' is readonly for storage '" + getName() + "'", ErrorCodes::READONLY_SETTING}; } if (MergeTreeSettings::isPartFormatSetting(setting_name) && !new_value) { /// Use default settings + new and check if doesn't affect part format settings auto copy = getDefaultSettings(); copy->applyChanges(new_changes); String reason; if (!canUsePolymorphicParts(*copy, &reason) && !reason.empty()) throw Exception("Can't change settings. Reason: " + reason, ErrorCodes::NOT_IMPLEMENTED); } } } for (const auto & part : getDataPartsVector()) { bool at_least_one_column_rest = false; for (const auto & column : part->getColumns()) { if (!dropped_columns.count(column.name)) { at_least_one_column_rest = true; break; } } if (!at_least_one_column_rest) { std::string postfix; if (dropped_columns.size() > 1) postfix = "s"; throw Exception(ErrorCodes::BAD_ARGUMENTS, "Cannot drop or clear column{} '{}', because all columns in part '{}' will be removed from disk. Empty parts are not allowed", postfix, boost::algorithm::join(dropped_columns, ", "), part->name); } } } void MergeTreeData::checkMutationIsPossible(const MutationCommands & /*commands*/, const Settings & /*settings*/) const { /// Some validation will be added } MergeTreeDataPartType MergeTreeData::choosePartType(size_t bytes_uncompressed, size_t rows_count) const { const auto settings = getSettings(); if (!canUsePolymorphicParts(*settings)) return MergeTreeDataPartType::WIDE; if (bytes_uncompressed < settings->min_bytes_for_compact_part || rows_count < settings->min_rows_for_compact_part) return MergeTreeDataPartType::IN_MEMORY; if (bytes_uncompressed < settings->min_bytes_for_wide_part || rows_count < settings->min_rows_for_wide_part) return MergeTreeDataPartType::COMPACT; return MergeTreeDataPartType::WIDE; } MergeTreeDataPartType MergeTreeData::choosePartTypeOnDisk(size_t bytes_uncompressed, size_t rows_count) const { const auto settings = getSettings(); if (!canUsePolymorphicParts(*settings)) return MergeTreeDataPartType::WIDE; if (bytes_uncompressed < settings->min_bytes_for_wide_part || rows_count < settings->min_rows_for_wide_part) return MergeTreeDataPartType::COMPACT; return MergeTreeDataPartType::WIDE; } MergeTreeData::MutableDataPartPtr MergeTreeData::createPart(const String & name, MergeTreeDataPartType type, const MergeTreePartInfo & part_info, const VolumePtr & volume, const String & relative_path, const IMergeTreeDataPart * parent_part) const { if (type == MergeTreeDataPartType::COMPACT) return std::make_shared(*this, name, part_info, volume, relative_path, parent_part); else if (type == MergeTreeDataPartType::WIDE) return std::make_shared(*this, name, part_info, volume, relative_path, parent_part); else if (type == MergeTreeDataPartType::IN_MEMORY) return std::make_shared(*this, name, part_info, volume, relative_path, parent_part); else throw Exception("Unknown type of part " + relative_path, ErrorCodes::UNKNOWN_PART_TYPE); } static MergeTreeDataPartType getPartTypeFromMarkExtension(const String & mrk_ext) { if (mrk_ext == getNonAdaptiveMrkExtension()) return MergeTreeDataPartType::WIDE; if (mrk_ext == getAdaptiveMrkExtension(MergeTreeDataPartType::WIDE)) return MergeTreeDataPartType::WIDE; if (mrk_ext == getAdaptiveMrkExtension(MergeTreeDataPartType::COMPACT)) return MergeTreeDataPartType::COMPACT; throw Exception("Can't determine part type, because of unknown mark extension " + mrk_ext, ErrorCodes::UNKNOWN_PART_TYPE); } MergeTreeData::MutableDataPartPtr MergeTreeData::createPart( const String & name, const VolumePtr & volume, const String & relative_path, const IMergeTreeDataPart * parent_part) const { return createPart(name, MergeTreePartInfo::fromPartName(name, format_version), volume, relative_path, parent_part); } MergeTreeData::MutableDataPartPtr MergeTreeData::createPart( const String & name, const MergeTreePartInfo & part_info, const VolumePtr & volume, const String & relative_path, const IMergeTreeDataPart * parent_part) const { MergeTreeDataPartType type; auto full_path = fs::path(relative_data_path) / (parent_part ? parent_part->relative_path : "") / relative_path / ""; auto mrk_ext = MergeTreeIndexGranularityInfo::getMarksExtensionFromFilesystem(volume->getDisk(), full_path); if (mrk_ext) type = getPartTypeFromMarkExtension(*mrk_ext); else { /// Didn't find any mark file, suppose that part is empty. type = choosePartTypeOnDisk(0, 0); } return createPart(name, type, part_info, volume, relative_path, parent_part); } void MergeTreeData::changeSettings( const ASTPtr & new_settings, AlterLockHolder & /* table_lock_holder */) { if (new_settings) { bool has_storage_policy_changed = false; const auto & new_changes = new_settings->as().changes; for (const auto & change : new_changes) { if (change.name == "storage_policy") { StoragePolicyPtr new_storage_policy = getContext()->getStoragePolicy(change.value.safeGet()); StoragePolicyPtr old_storage_policy = getStoragePolicy(); /// StoragePolicy of different version or name is guaranteed to have different pointer if (new_storage_policy != old_storage_policy) { checkStoragePolicy(new_storage_policy); std::unordered_set all_diff_disk_names; for (const auto & disk : new_storage_policy->getDisks()) all_diff_disk_names.insert(disk->getName()); for (const auto & disk : old_storage_policy->getDisks()) all_diff_disk_names.erase(disk->getName()); for (const String & disk_name : all_diff_disk_names) { auto disk = new_storage_policy->getDiskByName(disk_name); if (disk->exists(relative_data_path)) throw Exception("New storage policy contain disks which already contain data of a table with the same name", ErrorCodes::LOGICAL_ERROR); } for (const String & disk_name : all_diff_disk_names) { auto disk = new_storage_policy->getDiskByName(disk_name); disk->createDirectories(relative_data_path); disk->createDirectories(fs::path(relative_data_path) / MergeTreeData::DETACHED_DIR_NAME); } /// FIXME how would that be done while reloading configuration??? has_storage_policy_changed = true; } } } /// Reset to default settings before applying existing. auto copy = getDefaultSettings(); copy->applyChanges(new_changes); copy->sanityCheck(getContext()->getSettingsRef()); storage_settings.set(std::move(copy)); StorageInMemoryMetadata new_metadata = getInMemoryMetadata(); new_metadata.setSettingsChanges(new_settings); setInMemoryMetadata(new_metadata); if (has_storage_policy_changed) startBackgroundMovesIfNeeded(); } } void MergeTreeData::PartsTemporaryRename::addPart(const String & old_name, const String & new_name, const DiskPtr & disk) { old_and_new_names.push_back({old_name, new_name, disk}); } void MergeTreeData::PartsTemporaryRename::tryRenameAll() { renamed = true; for (size_t i = 0; i < old_and_new_names.size(); ++i) { try { const auto & [old_name, new_name, disk] = old_and_new_names[i]; if (old_name.empty() || new_name.empty()) throw DB::Exception("Empty part name. Most likely it's a bug.", ErrorCodes::LOGICAL_ERROR); const auto full_path = fs::path(storage.relative_data_path) / source_dir; disk->moveFile(fs::path(full_path) / old_name, fs::path(full_path) / new_name); } catch (...) { old_and_new_names.resize(i); LOG_WARNING(storage.log, "Cannot rename parts to perform operation on them: {}", getCurrentExceptionMessage(false)); throw; } } } MergeTreeData::PartsTemporaryRename::~PartsTemporaryRename() { // TODO what if server had crashed before this destructor was called? if (!renamed) return; for (const auto & [old_name, new_name, disk] : old_and_new_names) { if (old_name.empty()) continue; try { const String full_path = fs::path(storage.relative_data_path) / source_dir; disk->moveFile(fs::path(full_path) / new_name, fs::path(full_path) / old_name); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__); } } } MergeTreeData::DataPartsVector MergeTreeData::getActivePartsToReplace( const MergeTreePartInfo & new_part_info, const String & new_part_name, DataPartPtr & out_covering_part, DataPartsLock & /* data_parts_lock */) const { /// Parts contained in the part are consecutive in data_parts, intersecting the insertion place for the part itself. auto it_middle = data_parts_by_state_and_info.lower_bound(DataPartStateAndInfo{DataPartState::Committed, new_part_info}); auto committed_parts_range = getDataPartsStateRange(DataPartState::Committed); /// Go to the left. DataPartIteratorByStateAndInfo begin = it_middle; while (begin != committed_parts_range.begin()) { auto prev = std::prev(begin); if (!new_part_info.contains((*prev)->info)) { if ((*prev)->info.contains(new_part_info)) { out_covering_part = *prev; return {}; } if (!new_part_info.isDisjoint((*prev)->info)) throw Exception(ErrorCodes::LOGICAL_ERROR, "Part {} intersects previous part {}. It is a bug.", new_part_name, (*prev)->getNameWithState()); break; } begin = prev; } /// Go to the right. DataPartIteratorByStateAndInfo end = it_middle; while (end != committed_parts_range.end()) { if ((*end)->info == new_part_info) throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected duplicate part {}. It is a bug.", (*end)->getNameWithState()); if (!new_part_info.contains((*end)->info)) { if ((*end)->info.contains(new_part_info)) { out_covering_part = *end; return {}; } if (!new_part_info.isDisjoint((*end)->info)) throw Exception(ErrorCodes::LOGICAL_ERROR, "Part {} intersects next part {}. It is a bug.", new_part_name, (*end)->getNameWithState()); break; } ++end; } return DataPartsVector{begin, end}; } bool MergeTreeData::renameTempPartAndAdd(MutableDataPartPtr & part, MergeTreeTransaction * txn, SimpleIncrement * increment, Transaction * out_transaction, MergeTreeDeduplicationLog * deduplication_log) { if (out_transaction && &out_transaction->data != this) throw Exception("MergeTreeData::Transaction for one table cannot be used with another. It is a bug.", ErrorCodes::LOGICAL_ERROR); DataPartsVector covered_parts; { auto lock = lockParts(); if (!renameTempPartAndReplace(part, txn, increment, out_transaction, lock, &covered_parts, deduplication_log)) return false; } if (!covered_parts.empty()) throw Exception("Added part " + part->name + " covers " + toString(covered_parts.size()) + " existing part(s) (including " + covered_parts[0]->name + ")", ErrorCodes::LOGICAL_ERROR); return true; } bool MergeTreeData::renameTempPartAndReplace( MutableDataPartPtr & part, MergeTreeTransaction * txn, SimpleIncrement * increment, Transaction * out_transaction, std::unique_lock & lock, DataPartsVector * out_covered_parts, MergeTreeDeduplicationLog * deduplication_log, bool) { if (out_transaction && &out_transaction->data != this) throw Exception("MergeTreeData::Transaction for one table cannot be used with another. It is a bug.", ErrorCodes::LOGICAL_ERROR); part->assertState({DataPartState::Temporary}); MergeTreePartInfo part_info = part->info; String part_name; if (DataPartPtr existing_part_in_partition = getAnyPartInPartition(part->info.partition_id, lock)) { if (part->partition.value != existing_part_in_partition->partition.value) throw Exception( "Partition value mismatch between two parts with the same partition ID. Existing part: " + existing_part_in_partition->name + ", newly added part: " + part->name, ErrorCodes::CORRUPTED_DATA); } /** It is important that obtaining new block number and adding that block to parts set is done atomically. * Otherwise there is race condition - merge of blocks could happen in interval that doesn't yet contain new part. */ if (increment) { part_info.min_block = part_info.max_block = increment->get(); part_info.mutation = 0; /// it's equal to min_block by default part_name = part->getNewName(part_info); } else /// Parts from ReplicatedMergeTree already have names part_name = part->name; LOG_TRACE(log, "Renaming temporary part {} to {}.", part->relative_path, part_name); if (auto it_duplicate = data_parts_by_info.find(part_info); it_duplicate != data_parts_by_info.end()) { String message = "Part " + (*it_duplicate)->getNameWithState() + " already exists"; if ((*it_duplicate)->checkState({DataPartState::Outdated, DataPartState::Deleting})) throw Exception(message + ", but it will be deleted soon", ErrorCodes::PART_IS_TEMPORARILY_LOCKED); throw Exception(message, ErrorCodes::DUPLICATE_DATA_PART); } DataPartPtr covering_part; DataPartsVector covered_parts = getActivePartsToReplace(part_info, part_name, covering_part, lock); if (covering_part) { LOG_WARNING(log, "Tried to add obsolete part {} covered by {}", part_name, covering_part->getNameWithState()); return false; } /// Deduplication log used only from non-replicated MergeTree. Replicated /// tables have their own mechanism. We try to deduplicate at such deep /// level, because only here we know real part name which is required for /// deduplication. if (deduplication_log) { String block_id = part->getZeroLevelPartBlockID(); auto res = deduplication_log->addPart(block_id, part_info); if (!res.second) { ProfileEvents::increment(ProfileEvents::DuplicatedInsertedBlocks); LOG_INFO(log, "Block with ID {} already exists as part {}; ignoring it", block_id, res.first.getPartName()); return false; } } /// All checks are passed. Now we can rename the part on disk. /// So, we maintain invariant: if a non-temporary part in filesystem then it is in data_parts /// /// If out_transaction is null, we commit the part to the active set immediately, else add it to the transaction. part->name = part_name; part->info = part_info; part->is_temp = false; part->setState(DataPartState::PreCommitted); part->renameTo(part_name, true); auto part_it = data_parts_indexes.insert(part).first; /// FIXME Transactions: it's not the best place for checking and setting maxtid, /// because it's too optimistic. We should lock maxtid of covered parts at the beginning of operation. MergeTreeTransaction::addNewPartAndRemoveCovered(shared_from_this(), part, covered_parts, txn); if (out_transaction) { out_transaction->precommitted_parts.insert(part); } else { size_t reduce_bytes = 0; size_t reduce_rows = 0; size_t reduce_parts = 0; auto current_time = time(nullptr); for (const DataPartPtr & covered_part : covered_parts) { covered_part->remove_time.store(current_time, std::memory_order_relaxed); modifyPartState(covered_part, DataPartState::Outdated); removePartContributionToColumnAndSecondaryIndexSizes(covered_part); reduce_bytes += covered_part->getBytesOnDisk(); reduce_rows += covered_part->rows_count; ++reduce_parts; } decreaseDataVolume(reduce_bytes, reduce_rows, reduce_parts); modifyPartState(part_it, DataPartState::Committed); addPartContributionToColumnAndSecondaryIndexSizes(part); addPartContributionToDataVolume(part); } auto part_in_memory = asInMemoryPart(part); if (part_in_memory && getSettings()->in_memory_parts_enable_wal) { auto wal = getWriteAheadLog(); wal->addPart(part_in_memory); } if (out_covered_parts) { for (DataPartPtr & covered_part : covered_parts) out_covered_parts->emplace_back(std::move(covered_part)); } return true; } MergeTreeData::DataPartsVector MergeTreeData::renameTempPartAndReplace( MutableDataPartPtr & part, MergeTreeTransaction * txn, SimpleIncrement * increment, Transaction * out_transaction, MergeTreeDeduplicationLog * deduplication_log) { if (out_transaction && &out_transaction->data != this) throw Exception("MergeTreeData::Transaction for one table cannot be used with another. It is a bug.", ErrorCodes::LOGICAL_ERROR); DataPartsVector covered_parts; { auto lock = lockParts(); renameTempPartAndReplace(part, txn, increment, out_transaction, lock, &covered_parts, deduplication_log); } return covered_parts; } void MergeTreeData::removePartsFromWorkingSet(MergeTreeTransaction * txn, const MergeTreeData::DataPartsVector & remove, bool clear_without_timeout, DataPartsLock & /*acquired_lock*/) { auto remove_time = clear_without_timeout ? 0 : time(nullptr); for (const DataPartPtr & part : remove) { if (part->versions.mincsn != Tx::RolledBackCSN) MergeTreeTransaction::removeOldPart(shared_from_this(), part, txn); if (part->getState() == IMergeTreeDataPart::State::Committed) { removePartContributionToColumnAndSecondaryIndexSizes(part); removePartContributionToDataVolume(part); } if (part->getState() == IMergeTreeDataPart::State::Committed || clear_without_timeout) part->remove_time.store(remove_time, std::memory_order_relaxed); if (part->getState() != IMergeTreeDataPart::State::Outdated) modifyPartState(part, IMergeTreeDataPart::State::Outdated); if (isInMemoryPart(part) && getSettings()->in_memory_parts_enable_wal) getWriteAheadLog()->dropPart(part->name); } } void MergeTreeData::removePartsFromWorkingSetImmediatelyAndSetTemporaryState(const DataPartsVector & remove) { auto lock = lockParts(); for (const auto & part : remove) { auto it_part = data_parts_by_info.find(part->info); if (it_part == data_parts_by_info.end()) throw Exception("Part " + part->getNameWithState() + " not found in data_parts", ErrorCodes::LOGICAL_ERROR); assert(part->getState() == IMergeTreeDataPart::State::PreCommitted); modifyPartState(part, IMergeTreeDataPart::State::Temporary); /// Erase immediately data_parts_indexes.erase(it_part); } } void MergeTreeData::removePartsFromWorkingSet( MergeTreeTransaction * txn, const DataPartsVector & remove, bool clear_without_timeout, DataPartsLock * acquired_lock) { auto lock = (acquired_lock) ? DataPartsLock() : lockParts(); for (const auto & part : remove) { if (!data_parts_by_info.count(part->info)) throw Exception("Part " + part->getNameWithState() + " not found in data_parts", ErrorCodes::LOGICAL_ERROR); part->assertState({DataPartState::PreCommitted, DataPartState::Committed, DataPartState::Outdated}); } removePartsFromWorkingSet(txn, remove, clear_without_timeout, lock); } MergeTreeData::DataPartsVector MergeTreeData::removePartsInRangeFromWorkingSet( MergeTreeTransaction * txn, const MergeTreePartInfo & drop_range, bool clear_without_timeout, DataPartsLock & lock) { DataPartsVector parts_to_remove; if (drop_range.min_block > drop_range.max_block) throw Exception(ErrorCodes::LOGICAL_ERROR, "Invalid drop range: {}", drop_range.getPartName()); auto partition_range = getDataPartsPartitionRange(drop_range.partition_id); for (const DataPartPtr & part : partition_range) { if (part->info.partition_id != drop_range.partition_id) throw Exception("Unexpected partition_id of part " + part->name + ". This is a bug.", ErrorCodes::LOGICAL_ERROR); /// It's a DROP PART and it's already executed by fetching some covering part bool is_drop_part = !drop_range.isFakeDropRangePart() && drop_range.min_block; if (is_drop_part && (part->info.min_block != drop_range.min_block || part->info.max_block != drop_range.max_block || part->info.getMutationVersion() != drop_range.getMutationVersion())) { /// Why we check only min and max blocks here without checking merge /// level? It's a tricky situation which can happen on a stale /// replica. For example, we have parts all_1_1_0, all_2_2_0 and /// all_3_3_0. Fast replica assign some merges (OPTIMIZE FINAL or /// TTL) all_2_2_0 -> all_2_2_1 -> all_2_2_2. So it has set of parts /// all_1_1_0, all_2_2_2 and all_3_3_0. After that it decides to /// drop part all_2_2_2. Now set of parts is all_1_1_0 and /// all_3_3_0. Now fast replica assign merge all_1_1_0 + all_3_3_0 /// to all_1_3_1 and finishes it. Slow replica pulls the queue and /// have two contradictory tasks -- drop all_2_2_2 and merge/fetch /// all_1_3_1. If this replica will fetch all_1_3_1 first and then tries /// to drop all_2_2_2 after that it will receive the LOGICAL ERROR. /// So here we just check that all_1_3_1 covers blocks from drop /// all_2_2_2. /// bool is_covered_by_min_max_block = part->info.min_block <= drop_range.min_block && part->info.max_block >= drop_range.max_block && part->info.getMutationVersion() >= drop_range.getMutationVersion(); if (is_covered_by_min_max_block) { LOG_INFO(log, "Skipping drop range for part {} because covering part {} already exists", drop_range.getPartName(), part->name); return {}; } } if (part->info.min_block < drop_range.min_block) { if (drop_range.min_block <= part->info.max_block) { /// Intersect left border throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected merged part {} intersecting drop range {}", part->name, drop_range.getPartName()); } continue; } /// Stop on new parts if (part->info.min_block > drop_range.max_block) break; if (part->info.min_block <= drop_range.max_block && drop_range.max_block < part->info.max_block) { /// Intersect right border throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected merged part {} intersecting drop range {}", part->name, drop_range.getPartName()); } if (part->getState() == DataPartState::Deleting) continue; /// FIXME refactor removePartsFromWorkingSet(...), do not remove parts twice TransactionID tid = txn ? txn->tid : Tx::PrehistoricTID; if (!part->versions.isVisible(tid.start_csn, tid)) continue; parts_to_remove.emplace_back(part); } removePartsFromWorkingSet(txn, parts_to_remove, clear_without_timeout, lock); return parts_to_remove; } void MergeTreeData::restoreAndActivatePart(const DataPartPtr & part, DataPartsLock * acquired_lock) { auto lock = (acquired_lock) ? DataPartsLock() : lockParts(); //-V1018 assert(part->getState() != DataPartState::Committed); addPartContributionToColumnAndSecondaryIndexSizes(part); addPartContributionToDataVolume(part); modifyPartState(part, DataPartState::Committed); } void MergeTreeData::forgetPartAndMoveToDetached(const MergeTreeData::DataPartPtr & part_to_detach, const String & prefix, bool restore_covered) { if (prefix.empty()) LOG_INFO(log, "Renaming {} to {} and forgetting it.", part_to_detach->relative_path, part_to_detach->name); else LOG_INFO(log, "Renaming {} to {}_{} and forgetting it.", part_to_detach->relative_path, prefix, part_to_detach->name); auto lock = lockParts(); auto it_part = data_parts_by_info.find(part_to_detach->info); if (it_part == data_parts_by_info.end()) throw Exception("No such data part " + part_to_detach->getNameWithState(), ErrorCodes::NO_SUCH_DATA_PART); /// What if part_to_detach is a reference to *it_part? Make a new owner just in case. DataPartPtr part = *it_part; if (part->getState() == DataPartState::Committed) { removePartContributionToDataVolume(part); removePartContributionToColumnAndSecondaryIndexSizes(part); } modifyPartState(it_part, DataPartState::Deleting); part->renameToDetached(prefix); data_parts_indexes.erase(it_part); if (restore_covered && part->info.level == 0) { LOG_WARNING(log, "Will not recover parts covered by zero-level part {}", part->name); return; } if (restore_covered) { Strings restored; bool error = false; String error_parts; Int64 pos = part->info.min_block; auto is_appropriate_state = [] (DataPartState state) { return state == DataPartState::Committed || state == DataPartState::Outdated; }; auto update_error = [&] (DataPartIteratorByInfo it) { error = true; error_parts += (*it)->getNameWithState() + " "; }; auto it_middle = data_parts_by_info.lower_bound(part->info); /// Restore the leftmost part covered by the part if (it_middle != data_parts_by_info.begin()) { auto it = std::prev(it_middle); if (part->contains(**it) && is_appropriate_state((*it)->getState())) { /// Maybe, we must consider part level somehow if ((*it)->info.min_block != part->info.min_block) update_error(it); if ((*it)->getState() != DataPartState::Committed) { addPartContributionToColumnAndSecondaryIndexSizes(*it); addPartContributionToDataVolume(*it); modifyPartState(it, DataPartState::Committed); // iterator is not invalidated here } pos = (*it)->info.max_block + 1; restored.push_back((*it)->name); } else update_error(it); } else error = true; /// Restore "right" parts for (auto it = it_middle; it != data_parts_by_info.end() && part->contains(**it); ++it) { if ((*it)->info.min_block < pos) continue; if (!is_appropriate_state((*it)->getState())) { update_error(it); continue; } if ((*it)->info.min_block > pos) update_error(it); if ((*it)->getState() != DataPartState::Committed) { addPartContributionToColumnAndSecondaryIndexSizes(*it); addPartContributionToDataVolume(*it); modifyPartState(it, DataPartState::Committed); } pos = (*it)->info.max_block + 1; restored.push_back((*it)->name); } if (pos != part->info.max_block + 1) error = true; for (const String & name : restored) { LOG_INFO(log, "Activated part {}", name); } if (error) { LOG_ERROR(log, "The set of parts restored in place of {} looks incomplete. There might or might not be a data loss.{}", part->name, (error_parts.empty() ? "" : " Suspicious parts: " + error_parts)); } } } void MergeTreeData::tryRemovePartImmediately(DataPartPtr && part) { DataPartPtr part_to_delete; { auto lock = lockParts(); LOG_TRACE(log, "Trying to immediately remove part {}", part->getNameWithState()); if (part->getState() != DataPartState::Temporary) { auto it = data_parts_by_info.find(part->info); if (it == data_parts_by_info.end() || (*it).get() != part.get()) throw Exception("Part " + part->name + " doesn't exist", ErrorCodes::LOGICAL_ERROR); part.reset(); if (!((*it)->getState() == DataPartState::Outdated && it->unique())) return; modifyPartState(it, DataPartState::Deleting); part_to_delete = *it; } else { part_to_delete = std::move(part); } } try { part_to_delete->remove(); } catch (...) { rollbackDeletingParts({part_to_delete}); throw; } removePartsFinally({part_to_delete}); LOG_TRACE(log, "Removed part {}", part_to_delete->name); } size_t MergeTreeData::getTotalActiveSizeInBytes() const { return total_active_size_bytes.load(std::memory_order_acquire); } size_t MergeTreeData::getTotalActiveSizeInRows() const { return total_active_size_rows.load(std::memory_order_acquire); } size_t MergeTreeData::getPartsCount() const { return total_active_size_parts.load(std::memory_order_acquire); } size_t MergeTreeData::getMaxPartsCountForPartitionWithState(DataPartState state) const { auto lock = lockParts(); size_t res = 0; size_t cur_count = 0; const String * cur_partition_id = nullptr; for (const auto & part : getDataPartsStateRange(state)) { if (cur_partition_id && part->info.partition_id == *cur_partition_id) { ++cur_count; } else { cur_partition_id = &part->info.partition_id; cur_count = 1; } res = std::max(res, cur_count); } return res; } size_t MergeTreeData::getMaxPartsCountForPartition() const { return getMaxPartsCountForPartitionWithState(DataPartState::Committed); } size_t MergeTreeData::getMaxInactivePartsCountForPartition() const { return getMaxPartsCountForPartitionWithState(DataPartState::Outdated); } std::optional MergeTreeData::getMinPartDataVersion() const { auto lock = lockParts(); std::optional result; for (const auto & part : getDataPartsStateRange(DataPartState::Committed)) { if (!result || *result > part->info.getDataVersion()) result = part->info.getDataVersion(); } return result; } void MergeTreeData::delayInsertOrThrowIfNeeded(Poco::Event * until) const { const auto settings = getSettings(); const size_t parts_count_in_total = getPartsCount(); if (parts_count_in_total >= settings->max_parts_in_total) { ProfileEvents::increment(ProfileEvents::RejectedInserts); throw Exception("Too many parts (" + toString(parts_count_in_total) + ") in all partitions in total. This indicates wrong choice of partition key. The threshold can be modified with 'max_parts_in_total' setting in element in config.xml or with per-table setting.", ErrorCodes::TOO_MANY_PARTS); } size_t parts_count_in_partition = getMaxPartsCountForPartition(); ssize_t k_inactive = -1; if (settings->inactive_parts_to_throw_insert > 0 || settings->inactive_parts_to_delay_insert > 0) { size_t inactive_parts_count_in_partition = getMaxInactivePartsCountForPartition(); if (settings->inactive_parts_to_throw_insert > 0 && inactive_parts_count_in_partition >= settings->inactive_parts_to_throw_insert) { ProfileEvents::increment(ProfileEvents::RejectedInserts); throw Exception( ErrorCodes::TOO_MANY_PARTS, "Too many inactive parts ({}). Parts cleaning are processing significantly slower than inserts", inactive_parts_count_in_partition); } k_inactive = ssize_t(inactive_parts_count_in_partition) - ssize_t(settings->inactive_parts_to_delay_insert); } if (parts_count_in_partition >= settings->parts_to_throw_insert) { ProfileEvents::increment(ProfileEvents::RejectedInserts); throw Exception( ErrorCodes::TOO_MANY_PARTS, "Too many parts ({}). Merges are processing significantly slower than inserts", parts_count_in_partition); } if (k_inactive < 0 && parts_count_in_partition < settings->parts_to_delay_insert) return; const ssize_t k_active = ssize_t(parts_count_in_partition) - ssize_t(settings->parts_to_delay_insert); size_t max_k; size_t k; if (k_active > k_inactive) { max_k = settings->parts_to_throw_insert - settings->parts_to_delay_insert; k = k_active + 1; } else { max_k = settings->inactive_parts_to_throw_insert - settings->inactive_parts_to_delay_insert; k = k_inactive + 1; } const double delay_milliseconds = ::pow(settings->max_delay_to_insert * 1000, static_cast(k) / max_k); ProfileEvents::increment(ProfileEvents::DelayedInserts); ProfileEvents::increment(ProfileEvents::DelayedInsertsMilliseconds, delay_milliseconds); CurrentMetrics::Increment metric_increment(CurrentMetrics::DelayedInserts); LOG_INFO(log, "Delaying inserting block by {} ms. because there are {} parts", delay_milliseconds, parts_count_in_partition); if (until) until->tryWait(delay_milliseconds); else std::this_thread::sleep_for(std::chrono::milliseconds(static_cast(delay_milliseconds))); } MergeTreeData::DataPartPtr MergeTreeData::getActiveContainingPart( const MergeTreePartInfo & part_info, MergeTreeData::DataPartState state, DataPartsLock & /*lock*/) const { auto current_state_parts_range = getDataPartsStateRange(state); /// The part can be covered only by the previous or the next one in data_parts. auto it = data_parts_by_state_and_info.lower_bound(DataPartStateAndInfo{state, part_info}); if (it != current_state_parts_range.end()) { if ((*it)->info == part_info) return *it; if ((*it)->info.contains(part_info)) return *it; } if (it != current_state_parts_range.begin()) { --it; if ((*it)->info.contains(part_info)) return *it; } return nullptr; } void MergeTreeData::swapActivePart(MergeTreeData::DataPartPtr part_copy) { auto lock = lockParts(); for (auto original_active_part : getDataPartsStateRange(DataPartState::Committed)) // NOLINT (copy is intended) { if (part_copy->name == original_active_part->name) { auto active_part_it = data_parts_by_info.find(original_active_part->info); if (active_part_it == data_parts_by_info.end()) throw Exception("Cannot swap part '" + part_copy->name + "', no such active part.", ErrorCodes::NO_SUCH_DATA_PART); /// We do not check allow_remote_fs_zero_copy_replication here because data may be shared /// when allow_remote_fs_zero_copy_replication turned on and off again original_active_part->force_keep_shared_data = false; if (original_active_part->volume->getDisk()->supportZeroCopyReplication() && part_copy->volume->getDisk()->supportZeroCopyReplication() && original_active_part->getUniqueId() == part_copy->getUniqueId()) { /// May be when several volumes use the same S3/HDFS storage original_active_part->force_keep_shared_data = true; } modifyPartState(original_active_part, DataPartState::DeleteOnDestroy); data_parts_indexes.erase(active_part_it); auto part_it = data_parts_indexes.insert(part_copy).first; modifyPartState(part_it, DataPartState::Committed); removePartContributionToDataVolume(original_active_part); addPartContributionToDataVolume(part_copy); auto disk = original_active_part->volume->getDisk(); String marker_path = fs::path(original_active_part->getFullRelativePath()) / IMergeTreeDataPart::DELETE_ON_DESTROY_MARKER_FILE_NAME; try { disk->createFile(marker_path); } catch (Poco::Exception & e) { LOG_ERROR(log, "{} (while creating DeleteOnDestroy marker: {})", e.what(), backQuote(fullPath(disk, marker_path))); } return; } } throw Exception("Cannot swap part '" + part_copy->name + "', no such active part.", ErrorCodes::NO_SUCH_DATA_PART); } MergeTreeData::DataPartPtr MergeTreeData::getActiveContainingPart(const MergeTreePartInfo & part_info) const { auto lock = lockParts(); return getActiveContainingPart(part_info, DataPartState::Committed, lock); } MergeTreeData::DataPartPtr MergeTreeData::getActiveContainingPart(const String & part_name) const { auto part_info = MergeTreePartInfo::fromPartName(part_name, format_version); return getActiveContainingPart(part_info); } MergeTreeData::DataPartsVector MergeTreeData::getVisibleDataPartsVectorInPartition(ContextPtr local_context, const String & partition_id) const { if (const auto * txn = local_context->getCurrentTransaction().get()) { DataPartStateAndPartitionID active_parts{MergeTreeDataPartState::Committed, partition_id}; DataPartStateAndPartitionID outdated_parts{MergeTreeDataPartState::Outdated, partition_id}; DataPartsVector res; { auto lock = lockParts(); res.insert(res.end(), data_parts_by_state_and_info.lower_bound(active_parts), data_parts_by_state_and_info.upper_bound(active_parts)); res.insert(res.end(), data_parts_by_state_and_info.lower_bound(outdated_parts), data_parts_by_state_and_info.upper_bound(outdated_parts)); } filterVisibleDataParts(res, txn->getSnapshot(), txn->tid); return res; } DataPartStateAndPartitionID state_with_partition{MergeTreeDataPartState::Committed, partition_id}; auto lock = lockParts(); return DataPartsVector( data_parts_by_state_and_info.lower_bound(state_with_partition), data_parts_by_state_and_info.upper_bound(state_with_partition)); } MergeTreeData::DataPartsVector MergeTreeData::getVisibleDataPartsVectorInPartitions(ContextPtr local_context, const std::unordered_set & partition_ids) const { auto txn = local_context->getCurrentTransaction(); DataPartsVector res; { auto lock = lockParts(); for (const auto & partition_id : partition_ids) { DataPartStateAndPartitionID active_parts{MergeTreeDataPartState::Committed, partition_id}; insertAtEnd( res, DataPartsVector( data_parts_by_state_and_info.lower_bound(active_parts), data_parts_by_state_and_info.upper_bound(active_parts))); if (txn) { DataPartStateAndPartitionID outdated_parts{MergeTreeDataPartState::Committed, partition_id}; insertAtEnd( res, DataPartsVector( data_parts_by_state_and_info.lower_bound(outdated_parts), data_parts_by_state_and_info.upper_bound(outdated_parts))); } } } if (txn) filterVisibleDataParts(res, txn->getSnapshot(), txn->tid); return res; } MergeTreeData::DataPartPtr MergeTreeData::getPartIfExists(const MergeTreePartInfo & part_info, const MergeTreeData::DataPartStates & valid_states) { auto lock = lockParts(); auto it = data_parts_by_info.find(part_info); if (it == data_parts_by_info.end()) return nullptr; for (auto state : valid_states) if ((*it)->getState() == state) return *it; return nullptr; } MergeTreeData::DataPartPtr MergeTreeData::getPartIfExists(const String & part_name, const MergeTreeData::DataPartStates & valid_states) { return getPartIfExists(MergeTreePartInfo::fromPartName(part_name, format_version), valid_states); } static void loadPartAndFixMetadataImpl(MergeTreeData::MutableDataPartPtr part) { auto disk = part->volume->getDisk(); String full_part_path = part->getFullRelativePath(); part->loadColumnsChecksumsIndexes(false, true); part->modification_time = disk->getLastModified(full_part_path).epochTime(); } void MergeTreeData::calculateColumnAndSecondaryIndexSizesImpl() { column_sizes.clear(); /// Take into account only committed parts auto committed_parts_range = getDataPartsStateRange(DataPartState::Committed); for (const auto & part : committed_parts_range) addPartContributionToColumnAndSecondaryIndexSizes(part); } void MergeTreeData::addPartContributionToColumnAndSecondaryIndexSizes(const DataPartPtr & part) { for (const auto & column : part->getColumns()) { ColumnSize & total_column_size = column_sizes[column.name]; ColumnSize part_column_size = part->getColumnSize(column.name); total_column_size.add(part_column_size); } auto indexes_descriptions = getInMemoryMetadataPtr()->secondary_indices; for (const auto & index : indexes_descriptions) { IndexSize & total_secondary_index_size = secondary_index_sizes[index.name]; IndexSize part_index_size = part->getSecondaryIndexSize(index.name); total_secondary_index_size.add(part_index_size); } } void MergeTreeData::removePartContributionToColumnAndSecondaryIndexSizes(const DataPartPtr & part) { for (const auto & column : part->getColumns()) { ColumnSize & total_column_size = column_sizes[column.name]; ColumnSize part_column_size = part->getColumnSize(column.name); auto log_subtract = [&](size_t & from, size_t value, const char * field) { if (value > from) LOG_ERROR(log, "Possibly incorrect column size subtraction: {} - {} = {}, column: {}, field: {}", from, value, from - value, column.name, field); from -= value; }; log_subtract(total_column_size.data_compressed, part_column_size.data_compressed, ".data_compressed"); log_subtract(total_column_size.data_uncompressed, part_column_size.data_uncompressed, ".data_uncompressed"); log_subtract(total_column_size.marks, part_column_size.marks, ".marks"); } auto indexes_descriptions = getInMemoryMetadataPtr()->secondary_indices; for (const auto & index : indexes_descriptions) { IndexSize & total_secondary_index_size = secondary_index_sizes[index.name]; IndexSize part_secondary_index_size = part->getSecondaryIndexSize(index.name); auto log_subtract = [&](size_t & from, size_t value, const char * field) { if (value > from) LOG_ERROR(log, "Possibly incorrect index size subtraction: {} - {} = {}, index: {}, field: {}", from, value, from - value, index.name, field); from -= value; }; log_subtract(total_secondary_index_size.data_compressed, part_secondary_index_size.data_compressed, ".data_compressed"); log_subtract(total_secondary_index_size.data_uncompressed, part_secondary_index_size.data_uncompressed, ".data_uncompressed"); log_subtract(total_secondary_index_size.marks, part_secondary_index_size.marks, ".marks"); } } void MergeTreeData::checkAlterPartitionIsPossible( const PartitionCommands & commands, const StorageMetadataPtr & /*metadata_snapshot*/, const Settings & settings) const { for (const auto & command : commands) { if (command.type == PartitionCommand::DROP_DETACHED_PARTITION && !settings.allow_drop_detached) throw DB::Exception("Cannot execute query: DROP DETACHED PART is disabled " "(see allow_drop_detached setting)", ErrorCodes::SUPPORT_IS_DISABLED); if (command.partition && command.type != PartitionCommand::DROP_DETACHED_PARTITION) { if (command.part) { auto part_name = command.partition->as().value.safeGet(); /// We are able to parse it MergeTreePartInfo::fromPartName(part_name, format_version); } else { /// We are able to parse it getPartitionIDFromQuery(command.partition, getContext()); } } } } void MergeTreeData::checkPartitionCanBeDropped(const ASTPtr & partition, ContextPtr local_context) { const String partition_id = getPartitionIDFromQuery(partition, local_context); auto parts_to_remove = getVisibleDataPartsVectorInPartition(local_context, partition_id); UInt64 partition_size = 0; for (const auto & part : parts_to_remove) partition_size += part->getBytesOnDisk(); auto table_id = getStorageID(); getContext()->checkPartitionCanBeDropped(table_id.database_name, table_id.table_name, partition_size); } void MergeTreeData::checkPartCanBeDropped(const String & part_name) { auto part = getPartIfExists(part_name, {MergeTreeDataPartState::Committed}); if (!part) throw Exception(ErrorCodes::NO_SUCH_DATA_PART, "No part {} in committed state", part_name); auto table_id = getStorageID(); getContext()->checkPartitionCanBeDropped(table_id.database_name, table_id.table_name, part->getBytesOnDisk()); } void MergeTreeData::movePartitionToDisk(const ASTPtr & partition, const String & name, bool moving_part, ContextPtr local_context) { String partition_id; if (moving_part) partition_id = partition->as().value.safeGet(); else partition_id = getPartitionIDFromQuery(partition, local_context); DataPartsVector parts; if (moving_part) { auto part_info = MergeTreePartInfo::fromPartName(partition_id, format_version); parts.push_back(getActiveContainingPart(part_info)); if (!parts.back() || parts.back()->name != part_info.getPartName()) throw Exception("Part " + partition_id + " is not exists or not active", ErrorCodes::NO_SUCH_DATA_PART); } else parts = getVisibleDataPartsVectorInPartition(local_context, partition_id); auto disk = getStoragePolicy()->getDiskByName(name); if (!disk) throw Exception("Disk " + name + " does not exists on policy " + getStoragePolicy()->getName(), ErrorCodes::UNKNOWN_DISK); parts.erase(std::remove_if(parts.begin(), parts.end(), [&](auto part_ptr) { return part_ptr->volume->getDisk()->getName() == disk->getName(); }), parts.end()); if (parts.empty()) { String no_parts_to_move_message; if (moving_part) no_parts_to_move_message = "Part '" + partition_id + "' is already on disk '" + disk->getName() + "'"; else no_parts_to_move_message = "All parts of partition '" + partition_id + "' are already on disk '" + disk->getName() + "'"; throw Exception(no_parts_to_move_message, ErrorCodes::UNKNOWN_DISK); } if (!movePartsToSpace(parts, std::static_pointer_cast(disk))) throw Exception("Cannot move parts because moves are manually disabled", ErrorCodes::ABORTED); } void MergeTreeData::movePartitionToVolume(const ASTPtr & partition, const String & name, bool moving_part, ContextPtr local_context) { String partition_id; if (moving_part) partition_id = partition->as().value.safeGet(); else partition_id = getPartitionIDFromQuery(partition, local_context); DataPartsVector parts; if (moving_part) { auto part_info = MergeTreePartInfo::fromPartName(partition_id, format_version); parts.emplace_back(getActiveContainingPart(part_info)); if (!parts.back() || parts.back()->name != part_info.getPartName()) throw Exception("Part " + partition_id + " is not exists or not active", ErrorCodes::NO_SUCH_DATA_PART); } else parts = getVisibleDataPartsVectorInPartition(local_context, partition_id); auto volume = getStoragePolicy()->getVolumeByName(name); if (!volume) throw Exception("Volume " + name + " does not exists on policy " + getStoragePolicy()->getName(), ErrorCodes::UNKNOWN_DISK); if (parts.empty()) throw Exception("Nothing to move (сheck that the partition exists).", ErrorCodes::NO_SUCH_DATA_PART); parts.erase(std::remove_if(parts.begin(), parts.end(), [&](auto part_ptr) { for (const auto & disk : volume->getDisks()) { if (part_ptr->volume->getDisk()->getName() == disk->getName()) { return true; } } return false; }), parts.end()); if (parts.empty()) { String no_parts_to_move_message; if (moving_part) no_parts_to_move_message = "Part '" + partition_id + "' is already on volume '" + volume->getName() + "'"; else no_parts_to_move_message = "All parts of partition '" + partition_id + "' are already on volume '" + volume->getName() + "'"; throw Exception(no_parts_to_move_message, ErrorCodes::UNKNOWN_DISK); } if (!movePartsToSpace(parts, std::static_pointer_cast(volume))) throw Exception("Cannot move parts because moves are manually disabled", ErrorCodes::ABORTED); } void MergeTreeData::movePartitionToShard(const ASTPtr & /*partition*/, bool /*move_part*/, const String & /*to*/, ContextPtr /*query_context*/) { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "MOVE PARTITION TO SHARD is not supported by storage {}", getName()); } void MergeTreeData::fetchPartition( const ASTPtr & /*partition*/, const StorageMetadataPtr & /*metadata_snapshot*/, const String & /*from*/, bool /*fetch_part*/, ContextPtr /*query_context*/) { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "FETCH PARTITION is not supported by storage {}", getName()); } Pipe MergeTreeData::alterPartition( const StorageMetadataPtr & metadata_snapshot, const PartitionCommands & commands, ContextPtr query_context) { PartitionCommandsResultInfo result; for (const PartitionCommand & command : commands) { PartitionCommandsResultInfo current_command_results; switch (command.type) { case PartitionCommand::DROP_PARTITION: { if (command.part) { auto part_name = command.partition->as().value.safeGet(); checkPartCanBeDropped(part_name); dropPart(part_name, command.detach, query_context); } else { checkPartitionCanBeDropped(command.partition, query_context); dropPartition(command.partition, command.detach, query_context); } } break; case PartitionCommand::DROP_DETACHED_PARTITION: dropDetached(command.partition, command.part, query_context); break; case PartitionCommand::ATTACH_PARTITION: current_command_results = attachPartition(command.partition, metadata_snapshot, command.part, query_context); break; case PartitionCommand::MOVE_PARTITION: { switch (*command.move_destination_type) { case PartitionCommand::MoveDestinationType::DISK: movePartitionToDisk(command.partition, command.move_destination_name, command.part, query_context); break; case PartitionCommand::MoveDestinationType::VOLUME: movePartitionToVolume(command.partition, command.move_destination_name, command.part, query_context); break; case PartitionCommand::MoveDestinationType::TABLE: { String dest_database = query_context->resolveDatabase(command.to_database); auto dest_storage = DatabaseCatalog::instance().getTable({dest_database, command.to_table}, query_context); movePartitionToTable(dest_storage, command.partition, query_context); } break; case PartitionCommand::MoveDestinationType::SHARD: { if (!getSettings()->part_moves_between_shards_enable) throw Exception(ErrorCodes::SUPPORT_IS_DISABLED, "Moving parts between shards is experimental and work in progress" ", see part_moves_between_shards_enable setting"); movePartitionToShard(command.partition, command.part, command.move_destination_name, query_context); } break; } } break; case PartitionCommand::REPLACE_PARTITION: { if (command.replace) checkPartitionCanBeDropped(command.partition, query_context); String from_database = query_context->resolveDatabase(command.from_database); auto from_storage = DatabaseCatalog::instance().getTable({from_database, command.from_table}, query_context); replacePartitionFrom(from_storage, command.partition, command.replace, query_context); } break; case PartitionCommand::FETCH_PARTITION: fetchPartition(command.partition, metadata_snapshot, command.from_zookeeper_path, command.part, query_context); break; case PartitionCommand::FREEZE_PARTITION: { auto lock = lockForShare(query_context->getCurrentQueryId(), query_context->getSettingsRef().lock_acquire_timeout); current_command_results = freezePartition(command.partition, metadata_snapshot, command.with_name, query_context, lock); } break; case PartitionCommand::FREEZE_ALL_PARTITIONS: { auto lock = lockForShare(query_context->getCurrentQueryId(), query_context->getSettingsRef().lock_acquire_timeout); current_command_results = freezeAll(command.with_name, metadata_snapshot, query_context, lock); } break; case PartitionCommand::UNFREEZE_PARTITION: { auto lock = lockForShare(query_context->getCurrentQueryId(), query_context->getSettingsRef().lock_acquire_timeout); current_command_results = unfreezePartition(command.partition, command.with_name, query_context, lock); } break; case PartitionCommand::UNFREEZE_ALL_PARTITIONS: { auto lock = lockForShare(query_context->getCurrentQueryId(), query_context->getSettingsRef().lock_acquire_timeout); current_command_results = unfreezeAll(command.with_name, query_context, lock); } break; default: throw Exception("Uninitialized partition command", ErrorCodes::LOGICAL_ERROR); } for (auto & command_result : current_command_results) command_result.command_type = command.typeToString(); result.insert(result.end(), current_command_results.begin(), current_command_results.end()); } if (query_context->getSettingsRef().alter_partition_verbose_result) return convertCommandsResultToSource(result); return {}; } BackupEntries MergeTreeData::backup(const ASTs & partitions, ContextPtr local_context) { DataPartsVector data_parts; if (partitions.empty()) data_parts = getDataPartsVector(); else data_parts = getVisibleDataPartsVectorInPartitions(local_context, getPartitionIDsFromQuery(partitions, local_context)); return backupDataParts(data_parts); } BackupEntries MergeTreeData::backupDataParts(const DataPartsVector & data_parts) { BackupEntries backup_entries; std::map> temp_dirs; for (const auto & part : data_parts) { auto disk = part->volume->getDisk(); auto temp_dir_it = temp_dirs.find(disk); if (temp_dir_it == temp_dirs.end()) temp_dir_it = temp_dirs.emplace(disk, std::make_shared(disk, "tmp/backup_")).first; auto temp_dir_owner = temp_dir_it->second; fs::path temp_dir = temp_dir_owner->getPath(); fs::path part_dir = part->getFullRelativePath(); fs::path temp_part_dir = temp_dir / part->relative_path; disk->createDirectories(temp_part_dir); for (const auto & [filepath, checksum] : part->checksums.files) { String relative_filepath = fs::path(part->relative_path) / filepath; String hardlink_filepath = temp_part_dir / filepath; disk->createHardLink(part_dir / filepath, hardlink_filepath); UInt128 file_hash{checksum.file_hash.first, checksum.file_hash.second}; backup_entries.emplace_back( relative_filepath, std::make_unique(disk, hardlink_filepath, checksum.file_size, file_hash, temp_dir_owner)); } for (const auto & filepath : part->getFileNamesWithoutChecksums()) { String relative_filepath = fs::path(part->relative_path) / filepath; backup_entries.emplace_back(relative_filepath, std::make_unique(disk, part_dir / filepath)); } } return backup_entries; } RestoreDataTasks MergeTreeData::restoreDataPartsFromBackup(const BackupPtr & backup, const String & data_path_in_backup, const std::unordered_set & partition_ids, SimpleIncrement * increment) { RestoreDataTasks restore_tasks; Strings part_names = backup->listFiles(data_path_in_backup); for (const String & part_name : part_names) { const auto part_info = MergeTreePartInfo::tryParsePartName(part_name, format_version); if (!part_info) continue; if (!partition_ids.empty() && !partition_ids.contains(part_info->partition_id)) continue; UInt64 total_size_of_part = 0; Strings filenames = backup->listFiles(data_path_in_backup + part_name + "/", ""); for (const String & filename : filenames) total_size_of_part += backup->getFileSize(data_path_in_backup + part_name + "/" + filename); std::shared_ptr reservation = getStoragePolicy()->reserveAndCheck(total_size_of_part); auto restore_task = [this, backup, data_path_in_backup, part_name, part_info = std::move(part_info), filenames = std::move(filenames), reservation, increment]() { auto disk = reservation->getDisk(); auto temp_part_dir_owner = std::make_shared(disk, relative_data_path + "restoring_" + part_name + "_"); String temp_part_dir = temp_part_dir_owner->getPath(); disk->createDirectories(temp_part_dir); assert(temp_part_dir.starts_with(relative_data_path)); String relative_temp_part_dir = temp_part_dir.substr(relative_data_path.size()); for (const String & filename : filenames) { auto backup_entry = backup->readFile(data_path_in_backup + part_name + "/" + filename); auto read_buffer = backup_entry->getReadBuffer(); auto write_buffer = disk->writeFile(temp_part_dir + "/" + filename); copyData(*read_buffer, *write_buffer); } auto single_disk_volume = std::make_shared(disk->getName(), disk, 0); auto part = createPart(part_name, *part_info, single_disk_volume, relative_temp_part_dir); part->loadColumnsChecksumsIndexes(false, true); renameTempPartAndAdd(part, nullptr, increment); //FIXME }; restore_tasks.emplace_back(std::move(restore_task)); } return restore_tasks; } String MergeTreeData::getPartitionIDFromQuery(const ASTPtr & ast, ContextPtr local_context) const { const auto & partition_ast = ast->as(); if (!partition_ast.value) { MergeTreePartInfo::validatePartitionID(partition_ast.id, format_version); return partition_ast.id; } if (format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING) { /// Month-partitioning specific - partition ID can be passed in the partition value. const auto * partition_lit = partition_ast.value->as(); if (partition_lit && partition_lit->value.getType() == Field::Types::String) { String partition_id = partition_lit->value.get(); MergeTreePartInfo::validatePartitionID(partition_id, format_version); return partition_id; } } /// Re-parse partition key fields using the information about expected field types. auto metadata_snapshot = getInMemoryMetadataPtr(); const Block & key_sample_block = metadata_snapshot->getPartitionKey().sample_block; size_t fields_count = key_sample_block.columns(); if (partition_ast.fields_count != fields_count) throw Exception(ErrorCodes::INVALID_PARTITION_VALUE, "Wrong number of fields in the partition expression: {}, must be: {}", partition_ast.fields_count, fields_count); Row partition_row(fields_count); if (fields_count == 0) { /// Function tuple(...) requires at least one argument, so empty key is a special case assert(!partition_ast.fields_count); assert(typeid_cast(partition_ast.value.get())); assert(partition_ast.value->as()->name == "tuple"); assert(partition_ast.value->as()->arguments); bool empty_tuple = partition_ast.value->as()->arguments->children.empty(); if (!empty_tuple) throw Exception(ErrorCodes::INVALID_PARTITION_VALUE, "Partition key is empty, expected 'tuple()' as partition key"); } else if (fields_count == 1) { ASTPtr partition_value_ast = partition_ast.value; if (auto * tuple = partition_value_ast->as()) { assert(tuple->name == "tuple"); assert(tuple->arguments); assert(tuple->arguments->children.size() == 1); partition_value_ast = tuple->arguments->children[0]; } /// Simple partition key, need to evaluate and cast Field partition_key_value = evaluateConstantExpression(partition_value_ast, local_context).first; partition_row[0] = convertFieldToTypeOrThrow(partition_key_value, *key_sample_block.getByPosition(0).type); } else { /// Complex key, need to evaluate, untuple and cast Field partition_key_value = evaluateConstantExpression(partition_ast.value, local_context).first; if (partition_key_value.getType() != Field::Types::Tuple) throw Exception(ErrorCodes::INVALID_PARTITION_VALUE, "Expected tuple for complex partition key, got {}", partition_key_value.getTypeName()); const Tuple & tuple = partition_key_value.get(); if (tuple.size() != fields_count) throw Exception(ErrorCodes::LOGICAL_ERROR, "Wrong number of fields in the partition expression: {}, must be: {}", tuple.size(), fields_count); for (size_t i = 0; i < fields_count; ++i) partition_row[i] = convertFieldToTypeOrThrow(tuple[i], *key_sample_block.getByPosition(i).type); } MergeTreePartition partition(std::move(partition_row)); String partition_id = partition.getID(*this); { auto data_parts_lock = lockParts(); DataPartPtr existing_part_in_partition = getAnyPartInPartition(partition_id, data_parts_lock); if (existing_part_in_partition && existing_part_in_partition->partition.value != partition.value) { WriteBufferFromOwnString buf; partition.serializeText(*this, buf, FormatSettings{}); throw Exception(ErrorCodes::LOGICAL_ERROR, "Parsed partition value: {} " "doesn't match partition value for an existing part with the same partition ID: {}", buf.str(), existing_part_in_partition->name); } } return partition_id; } DataPartsVector MergeTreeData::getVisibleDataPartsVector(ContextPtr local_context) const { DataPartsVector res; if (const auto * txn = local_context->getCurrentTransaction().get()) { res = getDataPartsVector({DataPartState::Committed, DataPartState::Outdated}); filterVisibleDataParts(res, txn->getSnapshot(), txn->tid); } else { res = getDataPartsVector(); } return res; } MergeTreeData::DataPartsVector MergeTreeData::getVisibleDataPartsVector(const MergeTreeTransactionPtr & txn) const { DataPartsVector res; if (txn) { res = getDataPartsVector({DataPartState::Committed, DataPartState::Outdated}); filterVisibleDataParts(res, txn->getSnapshot(), txn->tid); } else { res = getDataPartsVector(); } return res; } MergeTreeData::DataPartsVector MergeTreeData::getVisibleDataPartsVector(Snapshot snapshot_version, TransactionID current_tid) const { auto res = getDataPartsVector({DataPartState::Committed, DataPartState::Outdated}); filterVisibleDataParts(res, snapshot_version, current_tid); return res; } void MergeTreeData::filterVisibleDataParts(DataPartsVector & maybe_visible_parts, Snapshot snapshot_version, TransactionID current_tid) const { if (maybe_visible_parts.empty()) return; auto it = maybe_visible_parts.begin(); auto it_last = maybe_visible_parts.end() - 1; String visible_parts_str; while (it <= it_last) { if ((*it)->versions.isVisible(snapshot_version, current_tid)) { visible_parts_str += (*it)->name; visible_parts_str += " "; ++it; } else { std::swap(*it, *it_last); --it_last; } } size_t new_size = it_last - maybe_visible_parts.begin() + 1; LOG_TEST(log, "Got {} parts visible in snapshot {} (TID {}): {}", new_size, snapshot_version, current_tid, visible_parts_str); maybe_visible_parts.resize(new_size); } std::unordered_set MergeTreeData::getPartitionIDsFromQuery(const ASTs & asts, ContextPtr local_context) const { std::unordered_set partition_ids; for (const auto & ast : asts) partition_ids.emplace(getPartitionIDFromQuery(ast, local_context)); return partition_ids; } std::set MergeTreeData::getPartitionIdsAffectedByCommands( const MutationCommands & commands, ContextPtr query_context) const { std::set affected_partition_ids; for (const auto & command : commands) { if (!command.partition) { affected_partition_ids.clear(); break; } affected_partition_ids.insert( getPartitionIDFromQuery(command.partition, query_context) ); } return affected_partition_ids; } MergeTreeData::DataPartsVector MergeTreeData::getDataPartsVector( const DataPartStates & affordable_states, DataPartStateVector * out_states, bool require_projection_parts) const { DataPartsVector res; DataPartsVector buf; { auto lock = lockParts(); for (auto state : affordable_states) { auto range = getDataPartsStateRange(state); if (require_projection_parts) { for (const auto & part : range) { for (const auto & [_, projection_part] : part->getProjectionParts()) res.push_back(projection_part); } } else { std::swap(buf, res); res.clear(); std::merge(range.begin(), range.end(), buf.begin(), buf.end(), std::back_inserter(res), LessDataPart()); //-V783 } } if (out_states != nullptr) { out_states->resize(res.size()); if (require_projection_parts) { for (size_t i = 0; i < res.size(); ++i) (*out_states)[i] = res[i]->getParentPart()->getState(); } else { for (size_t i = 0; i < res.size(); ++i) (*out_states)[i] = res[i]->getState(); } } } return res; } MergeTreeData::DataPartsVector MergeTreeData::getAllDataPartsVector(MergeTreeData::DataPartStateVector * out_states, bool require_projection_parts) const { DataPartsVector res; if (require_projection_parts) { auto lock = lockParts(); for (const auto & part : data_parts_by_info) { for (const auto & [p_name, projection_part] : part->getProjectionParts()) res.push_back(projection_part); } if (out_states != nullptr) { out_states->resize(res.size()); for (size_t i = 0; i < res.size(); ++i) (*out_states)[i] = res[i]->getParentPart()->getState(); } } else { auto lock = lockParts(); res.assign(data_parts_by_info.begin(), data_parts_by_info.end()); if (out_states != nullptr) { out_states->resize(res.size()); for (size_t i = 0; i < res.size(); ++i) (*out_states)[i] = res[i]->getState(); } } return res; } DetachedPartsInfo MergeTreeData::getDetachedParts() const { DetachedPartsInfo res; for (const auto & disk : getDisks()) { String detached_path = fs::path(relative_data_path) / MergeTreeData::DETACHED_DIR_NAME; /// Note: we don't care about TOCTOU issue here. if (disk->exists(detached_path)) { for (auto it = disk->iterateDirectory(detached_path); it->isValid(); it->next()) { res.push_back(DetachedPartInfo::parseDetachedPartName(disk, it->name(), format_version)); } } } return res; } void MergeTreeData::validateDetachedPartName(const String & name) { if (name.find('/') != std::string::npos || name == "." || name == "..") throw DB::Exception("Invalid part name '" + name + "'", ErrorCodes::INCORRECT_FILE_NAME); if (startsWith(name, "attaching_") || startsWith(name, "deleting_")) throw DB::Exception("Cannot drop part " + name + ": " "most likely it is used by another DROP or ATTACH query.", ErrorCodes::BAD_DATA_PART_NAME); } void MergeTreeData::dropDetached(const ASTPtr & partition, bool part, ContextPtr local_context) { PartsTemporaryRename renamed_parts(*this, "detached/"); if (part) { String part_name = partition->as().value.safeGet(); validateDetachedPartName(part_name); auto disk = getDiskForDetachedPart(part_name); renamed_parts.addPart(part_name, "deleting_" + part_name, disk); } else { String partition_id = getPartitionIDFromQuery(partition, local_context); DetachedPartsInfo detached_parts = getDetachedParts(); for (const auto & part_info : detached_parts) if (part_info.valid_name && part_info.partition_id == partition_id && part_info.prefix != "attaching" && part_info.prefix != "deleting") renamed_parts.addPart(part_info.dir_name, "deleting_" + part_info.dir_name, part_info.disk); } LOG_DEBUG(log, "Will drop {} detached parts.", renamed_parts.old_and_new_names.size()); renamed_parts.tryRenameAll(); for (auto & [old_name, new_name, disk] : renamed_parts.old_and_new_names) { disk->removeRecursive(fs::path(relative_data_path) / "detached" / new_name / ""); LOG_DEBUG(log, "Dropped detached part {}", old_name); old_name.clear(); } } MergeTreeData::MutableDataPartsVector MergeTreeData::tryLoadPartsToAttach(const ASTPtr & partition, bool attach_part, ContextPtr local_context, PartsTemporaryRename & renamed_parts) { const String source_dir = "detached/"; std::map name_to_disk; /// Let's compose a list of parts that should be added. if (attach_part) { const String part_id = partition->as().value.safeGet(); validateDetachedPartName(part_id); auto disk = getDiskForDetachedPart(part_id); renamed_parts.addPart(part_id, "attaching_" + part_id, disk); if (MergeTreePartInfo::tryParsePartName(part_id, format_version)) name_to_disk[part_id] = getDiskForDetachedPart(part_id); } else { String partition_id = getPartitionIDFromQuery(partition, local_context); LOG_DEBUG(log, "Looking for parts for partition {} in {}", partition_id, source_dir); ActiveDataPartSet active_parts(format_version); auto detached_parts = getDetachedParts(); auto new_end_it = std::remove_if(detached_parts.begin(), detached_parts.end(), [&partition_id](const DetachedPartInfo & part_info) { return !part_info.valid_name || !part_info.prefix.empty() || part_info.partition_id != partition_id; }); detached_parts.resize(std::distance(detached_parts.begin(), new_end_it)); for (const auto & part_info : detached_parts) { LOG_DEBUG(log, "Found part {}", part_info.dir_name); active_parts.add(part_info.dir_name); } LOG_DEBUG(log, "{} of them are active", active_parts.size()); /// Inactive parts are renamed so they can not be attached in case of repeated ATTACH. for (const auto & part_info : detached_parts) { const String containing_part = active_parts.getContainingPart(part_info.dir_name); if (!containing_part.empty() && containing_part != part_info.dir_name) part_info.disk->moveDirectory(fs::path(relative_data_path) / source_dir / part_info.dir_name, fs::path(relative_data_path) / source_dir / ("inactive_" + part_info.dir_name)); else renamed_parts.addPart(part_info.dir_name, "attaching_" + part_info.dir_name, part_info.disk); } } /// Try to rename all parts before attaching to prevent race with DROP DETACHED and another ATTACH. renamed_parts.tryRenameAll(); /// Synchronously check that added parts exist and are not broken. We will write checksums.txt if it does not exist. LOG_DEBUG(log, "Checking parts"); MutableDataPartsVector loaded_parts; loaded_parts.reserve(renamed_parts.old_and_new_names.size()); for (const auto & [old_name, new_name, disk] : renamed_parts.old_and_new_names) { LOG_DEBUG(log, "Checking part {}", new_name); auto single_disk_volume = std::make_shared("volume_" + old_name, disk); MutableDataPartPtr part = createPart(old_name, single_disk_volume, source_dir + new_name); loadPartAndFixMetadataImpl(part); loaded_parts.push_back(part); } return loaded_parts; } namespace { inline ReservationPtr checkAndReturnReservation(UInt64 expected_size, ReservationPtr reservation) { if (reservation) return reservation; throw Exception(fmt::format("Cannot reserve {}, not enough space", ReadableSize(expected_size)), ErrorCodes::NOT_ENOUGH_SPACE); } } ReservationPtr MergeTreeData::reserveSpace(UInt64 expected_size) const { expected_size = std::max(RESERVATION_MIN_ESTIMATION_SIZE, expected_size); return getStoragePolicy()->reserveAndCheck(expected_size); } ReservationPtr MergeTreeData::reserveSpace(UInt64 expected_size, SpacePtr space) { expected_size = std::max(RESERVATION_MIN_ESTIMATION_SIZE, expected_size); auto reservation = tryReserveSpace(expected_size, space); return checkAndReturnReservation(expected_size, std::move(reservation)); } ReservationPtr MergeTreeData::tryReserveSpace(UInt64 expected_size, SpacePtr space) { expected_size = std::max(RESERVATION_MIN_ESTIMATION_SIZE, expected_size); return space->reserve(expected_size); } ReservationPtr MergeTreeData::reserveSpacePreferringTTLRules( const StorageMetadataPtr & metadata_snapshot, UInt64 expected_size, const IMergeTreeDataPart::TTLInfos & ttl_infos, time_t time_of_move, size_t min_volume_index, bool is_insert, DiskPtr selected_disk) const { expected_size = std::max(RESERVATION_MIN_ESTIMATION_SIZE, expected_size); ReservationPtr reservation = tryReserveSpacePreferringTTLRules( metadata_snapshot, expected_size, ttl_infos, time_of_move, min_volume_index, is_insert, selected_disk); return checkAndReturnReservation(expected_size, std::move(reservation)); } ReservationPtr MergeTreeData::tryReserveSpacePreferringTTLRules( const StorageMetadataPtr & metadata_snapshot, UInt64 expected_size, const IMergeTreeDataPart::TTLInfos & ttl_infos, time_t time_of_move, size_t min_volume_index, bool is_insert, DiskPtr selected_disk) const { expected_size = std::max(RESERVATION_MIN_ESTIMATION_SIZE, expected_size); ReservationPtr reservation; auto move_ttl_entry = selectTTLDescriptionForTTLInfos(metadata_snapshot->getMoveTTLs(), ttl_infos.moves_ttl, time_of_move, true); if (move_ttl_entry) { SpacePtr destination_ptr = getDestinationForMoveTTL(*move_ttl_entry, is_insert); if (!destination_ptr) { if (move_ttl_entry->destination_type == DataDestinationType::VOLUME) LOG_WARNING(log, "Would like to reserve space on volume '{}' by TTL rule of table '{}' but volume was not found or rule is not applicable at the moment", move_ttl_entry->destination_name, log_name); else if (move_ttl_entry->destination_type == DataDestinationType::DISK) LOG_WARNING(log, "Would like to reserve space on disk '{}' by TTL rule of table '{}' but disk was not found or rule is not applicable at the moment", move_ttl_entry->destination_name, log_name); } else { reservation = destination_ptr->reserve(expected_size); if (reservation) return reservation; else if (move_ttl_entry->destination_type == DataDestinationType::VOLUME) LOG_WARNING(log, "Would like to reserve space on volume '{}' by TTL rule of table '{}' but there is not enough space", move_ttl_entry->destination_name, log_name); else if (move_ttl_entry->destination_type == DataDestinationType::DISK) LOG_WARNING(log, "Would like to reserve space on disk '{}' by TTL rule of table '{}' but there is not enough space", move_ttl_entry->destination_name, log_name); } } // Prefer selected_disk if (selected_disk) reservation = selected_disk->reserve(expected_size); if (!reservation) reservation = getStoragePolicy()->reserve(expected_size, min_volume_index); return reservation; } SpacePtr MergeTreeData::getDestinationForMoveTTL(const TTLDescription & move_ttl, bool is_insert) const { auto policy = getStoragePolicy(); if (move_ttl.destination_type == DataDestinationType::VOLUME) { auto volume = policy->getVolumeByName(move_ttl.destination_name); if (!volume) return {}; if (is_insert && !volume->perform_ttl_move_on_insert) return {}; return volume; } else if (move_ttl.destination_type == DataDestinationType::DISK) { auto disk = policy->getDiskByName(move_ttl.destination_name); if (!disk) return {}; auto volume = policy->getVolume(policy->getVolumeIndexByDisk(disk)); if (!volume) return {}; if (is_insert && !volume->perform_ttl_move_on_insert) return {}; return disk; } else return {}; } bool MergeTreeData::isPartInTTLDestination(const TTLDescription & ttl, const IMergeTreeDataPart & part) const { auto policy = getStoragePolicy(); if (ttl.destination_type == DataDestinationType::VOLUME) { for (const auto & disk : policy->getVolumeByName(ttl.destination_name)->getDisks()) if (disk->getName() == part.volume->getDisk()->getName()) return true; } else if (ttl.destination_type == DataDestinationType::DISK) return policy->getDiskByName(ttl.destination_name)->getName() == part.volume->getDisk()->getName(); return false; } CompressionCodecPtr MergeTreeData::getCompressionCodecForPart(size_t part_size_compressed, const IMergeTreeDataPart::TTLInfos & ttl_infos, time_t current_time) const { auto metadata_snapshot = getInMemoryMetadataPtr(); const auto & recompression_ttl_entries = metadata_snapshot->getRecompressionTTLs(); auto best_ttl_entry = selectTTLDescriptionForTTLInfos(recompression_ttl_entries, ttl_infos.recompression_ttl, current_time, true); if (best_ttl_entry) return CompressionCodecFactory::instance().get(best_ttl_entry->recompression_codec, {}); return getContext()->chooseCompressionCodec( part_size_compressed, static_cast(part_size_compressed) / getTotalActiveSizeInBytes()); } MergeTreeData::DataParts MergeTreeData::getDataParts(const DataPartStates & affordable_states) const { DataParts res; { auto lock = lockParts(); for (auto state : affordable_states) { auto range = getDataPartsStateRange(state); res.insert(range.begin(), range.end()); } } return res; } MergeTreeData::DataParts MergeTreeData::getDataPartsForInternalUsage() const { return getDataParts({DataPartState::Committed}); } MergeTreeData::DataPartsVector MergeTreeData::getDataPartsVector() const { return getDataPartsVector({DataPartState::Committed}); } MergeTreeData::DataPartPtr MergeTreeData::getAnyPartInPartition( const String & partition_id, DataPartsLock & /*data_parts_lock*/) const { auto it = data_parts_by_state_and_info.lower_bound(DataPartStateAndPartitionID{DataPartState::Committed, partition_id}); if (it != data_parts_by_state_and_info.end() && (*it)->getState() == DataPartState::Committed && (*it)->info.partition_id == partition_id) return *it; return nullptr; } void MergeTreeData::Transaction::rollbackPartsToTemporaryState() { if (!isEmpty()) { WriteBufferFromOwnString buf; buf << " Rollbacking parts state to temporary and removing from working set:"; for (const auto & part : precommitted_parts) buf << " " << part->relative_path; buf << "."; LOG_DEBUG(data.log, "Undoing transaction.{}", buf.str()); data.removePartsFromWorkingSetImmediatelyAndSetTemporaryState( DataPartsVector(precommitted_parts.begin(), precommitted_parts.end())); } clear(); } void MergeTreeData::Transaction::rollback() { if (!isEmpty()) { WriteBufferFromOwnString buf; buf << " Removing parts:"; for (const auto & part : precommitted_parts) buf << " " << part->relative_path; buf << "."; LOG_DEBUG(data.log, "Undoing transaction.{}", buf.str()); if (!txn) { auto lock = data.lockParts(); for (const auto & part : precommitted_parts) { DataPartPtr covering_part; DataPartsVector covered_parts = data.getActivePartsToReplace(part->info, part->name, covering_part, lock); for (auto & covered : covered_parts) covered->versions.unlockMaxTID(Tx::PrehistoricTID); } } data.removePartsFromWorkingSet(txn, DataPartsVector(precommitted_parts.begin(), precommitted_parts.end()), /* clear_without_timeout = */ true); } clear(); } MergeTreeData::DataPartsVector MergeTreeData::Transaction::commit(MergeTreeData::DataPartsLock * acquired_parts_lock) { DataPartsVector total_covered_parts; if (!isEmpty()) { auto parts_lock = acquired_parts_lock ? MergeTreeData::DataPartsLock() : data.lockParts(); auto * owing_parts_lock = acquired_parts_lock ? acquired_parts_lock : &parts_lock; auto current_time = time(nullptr); size_t add_bytes = 0; size_t add_rows = 0; size_t add_parts = 0; size_t reduce_bytes = 0; size_t reduce_rows = 0; size_t reduce_parts = 0; for (const DataPartPtr & part : precommitted_parts) { DataPartPtr covering_part; DataPartsVector covered_parts = data.getActivePartsToReplace(part->info, part->name, covering_part, *owing_parts_lock); if (covering_part) { LOG_WARNING(data.log, "Tried to commit obsolete part {} covered by {}", part->name, covering_part->getNameWithState()); part->remove_time.store(0, std::memory_order_relaxed); /// The part will be removed without waiting for old_parts_lifetime seconds. data.modifyPartState(part, DataPartState::Outdated); } else { total_covered_parts.insert(total_covered_parts.end(), covered_parts.begin(), covered_parts.end()); for (const DataPartPtr & covered_part : covered_parts) { covered_part->remove_time.store(current_time, std::memory_order_relaxed); reduce_bytes += covered_part->getBytesOnDisk(); reduce_rows += covered_part->rows_count; data.modifyPartState(covered_part, DataPartState::Outdated); data.removePartContributionToColumnAndSecondaryIndexSizes(covered_part); } reduce_parts += covered_parts.size(); add_bytes += part->getBytesOnDisk(); add_rows += part->rows_count; ++add_parts; data.modifyPartState(part, DataPartState::Committed); data.addPartContributionToColumnAndSecondaryIndexSizes(part); } } data.decreaseDataVolume(reduce_bytes, reduce_rows, reduce_parts); data.increaseDataVolume(add_bytes, add_rows, add_parts); } clear(); return total_covered_parts; } bool MergeTreeData::isPrimaryOrMinMaxKeyColumnPossiblyWrappedInFunctions( const ASTPtr & node, const StorageMetadataPtr & metadata_snapshot) const { const String column_name = node->getColumnName(); for (const auto & name : metadata_snapshot->getPrimaryKeyColumns()) if (column_name == name) return true; for (const auto & name : getMinMaxColumnsNames(metadata_snapshot->getPartitionKey())) if (column_name == name) return true; if (const auto * func = node->as()) if (func->arguments->children.size() == 1) return isPrimaryOrMinMaxKeyColumnPossiblyWrappedInFunctions(func->arguments->children.front(), metadata_snapshot); return false; } bool MergeTreeData::mayBenefitFromIndexForIn( const ASTPtr & left_in_operand, ContextPtr, const StorageMetadataPtr & metadata_snapshot) const { /// Make sure that the left side of the IN operator contain part of the key. /// If there is a tuple on the left side of the IN operator, at least one item of the tuple /// must be part of the key (probably wrapped by a chain of some acceptable functions). const auto * left_in_operand_tuple = left_in_operand->as(); const auto & index_wrapper_factory = MergeTreeIndexFactory::instance(); if (left_in_operand_tuple && left_in_operand_tuple->name == "tuple") { for (const auto & item : left_in_operand_tuple->arguments->children) { if (isPrimaryOrMinMaxKeyColumnPossiblyWrappedInFunctions(item, metadata_snapshot)) return true; for (const auto & index : metadata_snapshot->getSecondaryIndices()) if (index_wrapper_factory.get(index)->mayBenefitFromIndexForIn(item)) return true; for (const auto & projection : metadata_snapshot->getProjections()) { if (projection.isPrimaryKeyColumnPossiblyWrappedInFunctions(item)) return true; } } /// The tuple itself may be part of the primary key, so check that as a last resort. if (isPrimaryOrMinMaxKeyColumnPossiblyWrappedInFunctions(left_in_operand, metadata_snapshot)) return true; for (const auto & projection : metadata_snapshot->getProjections()) { if (projection.isPrimaryKeyColumnPossiblyWrappedInFunctions(left_in_operand)) return true; } return false; } else { for (const auto & index : metadata_snapshot->getSecondaryIndices()) if (index_wrapper_factory.get(index)->mayBenefitFromIndexForIn(left_in_operand)) return true; for (const auto & projection : metadata_snapshot->getProjections()) { if (projection.isPrimaryKeyColumnPossiblyWrappedInFunctions(left_in_operand)) return true; } return isPrimaryOrMinMaxKeyColumnPossiblyWrappedInFunctions(left_in_operand, metadata_snapshot); } } using PartitionIdToMaxBlock = std::unordered_map; static void selectBestProjection( const MergeTreeDataSelectExecutor & reader, const StorageMetadataPtr & metadata_snapshot, const SelectQueryInfo & query_info, const Names & required_columns, ProjectionCandidate & candidate, ContextPtr query_context, std::shared_ptr max_added_blocks, const Settings & settings, const MergeTreeData::DataPartsVector & parts, ProjectionCandidate *& selected_candidate, size_t & min_sum_marks) { MergeTreeData::DataPartsVector projection_parts; MergeTreeData::DataPartsVector normal_parts; for (const auto & part : parts) { const auto & projections = part->getProjectionParts(); auto it = projections.find(candidate.desc->name); if (it != projections.end()) projection_parts.push_back(it->second); else normal_parts.push_back(part); } if (projection_parts.empty()) return; auto projection_result_ptr = reader.estimateNumMarksToRead( projection_parts, candidate.required_columns, metadata_snapshot, candidate.desc->metadata, query_info, query_context, settings.max_threads, max_added_blocks); if (projection_result_ptr->error()) return; auto sum_marks = projection_result_ptr->marks(); if (normal_parts.empty()) { // All parts are projection parts which allows us to use in_order_optimization. // TODO It might be better to use a complete projection even with more marks to read. candidate.complete = true; } else { auto normal_result_ptr = reader.estimateNumMarksToRead( normal_parts, required_columns, metadata_snapshot, metadata_snapshot, query_info, query_context, settings.max_threads, max_added_blocks); if (normal_result_ptr->error()) return; if (normal_result_ptr->marks() == 0) candidate.complete = true; else { sum_marks += normal_result_ptr->marks(); candidate.merge_tree_normal_select_result_ptr = normal_result_ptr; } } candidate.merge_tree_projection_select_result_ptr = projection_result_ptr; // We choose the projection with least sum_marks to read. if (sum_marks < min_sum_marks) { selected_candidate = &candidate; min_sum_marks = sum_marks; } } Block MergeTreeData::getMinMaxCountProjectionBlock( const StorageMetadataPtr & metadata_snapshot, const Names & required_columns, const SelectQueryInfo & query_info, const DataPartsVector & parts, DataPartsVector & normal_parts, ContextPtr query_context) const { if (!metadata_snapshot->minmax_count_projection) throw Exception( "Cannot find the definition of minmax_count projection but it's used in current query. It's a bug", ErrorCodes::LOGICAL_ERROR); auto block = metadata_snapshot->minmax_count_projection->sample_block.cloneEmpty(); bool need_primary_key_max_column = false; const auto & primary_key_max_column_name = metadata_snapshot->minmax_count_projection->primary_key_max_column_name; if (!primary_key_max_column_name.empty()) { need_primary_key_max_column = std::any_of( required_columns.begin(), required_columns.end(), [&](const auto & name) { return primary_key_max_column_name == name; }); } auto partition_minmax_count_columns = block.mutateColumns(); auto insert = [](ColumnAggregateFunction & column, const Field & value) { auto func = column.getAggregateFunction(); Arena & arena = column.createOrGetArena(); size_t size_of_state = func->sizeOfData(); size_t align_of_state = func->alignOfData(); auto * place = arena.alignedAlloc(size_of_state, align_of_state); func->create(place); auto value_column = func->getReturnType()->createColumnConst(1, value)->convertToFullColumnIfConst(); const auto * value_column_ptr = value_column.get(); func->add(place, &value_column_ptr, 0, &arena); column.insertFrom(place); }; ASTPtr expression_ast; Block virtual_columns_block = getBlockWithVirtualPartColumns(parts, false /* one_part */, true /* ignore_empty */); if (virtual_columns_block.rows() == 0) return {}; // Generate valid expressions for filtering VirtualColumnUtils::prepareFilterBlockWithQuery(query_info.query, query_context, virtual_columns_block, expression_ast); if (expression_ast) VirtualColumnUtils::filterBlockWithQuery(query_info.query, virtual_columns_block, query_context, expression_ast); size_t rows = virtual_columns_block.rows(); const ColumnString & part_name_column = typeid_cast(*virtual_columns_block.getByName("_part").column); size_t part_idx = 0; for (size_t row = 0; row < rows; ++row) { while (parts[part_idx]->name != part_name_column.getDataAt(row)) ++part_idx; const auto & part = parts[part_idx]; if (!part->minmax_idx->initialized) throw Exception("Found a non-empty part with uninitialized minmax_idx. It's a bug", ErrorCodes::LOGICAL_ERROR); if (need_primary_key_max_column && !part->index_granularity.hasFinalMark()) { normal_parts.push_back(part); continue; } size_t pos = 0; for (size_t i : metadata_snapshot->minmax_count_projection->partition_value_indices) { if (i >= part->partition.value.size()) throw Exception("Partition value index is out of boundary. It's a bug", ErrorCodes::LOGICAL_ERROR); partition_minmax_count_columns[pos++]->insert(part->partition.value[i]); } size_t minmax_idx_size = part->minmax_idx->hyperrectangle.size(); for (size_t i = 0; i < minmax_idx_size; ++i) { auto & min_column = assert_cast(*partition_minmax_count_columns[pos++]); auto & max_column = assert_cast(*partition_minmax_count_columns[pos++]); const auto & range = part->minmax_idx->hyperrectangle[i]; insert(min_column, range.left); insert(max_column, range.right); } if (!primary_key_max_column_name.empty()) { const auto & primary_key_column = *part->index[0]; auto & min_column = assert_cast(*partition_minmax_count_columns[pos++]); auto & max_column = assert_cast(*partition_minmax_count_columns[pos++]); insert(min_column, primary_key_column[0]); insert(max_column, primary_key_column[primary_key_column.size() - 1]); } { auto & column = assert_cast(*partition_minmax_count_columns.back()); auto func = column.getAggregateFunction(); Arena & arena = column.createOrGetArena(); size_t size_of_state = func->sizeOfData(); size_t align_of_state = func->alignOfData(); auto * place = arena.alignedAlloc(size_of_state, align_of_state); func->create(place); const AggregateFunctionCount & agg_count = assert_cast(*func); agg_count.set(place, part->rows_count); column.insertFrom(place); } } block.setColumns(std::move(partition_minmax_count_columns)); Block res; for (const auto & name : required_columns) { if (virtual_columns_block.has(name)) res.insert(virtual_columns_block.getByName(name)); else if (block.has(name)) res.insert(block.getByName(name)); else throw Exception( ErrorCodes::LOGICAL_ERROR, "Cannot find column {} in minmax_count projection but query analysis still selects this projection. It's a bug", name); } return res; } std::optional MergeTreeData::getQueryProcessingStageWithAggregateProjection( ContextPtr query_context, const StorageMetadataPtr & metadata_snapshot, SelectQueryInfo & query_info) const { const auto & settings = query_context->getSettingsRef(); if (!settings.allow_experimental_projection_optimization || query_info.ignore_projections || query_info.is_projection_query) return std::nullopt; const auto & query_ptr = query_info.original_query; if (auto * select = query_ptr->as(); select) { // Currently projections don't support final yet. if (select->final()) return std::nullopt; // Currently projections don't support ARRAY JOIN yet. if (select->arrayJoinExpressionList().first) return std::nullopt; } // Currently projections don't support sampling yet. if (settings.parallel_replicas_count > 1) return std::nullopt; InterpreterSelectQuery select( query_ptr, query_context, SelectQueryOptions{QueryProcessingStage::WithMergeableState}.ignoreProjections().ignoreAlias(), query_info.sets /* prepared_sets */); const auto & analysis_result = select.getAnalysisResult(); query_info.sets = std::move(select.getQueryAnalyzer()->getPreparedSets()); bool can_use_aggregate_projection = true; /// If the first stage of the query pipeline is more complex than Aggregating - Expression - Filter - ReadFromStorage, /// we cannot use aggregate projection. if (analysis_result.join != nullptr || analysis_result.array_join != nullptr) can_use_aggregate_projection = false; /// Check if all needed columns can be provided by some aggregate projection. Here we also try /// to find expression matches. For example, suppose an aggregate projection contains a column /// named sum(x) and the given query also has an expression called sum(x), it's a match. This is /// why we need to ignore all aliases during projection creation and the above query planning. /// It's also worth noting that, sqrt(sum(x)) will also work because we can treat sum(x) as a /// required column. /// The ownership of ProjectionDescription is hold in metadata_snapshot which lives along with /// InterpreterSelect, thus we can store the raw pointer here. std::vector candidates; NameSet keys; std::unordered_map key_name_pos_map; size_t pos = 0; for (const auto & desc : select.getQueryAnalyzer()->aggregationKeys()) { keys.insert(desc.name); key_name_pos_map.insert({desc.name, pos++}); } auto actions_settings = ExpressionActionsSettings::fromSettings(settings); // All required columns should be provided by either current projection or previous actions // Let's traverse backward to finish the check. // TODO what if there is a column with name sum(x) and an aggregate sum(x)? auto rewrite_before_where = [&](ProjectionCandidate & candidate, const ProjectionDescription & projection, NameSet & required_columns, const Block & source_block, const Block & aggregates) { if (analysis_result.before_where) { candidate.where_column_name = analysis_result.where_column_name; candidate.remove_where_filter = analysis_result.remove_where_filter; candidate.before_where = analysis_result.before_where->clone(); auto new_required_columns = candidate.before_where->foldActionsByProjection( required_columns, projection.sample_block_for_keys, candidate.where_column_name); if (new_required_columns.empty() && !required_columns.empty()) return false; required_columns = std::move(new_required_columns); candidate.before_where->addAggregatesViaProjection(aggregates); } if (analysis_result.prewhere_info) { candidate.prewhere_info = analysis_result.prewhere_info; auto prewhere_actions = candidate.prewhere_info->prewhere_actions->clone(); auto prewhere_required_columns = required_columns; // required_columns should not contain columns generated by prewhere for (const auto & column : prewhere_actions->getResultColumns()) required_columns.erase(column.name); { // Prewhere_action should not add missing keys. auto new_prewhere_required_columns = prewhere_actions->foldActionsByProjection( prewhere_required_columns, projection.sample_block_for_keys, candidate.prewhere_info->prewhere_column_name, false); if (new_prewhere_required_columns.empty() && !prewhere_required_columns.empty()) return false; prewhere_required_columns = std::move(new_prewhere_required_columns); candidate.prewhere_info->prewhere_actions = prewhere_actions; } if (candidate.prewhere_info->row_level_filter) { auto row_level_filter_actions = candidate.prewhere_info->row_level_filter->clone(); auto new_prewhere_required_columns = row_level_filter_actions->foldActionsByProjection( prewhere_required_columns, projection.sample_block_for_keys, candidate.prewhere_info->row_level_column_name, false); if (new_prewhere_required_columns.empty() && !prewhere_required_columns.empty()) return false; prewhere_required_columns = std::move(new_prewhere_required_columns); candidate.prewhere_info->row_level_filter = row_level_filter_actions; } if (candidate.prewhere_info->alias_actions) { auto alias_actions = candidate.prewhere_info->alias_actions->clone(); auto new_prewhere_required_columns = alias_actions->foldActionsByProjection(prewhere_required_columns, projection.sample_block_for_keys, {}, false); if (new_prewhere_required_columns.empty() && !prewhere_required_columns.empty()) return false; prewhere_required_columns = std::move(new_prewhere_required_columns); candidate.prewhere_info->alias_actions = alias_actions; } required_columns.insert(prewhere_required_columns.begin(), prewhere_required_columns.end()); } bool match = true; for (const auto & column : required_columns) { /// There are still missing columns, fail to match if (!source_block.has(column)) { match = false; break; } } return match; }; auto virtual_block = getSampleBlockWithVirtualColumns(); auto add_projection_candidate = [&](const ProjectionDescription & projection) { ProjectionCandidate candidate{}; candidate.desc = &projection; auto sample_block = projection.sample_block; auto sample_block_for_keys = projection.sample_block_for_keys; for (const auto & column : virtual_block) { sample_block.insertUnique(column); sample_block_for_keys.insertUnique(column); } if (projection.type == ProjectionDescription::Type::Aggregate && analysis_result.need_aggregate && can_use_aggregate_projection) { bool match = true; Block aggregates; // Let's first check if all aggregates are provided by current projection for (const auto & aggregate : select.getQueryAnalyzer()->aggregates()) { const auto * column = sample_block.findByName(aggregate.column_name); if (column) { aggregates.insert(*column); } else { match = false; break; } } if (!match) return; // Check if all aggregation keys can be either provided by some action, or by current // projection directly. Reshape the `before_aggregation` action DAG so that it only // needs to provide aggregation keys, and the DAG of certain child might be substituted // by some keys in projection. candidate.before_aggregation = analysis_result.before_aggregation->clone(); auto required_columns = candidate.before_aggregation->foldActionsByProjection(keys, sample_block_for_keys); // TODO Let's find out the exact required_columns for keys. if (required_columns.empty() && (!keys.empty() && !candidate.before_aggregation->getRequiredColumns().empty())) return; if (analysis_result.optimize_aggregation_in_order) { for (const auto & key : keys) { auto actions_dag = analysis_result.before_aggregation->clone(); actions_dag->foldActionsByProjection({key}, sample_block_for_keys); candidate.group_by_elements_actions.emplace_back(std::make_shared(actions_dag, actions_settings)); } } // Reorder aggregation keys and attach aggregates candidate.before_aggregation->reorderAggregationKeysForProjection(key_name_pos_map); candidate.before_aggregation->addAggregatesViaProjection(aggregates); if (rewrite_before_where(candidate, projection, required_columns, sample_block_for_keys, aggregates)) { candidate.required_columns = {required_columns.begin(), required_columns.end()}; for (const auto & aggregate : aggregates) candidate.required_columns.push_back(aggregate.name); candidates.push_back(std::move(candidate)); } } if (projection.type == ProjectionDescription::Type::Normal && (analysis_result.hasWhere() || analysis_result.hasPrewhere())) { const auto & actions = analysis_result.before_aggregation ? analysis_result.before_aggregation : analysis_result.before_order_by; NameSet required_columns; for (const auto & column : actions->getRequiredColumns()) required_columns.insert(column.name); if (rewrite_before_where(candidate, projection, required_columns, sample_block, {})) { candidate.required_columns = {required_columns.begin(), required_columns.end()}; candidates.push_back(std::move(candidate)); } } }; ProjectionCandidate * selected_candidate = nullptr; size_t min_sum_marks = std::numeric_limits::max(); if (metadata_snapshot->minmax_count_projection) add_projection_candidate(*metadata_snapshot->minmax_count_projection); std::optional minmax_conut_projection_candidate; if (!candidates.empty()) { minmax_conut_projection_candidate.emplace(std::move(candidates.front())); candidates.clear(); } MergeTreeDataSelectExecutor reader(*this); std::shared_ptr max_added_blocks; if (settings.select_sequential_consistency) { if (const StorageReplicatedMergeTree * replicated = dynamic_cast(this)) max_added_blocks = std::make_shared(replicated->getMaxAddedBlocks()); } auto parts = getVisibleDataPartsVector(query_context); // If minmax_count_projection is a valid candidate, check its completeness. if (minmax_conut_projection_candidate) { DataPartsVector normal_parts; query_info.minmax_count_projection_block = getMinMaxCountProjectionBlock( metadata_snapshot, minmax_conut_projection_candidate->required_columns, query_info, parts, normal_parts, query_context); if (minmax_conut_projection_candidate->prewhere_info) { const auto & prewhere_info = minmax_conut_projection_candidate->prewhere_info; if (prewhere_info->alias_actions) ExpressionActions(prewhere_info->alias_actions, actions_settings).execute(query_info.minmax_count_projection_block); if (prewhere_info->row_level_filter) { ExpressionActions(prewhere_info->row_level_filter, actions_settings).execute(query_info.minmax_count_projection_block); query_info.minmax_count_projection_block.erase(prewhere_info->row_level_column_name); } if (prewhere_info->prewhere_actions) ExpressionActions(prewhere_info->prewhere_actions, actions_settings).execute(query_info.minmax_count_projection_block); if (prewhere_info->remove_prewhere_column) query_info.minmax_count_projection_block.erase(prewhere_info->prewhere_column_name); } if (normal_parts.empty()) { selected_candidate = &*minmax_conut_projection_candidate; selected_candidate->complete = true; min_sum_marks = query_info.minmax_count_projection_block.rows(); } else { if (normal_parts.size() == parts.size()) { // minmax_count_projection is useless. } else { auto normal_result_ptr = reader.estimateNumMarksToRead( normal_parts, analysis_result.required_columns, metadata_snapshot, metadata_snapshot, query_info, query_context, settings.max_threads, max_added_blocks); if (!normal_result_ptr->error()) { selected_candidate = &*minmax_conut_projection_candidate; selected_candidate->merge_tree_normal_select_result_ptr = normal_result_ptr; min_sum_marks = query_info.minmax_count_projection_block.rows() + normal_result_ptr->marks(); } } // We cannot find a complete match of minmax_count_projection, add more projections to check. for (const auto & projection : metadata_snapshot->projections) add_projection_candidate(projection); } } else { for (const auto & projection : metadata_snapshot->projections) add_projection_candidate(projection); } // Let's select the best projection to execute the query. if (!candidates.empty()) { query_info.merge_tree_select_result_ptr = reader.estimateNumMarksToRead( parts, analysis_result.required_columns, metadata_snapshot, metadata_snapshot, query_info, query_context, settings.max_threads, max_added_blocks); if (!query_info.merge_tree_select_result_ptr->error()) { // Add 1 to base sum_marks so that we prefer projections even when they have equal number of marks to read. // NOTE: It is not clear if we need it. E.g. projections do not support skip index for now. auto sum_marks = query_info.merge_tree_select_result_ptr->marks() + 1; if (sum_marks < min_sum_marks) { selected_candidate = nullptr; min_sum_marks = sum_marks; } } /// Favor aggregate projections for (auto & candidate : candidates) { if (candidate.desc->type == ProjectionDescription::Type::Aggregate) { selectBestProjection( reader, metadata_snapshot, query_info, analysis_result.required_columns, candidate, query_context, max_added_blocks, settings, parts, selected_candidate, min_sum_marks); } } /// Select the best normal projection. for (auto & candidate : candidates) { if (candidate.desc->type == ProjectionDescription::Type::Normal) { selectBestProjection( reader, metadata_snapshot, query_info, analysis_result.required_columns, candidate, query_context, max_added_blocks, settings, parts, selected_candidate, min_sum_marks); } } } if (!selected_candidate) return std::nullopt; else if (min_sum_marks == 0) { /// If selected_projection indicated an empty result set. Remember it in query_info but /// don't use projection to run the query, because projection pipeline with empty result /// set will not work correctly with empty_result_for_aggregation_by_empty_set. query_info.merge_tree_empty_result = true; return std::nullopt; } if (selected_candidate->desc->type == ProjectionDescription::Type::Aggregate) { selected_candidate->aggregation_keys = select.getQueryAnalyzer()->aggregationKeys(); selected_candidate->aggregate_descriptions = select.getQueryAnalyzer()->aggregates(); selected_candidate->subqueries_for_sets = std::make_shared(std::move(select.getQueryAnalyzer()->getSubqueriesForSets())); } return *selected_candidate; } QueryProcessingStage::Enum MergeTreeData::getQueryProcessingStage( ContextPtr query_context, QueryProcessingStage::Enum to_stage, const StorageMetadataPtr & metadata_snapshot, SelectQueryInfo & query_info) const { if (to_stage >= QueryProcessingStage::Enum::WithMergeableState) { if (auto projection = getQueryProcessingStageWithAggregateProjection(query_context, metadata_snapshot, query_info)) { query_info.projection = std::move(projection); if (query_info.projection->desc->type == ProjectionDescription::Type::Aggregate) return QueryProcessingStage::Enum::WithMergeableState; } else query_info.projection = std::nullopt; } return QueryProcessingStage::Enum::FetchColumns; } MergeTreeData & MergeTreeData::checkStructureAndGetMergeTreeData(IStorage & source_table, const StorageMetadataPtr & src_snapshot, const StorageMetadataPtr & my_snapshot) const { MergeTreeData * src_data = dynamic_cast(&source_table); if (!src_data) throw Exception("Table " + source_table.getStorageID().getNameForLogs() + " supports attachPartitionFrom only for MergeTree family of table engines." " Got " + source_table.getName(), ErrorCodes::NOT_IMPLEMENTED); if (my_snapshot->getColumns().getAllPhysical().sizeOfDifference(src_snapshot->getColumns().getAllPhysical())) throw Exception("Tables have different structure", ErrorCodes::INCOMPATIBLE_COLUMNS); auto query_to_string = [] (const ASTPtr & ast) { return ast ? queryToString(ast) : ""; }; if (query_to_string(my_snapshot->getSortingKeyAST()) != query_to_string(src_snapshot->getSortingKeyAST())) throw Exception("Tables have different ordering", ErrorCodes::BAD_ARGUMENTS); if (query_to_string(my_snapshot->getPartitionKeyAST()) != query_to_string(src_snapshot->getPartitionKeyAST())) throw Exception("Tables have different partition key", ErrorCodes::BAD_ARGUMENTS); if (format_version != src_data->format_version) throw Exception("Tables have different format_version", ErrorCodes::BAD_ARGUMENTS); return *src_data; } MergeTreeData & MergeTreeData::checkStructureAndGetMergeTreeData( const StoragePtr & source_table, const StorageMetadataPtr & src_snapshot, const StorageMetadataPtr & my_snapshot) const { return checkStructureAndGetMergeTreeData(*source_table, src_snapshot, my_snapshot); } MergeTreeData::MutableDataPartPtr MergeTreeData::cloneAndLoadDataPartOnSameDisk( const MergeTreeData::DataPartPtr & src_part, const String & tmp_part_prefix, const MergeTreePartInfo & dst_part_info, const StorageMetadataPtr & metadata_snapshot) { /// Check that the storage policy contains the disk where the src_part is located. bool does_storage_policy_allow_same_disk = false; for (const DiskPtr & disk : getStoragePolicy()->getDisks()) { if (disk->getName() == src_part->volume->getDisk()->getName()) { does_storage_policy_allow_same_disk = true; break; } } if (!does_storage_policy_allow_same_disk) throw Exception( "Could not clone and load part " + quoteString(src_part->getFullPath()) + " because disk does not belong to storage policy", ErrorCodes::BAD_ARGUMENTS); String dst_part_name = src_part->getNewName(dst_part_info); String tmp_dst_part_name = tmp_part_prefix + dst_part_name; auto reservation = reserveSpace(src_part->getBytesOnDisk(), src_part->volume->getDisk()); auto disk = reservation->getDisk(); String src_part_path = src_part->getFullRelativePath(); String dst_part_path = relative_data_path + tmp_dst_part_name; if (disk->exists(dst_part_path)) throw Exception("Part in " + fullPath(disk, dst_part_path) + " already exists", ErrorCodes::DIRECTORY_ALREADY_EXISTS); /// If source part is in memory, flush it to disk and clone it already in on-disk format if (auto src_part_in_memory = asInMemoryPart(src_part)) { const auto & src_relative_data_path = src_part_in_memory->storage.relative_data_path; auto flushed_part_path = src_part_in_memory->getRelativePathForPrefix(tmp_part_prefix); src_part_in_memory->flushToDisk(src_relative_data_path, flushed_part_path, metadata_snapshot); src_part_path = fs::path(src_relative_data_path) / flushed_part_path / ""; } LOG_DEBUG(log, "Cloning part {} to {}", fullPath(disk, src_part_path), fullPath(disk, dst_part_path)); localBackup(disk, src_part_path, dst_part_path); disk->removeFileIfExists(fs::path(dst_part_path) / IMergeTreeDataPart::DELETE_ON_DESTROY_MARKER_FILE_NAME); auto single_disk_volume = std::make_shared(disk->getName(), disk, 0); auto dst_data_part = createPart(dst_part_name, dst_part_info, single_disk_volume, tmp_dst_part_name); dst_data_part->is_temp = true; dst_data_part->loadColumnsChecksumsIndexes(require_part_metadata, true); dst_data_part->modification_time = disk->getLastModified(dst_part_path).epochTime(); return dst_data_part; } String MergeTreeData::getFullPathOnDisk(const DiskPtr & disk) const { return disk->getPath() + relative_data_path; } DiskPtr MergeTreeData::tryGetDiskForDetachedPart(const String & part_name) const { String additional_path = "detached/"; const auto disks = getStoragePolicy()->getDisks(); for (const DiskPtr & disk : disks) if (disk->exists(relative_data_path + additional_path + part_name)) return disk; return nullptr; } DiskPtr MergeTreeData::getDiskForDetachedPart(const String & part_name) const { if (auto disk = tryGetDiskForDetachedPart(part_name)) return disk; throw DB::Exception(ErrorCodes::BAD_DATA_PART_NAME, "Detached part \"{}\" not found", part_name); } Strings MergeTreeData::getDataPaths() const { Strings res; auto disks = getStoragePolicy()->getDisks(); for (const auto & disk : disks) res.push_back(getFullPathOnDisk(disk)); return res; } MergeTreeData::MatcherFn MergeTreeData::getPartitionMatcher(const ASTPtr & partition_ast, ContextPtr local_context) const { bool prefixed = false; String id; if (format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING) { /// Month-partitioning specific - partition value can represent a prefix of the partition to freeze. if (const auto * partition_lit = partition_ast->as().value->as()) { id = partition_lit->value.getType() == Field::Types::UInt64 ? toString(partition_lit->value.get()) : partition_lit->value.safeGet(); prefixed = true; } else id = getPartitionIDFromQuery(partition_ast, local_context); } else id = getPartitionIDFromQuery(partition_ast, local_context); return [prefixed, id](const String & partition_id) { if (prefixed) return startsWith(partition_id, id); else return id == partition_id; }; } PartitionCommandsResultInfo MergeTreeData::freezePartition( const ASTPtr & partition_ast, const StorageMetadataPtr & metadata_snapshot, const String & with_name, ContextPtr local_context, TableLockHolder &) { return freezePartitionsByMatcher(getPartitionMatcher(partition_ast, local_context), metadata_snapshot, with_name, local_context); } PartitionCommandsResultInfo MergeTreeData::freezeAll( const String & with_name, const StorageMetadataPtr & metadata_snapshot, ContextPtr local_context, TableLockHolder &) { return freezePartitionsByMatcher([] (const String &) { return true; }, metadata_snapshot, with_name, local_context); } PartitionCommandsResultInfo MergeTreeData::freezePartitionsByMatcher( MatcherFn matcher, const StorageMetadataPtr & metadata_snapshot, const String & with_name, ContextPtr local_context) { String clickhouse_path = fs::canonical(local_context->getPath()); String default_shadow_path = fs::path(clickhouse_path) / "shadow/"; fs::create_directories(default_shadow_path); auto increment = Increment(fs::path(default_shadow_path) / "increment.txt").get(true); const String shadow_path = "shadow/"; /// Acquire a snapshot of active data parts to prevent removing while doing backup. const auto data_parts = getVisibleDataPartsVector(local_context); String backup_name = (!with_name.empty() ? escapeForFileName(with_name) : toString(increment)); String backup_path = fs::path(shadow_path) / backup_name / ""; for (const auto & disk : getStoragePolicy()->getDisks()) disk->onFreeze(backup_path); PartitionCommandsResultInfo result; size_t parts_processed = 0; for (const auto & part : data_parts) { if (!matcher(part->info.partition_id)) continue; LOG_DEBUG(log, "Freezing part {} snapshot will be placed at {}", part->name, backup_path); part->volume->getDisk()->createDirectories(backup_path); String src_part_path = part->getFullRelativePath(); String backup_part_path = fs::path(backup_path) / relative_data_path / part->relative_path; if (auto part_in_memory = asInMemoryPart(part)) { auto flushed_part_path = part_in_memory->getRelativePathForPrefix("tmp_freeze"); part_in_memory->flushToDisk(relative_data_path, flushed_part_path, metadata_snapshot); src_part_path = fs::path(relative_data_path) / flushed_part_path / ""; } localBackup(part->volume->getDisk(), src_part_path, backup_part_path); part->volume->getDisk()->removeFileIfExists(fs::path(backup_part_path) / IMergeTreeDataPart::DELETE_ON_DESTROY_MARKER_FILE_NAME); part->is_frozen.store(true, std::memory_order_relaxed); result.push_back(PartitionCommandResultInfo{ .partition_id = part->info.partition_id, .part_name = part->name, .backup_path = fs::path(part->volume->getDisk()->getPath()) / backup_path, .part_backup_path = fs::path(part->volume->getDisk()->getPath()) / backup_part_path, .backup_name = backup_name, }); ++parts_processed; } LOG_DEBUG(log, "Freezed {} parts", parts_processed); return result; } PartitionCommandsResultInfo MergeTreeData::unfreezePartition( const ASTPtr & partition, const String & backup_name, ContextPtr local_context, TableLockHolder &) { return unfreezePartitionsByMatcher(getPartitionMatcher(partition, local_context), backup_name, local_context); } PartitionCommandsResultInfo MergeTreeData::unfreezeAll( const String & backup_name, ContextPtr local_context, TableLockHolder &) { return unfreezePartitionsByMatcher([] (const String &) { return true; }, backup_name, local_context); } PartitionCommandsResultInfo MergeTreeData::unfreezePartitionsByMatcher(MatcherFn matcher, const String & backup_name, ContextPtr) { auto backup_path = fs::path("shadow") / escapeForFileName(backup_name) / relative_data_path; LOG_DEBUG(log, "Unfreezing parts by path {}", backup_path.generic_string()); PartitionCommandsResultInfo result; for (const auto & disk : getStoragePolicy()->getDisks()) { if (!disk->exists(backup_path)) continue; for (auto it = disk->iterateDirectory(backup_path); it->isValid(); it->next()) { const auto & partition_directory = it->name(); /// Partition ID is prefix of part directory name: _ auto found = partition_directory.find('_'); if (found == std::string::npos) continue; auto partition_id = partition_directory.substr(0, found); if (!matcher(partition_id)) continue; const auto & path = it->path(); disk->removeRecursive(path); result.push_back(PartitionCommandResultInfo{ .partition_id = partition_id, .part_name = partition_directory, .backup_path = disk->getPath() + backup_path.generic_string(), .part_backup_path = disk->getPath() + path, .backup_name = backup_name, }); LOG_DEBUG(log, "Unfreezed part by path {}", disk->getPath() + path); } } LOG_DEBUG(log, "Unfreezed {} parts", result.size()); return result; } bool MergeTreeData::canReplacePartition(const DataPartPtr & src_part) const { const auto settings = getSettings(); if (!settings->enable_mixed_granularity_parts || settings->index_granularity_bytes == 0) { if (!canUseAdaptiveGranularity() && src_part->index_granularity_info.is_adaptive) return false; if (canUseAdaptiveGranularity() && !src_part->index_granularity_info.is_adaptive) return false; } return true; } void MergeTreeData::writePartLog( PartLogElement::Type type, const ExecutionStatus & execution_status, UInt64 elapsed_ns, const String & new_part_name, const DataPartPtr & result_part, const DataPartsVector & source_parts, const MergeListEntry * merge_entry) try { auto table_id = getStorageID(); auto part_log = getContext()->getPartLog(table_id.database_name); if (!part_log) return; PartLogElement part_log_elem; part_log_elem.event_type = type; part_log_elem.error = static_cast(execution_status.code); part_log_elem.exception = execution_status.message; // construct event_time and event_time_microseconds using the same time point // so that the two times will always be equal up to a precision of a second. const auto time_now = std::chrono::system_clock::now(); part_log_elem.event_time = time_in_seconds(time_now); part_log_elem.event_time_microseconds = time_in_microseconds(time_now); /// TODO: Stop stopwatch in outer code to exclude ZK timings and so on part_log_elem.duration_ms = elapsed_ns / 1000000; part_log_elem.database_name = table_id.database_name; part_log_elem.table_name = table_id.table_name; part_log_elem.partition_id = MergeTreePartInfo::fromPartName(new_part_name, format_version).partition_id; part_log_elem.part_name = new_part_name; if (result_part) { part_log_elem.path_on_disk = result_part->getFullPath(); part_log_elem.bytes_compressed_on_disk = result_part->getBytesOnDisk(); part_log_elem.rows = result_part->rows_count; } part_log_elem.source_part_names.reserve(source_parts.size()); for (const auto & source_part : source_parts) part_log_elem.source_part_names.push_back(source_part->name); if (merge_entry) { part_log_elem.rows_read = (*merge_entry)->rows_read; part_log_elem.bytes_read_uncompressed = (*merge_entry)->bytes_read_uncompressed; part_log_elem.rows = (*merge_entry)->rows_written; part_log_elem.bytes_uncompressed = (*merge_entry)->bytes_written_uncompressed; part_log_elem.peak_memory_usage = (*merge_entry)->memory_tracker.getPeak(); } part_log->add(part_log_elem); } catch (...) { tryLogCurrentException(log, __PRETTY_FUNCTION__); } StorageMergeTree::PinnedPartUUIDsPtr MergeTreeData::getPinnedPartUUIDs() const { std::lock_guard lock(pinned_part_uuids_mutex); return pinned_part_uuids; } MergeTreeData::CurrentlyMovingPartsTagger::CurrentlyMovingPartsTagger(MergeTreeMovingParts && moving_parts_, MergeTreeData & data_) : parts_to_move(std::move(moving_parts_)), data(data_) { for (const auto & moving_part : parts_to_move) if (!data.currently_moving_parts.emplace(moving_part.part).second) throw Exception("Cannot move part '" + moving_part.part->name + "'. It's already moving.", ErrorCodes::LOGICAL_ERROR); } MergeTreeData::CurrentlyMovingPartsTagger::~CurrentlyMovingPartsTagger() { std::lock_guard lock(data.moving_parts_mutex); for (const auto & moving_part : parts_to_move) { /// Something went completely wrong if (!data.currently_moving_parts.count(moving_part.part)) std::terminate(); data.currently_moving_parts.erase(moving_part.part); } } bool MergeTreeData::scheduleDataMovingJob(BackgroundJobsAssignee & assignee) { if (parts_mover.moves_blocker.isCancelled()) return false; auto moving_tagger = selectPartsForMove(); if (moving_tagger->parts_to_move.empty()) return false; assignee.scheduleMoveTask(ExecutableLambdaAdapter::create( [this, moving_tagger] () mutable { return moveParts(moving_tagger); }, moves_assignee_trigger, getStorageID())); return true; } bool MergeTreeData::areBackgroundMovesNeeded() const { auto policy = getStoragePolicy(); if (policy->getVolumes().size() > 1) return true; return policy->getVolumes().size() == 1 && policy->getVolumes()[0]->getDisks().size() > 1; } bool MergeTreeData::movePartsToSpace(const DataPartsVector & parts, SpacePtr space) { if (parts_mover.moves_blocker.isCancelled()) return false; auto moving_tagger = checkPartsForMove(parts, space); if (moving_tagger->parts_to_move.empty()) return false; return moveParts(moving_tagger); } MergeTreeData::CurrentlyMovingPartsTaggerPtr MergeTreeData::selectPartsForMove() { MergeTreeMovingParts parts_to_move; auto can_move = [this](const DataPartPtr & part, String * reason) -> bool { if (partIsAssignedToBackgroundOperation(part)) { *reason = "part already assigned to background operation."; return false; } if (currently_moving_parts.count(part)) { *reason = "part is already moving."; return false; } return true; }; std::lock_guard moving_lock(moving_parts_mutex); parts_mover.selectPartsForMove(parts_to_move, can_move, moving_lock); return std::make_shared(std::move(parts_to_move), *this); } MergeTreeData::CurrentlyMovingPartsTaggerPtr MergeTreeData::checkPartsForMove(const DataPartsVector & parts, SpacePtr space) { std::lock_guard moving_lock(moving_parts_mutex); MergeTreeMovingParts parts_to_move; for (const auto & part : parts) { auto reservation = space->reserve(part->getBytesOnDisk()); if (!reservation) throw Exception("Move is not possible. Not enough space on '" + space->getName() + "'", ErrorCodes::NOT_ENOUGH_SPACE); auto reserved_disk = reservation->getDisk(); if (reserved_disk->exists(relative_data_path + part->name)) throw Exception( "Move is not possible: " + fullPath(reserved_disk, relative_data_path + part->name) + " already exists", ErrorCodes::DIRECTORY_ALREADY_EXISTS); if (currently_moving_parts.count(part) || partIsAssignedToBackgroundOperation(part)) throw Exception( "Cannot move part '" + part->name + "' because it's participating in background process", ErrorCodes::PART_IS_TEMPORARILY_LOCKED); parts_to_move.emplace_back(part, std::move(reservation)); } return std::make_shared(std::move(parts_to_move), *this); } bool MergeTreeData::moveParts(const CurrentlyMovingPartsTaggerPtr & moving_tagger) { LOG_INFO(log, "Got {} parts to move.", moving_tagger->parts_to_move.size()); for (const auto & moving_part : moving_tagger->parts_to_move) { Stopwatch stopwatch; DataPartPtr cloned_part; auto write_part_log = [&](const ExecutionStatus & execution_status) { writePartLog( PartLogElement::Type::MOVE_PART, execution_status, stopwatch.elapsed(), moving_part.part->name, cloned_part, {moving_part.part}, nullptr); }; try { cloned_part = parts_mover.clonePart(moving_part); parts_mover.swapClonedPart(cloned_part); write_part_log({}); } catch (...) { write_part_log(ExecutionStatus::fromCurrentException()); if (cloned_part) cloned_part->remove(); throw; } } return true; } bool MergeTreeData::partsContainSameProjections(const DataPartPtr & left, const DataPartPtr & right) { if (left->getProjectionParts().size() != right->getProjectionParts().size()) return false; for (const auto & [name, _] : left->getProjectionParts()) { if (!right->hasProjection(name)) return false; } return true; } bool MergeTreeData::canUsePolymorphicParts(const MergeTreeSettings & settings, String * out_reason) const { if (!canUseAdaptiveGranularity()) { if (out_reason && (settings.min_rows_for_wide_part != 0 || settings.min_bytes_for_wide_part != 0 || settings.min_rows_for_compact_part != 0 || settings.min_bytes_for_compact_part != 0)) { *out_reason = fmt::format( "Table can't create parts with adaptive granularity, but settings" " min_rows_for_wide_part = {}" ", min_bytes_for_wide_part = {}" ", min_rows_for_compact_part = {}" ", min_bytes_for_compact_part = {}" ". Parts with non-adaptive granularity can be stored only in Wide (default) format.", settings.min_rows_for_wide_part, settings.min_bytes_for_wide_part, settings.min_rows_for_compact_part, settings.min_bytes_for_compact_part); } return false; } return true; } MergeTreeData::AlterConversions MergeTreeData::getAlterConversionsForPart(const MergeTreeDataPartPtr part) const { MutationCommands commands = getFirstAlterMutationCommandsForPart(part); AlterConversions result{}; for (const auto & command : commands) /// Currently we need explicit conversions only for RENAME alter /// all other conversions can be deduced from diff between part columns /// and columns in storage. if (command.type == MutationCommand::Type::RENAME_COLUMN) result.rename_map[command.rename_to] = command.column_name; return result; } MergeTreeData::WriteAheadLogPtr MergeTreeData::getWriteAheadLog() { std::lock_guard lock(write_ahead_log_mutex); if (!write_ahead_log) { auto reservation = reserveSpace(getSettings()->write_ahead_log_max_bytes); write_ahead_log = std::make_shared(*this, reservation->getDisk()); } return write_ahead_log; } NamesAndTypesList MergeTreeData::getVirtuals() const { return NamesAndTypesList{ NameAndTypePair("_part", std::make_shared()), NameAndTypePair("_part_index", std::make_shared()), NameAndTypePair("_part_uuid", std::make_shared()), NameAndTypePair("_partition_id", std::make_shared()), NameAndTypePair("_partition_value", getPartitionValueType()), NameAndTypePair("_sample_factor", std::make_shared()), }; } size_t MergeTreeData::getTotalMergesWithTTLInMergeList() const { return getContext()->getMergeList().getMergesWithTTLCount(); } void MergeTreeData::addPartContributionToDataVolume(const DataPartPtr & part) { increaseDataVolume(part->getBytesOnDisk(), part->rows_count, 1); } void MergeTreeData::removePartContributionToDataVolume(const DataPartPtr & part) { decreaseDataVolume(part->getBytesOnDisk(), part->rows_count, 1); } void MergeTreeData::increaseDataVolume(size_t bytes, size_t rows, size_t parts) { total_active_size_bytes.fetch_add(bytes, std::memory_order_acq_rel); total_active_size_rows.fetch_add(rows, std::memory_order_acq_rel); total_active_size_parts.fetch_add(parts, std::memory_order_acq_rel); } void MergeTreeData::decreaseDataVolume(size_t bytes, size_t rows, size_t parts) { total_active_size_bytes.fetch_sub(bytes, std::memory_order_acq_rel); total_active_size_rows.fetch_sub(rows, std::memory_order_acq_rel); total_active_size_parts.fetch_sub(parts, std::memory_order_acq_rel); } void MergeTreeData::setDataVolume(size_t bytes, size_t rows, size_t parts) { total_active_size_bytes.store(bytes, std::memory_order_release); total_active_size_rows.store(rows, std::memory_order_release); total_active_size_parts.store(parts, std::memory_order_release); } bool MergeTreeData::insertQueryIdOrThrow(const String & query_id, size_t max_queries) const { std::lock_guard lock(query_id_set_mutex); return insertQueryIdOrThrowNoLock(query_id, max_queries, lock); } bool MergeTreeData::insertQueryIdOrThrowNoLock(const String & query_id, size_t max_queries, const std::lock_guard &) const { if (query_id_set.find(query_id) != query_id_set.end()) return false; if (query_id_set.size() >= max_queries) throw Exception( ErrorCodes::TOO_MANY_SIMULTANEOUS_QUERIES, "Too many simultaneous queries for table {}. Maximum is: {}", log_name, max_queries); query_id_set.insert(query_id); return true; } void MergeTreeData::removeQueryId(const String & query_id) const { std::lock_guard lock(query_id_set_mutex); removeQueryIdNoLock(query_id, lock); } void MergeTreeData::removeQueryIdNoLock(const String & query_id, const std::lock_guard &) const { if (query_id_set.find(query_id) == query_id_set.end()) LOG_WARNING(log, "We have query_id removed but it's not recorded. This is a bug"); else query_id_set.erase(query_id); } ReservationPtr MergeTreeData::balancedReservation( const StorageMetadataPtr & metadata_snapshot, size_t part_size, size_t max_volume_index, const String & part_name, const MergeTreePartInfo & part_info, MergeTreeData::DataPartsVector covered_parts, std::optional * tagger_ptr, const IMergeTreeDataPart::TTLInfos * ttl_infos, bool is_insert) { ReservationPtr reserved_space; auto min_bytes_to_rebalance_partition_over_jbod = getSettings()->min_bytes_to_rebalance_partition_over_jbod; if (tagger_ptr && min_bytes_to_rebalance_partition_over_jbod > 0 && part_size >= min_bytes_to_rebalance_partition_over_jbod) try { const auto & disks = getStoragePolicy()->getVolume(max_volume_index)->getDisks(); std::map disk_occupation; std::map> disk_parts_for_logging; for (const auto & disk : disks) disk_occupation.emplace(disk->getName(), 0); std::set committed_big_parts_from_partition; std::set submerging_big_parts_from_partition; std::lock_guard lock(currently_submerging_emerging_mutex); for (const auto & part : currently_submerging_big_parts) { if (part_info.partition_id == part->info.partition_id) submerging_big_parts_from_partition.insert(part->name); } { auto lock_parts = lockParts(); if (covered_parts.empty()) { // It's a part fetch. Calculate `covered_parts` here. MergeTreeData::DataPartPtr covering_part; covered_parts = getActivePartsToReplace(part_info, part_name, covering_part, lock_parts); } // Remove irrelevant parts. covered_parts.erase( std::remove_if( covered_parts.begin(), covered_parts.end(), [min_bytes_to_rebalance_partition_over_jbod](const auto & part) { return !(part->isStoredOnDisk() && part->getBytesOnDisk() >= min_bytes_to_rebalance_partition_over_jbod); }), covered_parts.end()); // Include current submerging big parts which are not yet in `currently_submerging_big_parts` for (const auto & part : covered_parts) submerging_big_parts_from_partition.insert(part->name); for (const auto & part : getDataPartsStateRange(MergeTreeData::DataPartState::Committed)) { if (part->isStoredOnDisk() && part->getBytesOnDisk() >= min_bytes_to_rebalance_partition_over_jbod && part_info.partition_id == part->info.partition_id) { auto name = part->volume->getDisk()->getName(); auto it = disk_occupation.find(name); if (it != disk_occupation.end()) { if (submerging_big_parts_from_partition.find(part->name) == submerging_big_parts_from_partition.end()) { it->second += part->getBytesOnDisk(); disk_parts_for_logging[name].push_back(formatReadableSizeWithBinarySuffix(part->getBytesOnDisk())); committed_big_parts_from_partition.insert(part->name); } else { disk_parts_for_logging[name].push_back(formatReadableSizeWithBinarySuffix(part->getBytesOnDisk()) + " (submerging)"); } } else { // Part is on different volume. Ignore it. } } } } for (const auto & [name, emerging_part] : currently_emerging_big_parts) { // It's possible that the emerging big parts are committed and get added twice. Thus a set is used to deduplicate. if (committed_big_parts_from_partition.find(name) == committed_big_parts_from_partition.end() && part_info.partition_id == emerging_part.partition_id) { auto it = disk_occupation.find(emerging_part.disk_name); if (it != disk_occupation.end()) { it->second += emerging_part.estimate_bytes; disk_parts_for_logging[emerging_part.disk_name].push_back( formatReadableSizeWithBinarySuffix(emerging_part.estimate_bytes) + " (emerging)"); } else { // Part is on different volume. Ignore it. } } } size_t min_occupation_size = std::numeric_limits::max(); std::vector candidates; for (const auto & [disk_name, size] : disk_occupation) { if (size < min_occupation_size) { min_occupation_size = size; candidates = {disk_name}; } else if (size == min_occupation_size) { candidates.push_back(disk_name); } } if (!candidates.empty()) { // Random pick one disk from best candidates std::shuffle(candidates.begin(), candidates.end(), thread_local_rng); String selected_disk_name = candidates.front(); WriteBufferFromOwnString log_str; writeCString("\nbalancer: \n", log_str); for (const auto & [disk_name, per_disk_parts] : disk_parts_for_logging) writeString(fmt::format(" {}: [{}]\n", disk_name, fmt::join(per_disk_parts, ", ")), log_str); LOG_DEBUG(log, log_str.str()); if (ttl_infos) reserved_space = tryReserveSpacePreferringTTLRules( metadata_snapshot, part_size, *ttl_infos, time(nullptr), max_volume_index, is_insert, getStoragePolicy()->getDiskByName(selected_disk_name)); else reserved_space = tryReserveSpace(part_size, getStoragePolicy()->getDiskByName(selected_disk_name)); if (reserved_space) { currently_emerging_big_parts.emplace( part_name, EmergingPartInfo{reserved_space->getDisk(0)->getName(), part_info.partition_id, part_size}); for (const auto & part : covered_parts) { if (currently_submerging_big_parts.count(part)) LOG_WARNING(log, "currently_submerging_big_parts contains duplicates. JBOD might lose balance"); else currently_submerging_big_parts.insert(part); } // Record submerging big parts in the tagger to clean them up. tagger_ptr->emplace(*this, part_name, std::move(covered_parts), log); } } } catch (...) { LOG_DEBUG(log, "JBOD balancer encounters an error. Fallback to random disk selection"); tryLogCurrentException(log); } return reserved_space; } CurrentlySubmergingEmergingTagger::~CurrentlySubmergingEmergingTagger() { std::lock_guard lock(storage.currently_submerging_emerging_mutex); for (const auto & part : submerging_parts) { if (!storage.currently_submerging_big_parts.count(part)) { LOG_ERROR(log, "currently_submerging_big_parts doesn't contain part {} to erase. This is a bug", part->name); assert(false); } else storage.currently_submerging_big_parts.erase(part); } storage.currently_emerging_big_parts.erase(emerging_part_name); } }