#include #include #include #include namespace DB { String MergeTreeBackgroundExecutor::toString(Type type) { switch (type) { case Type::MERGE_MUTATE: return "MergeMutate"; case Type::FETCH: return "Fetch"; case Type::MOVE: return "Move"; } __builtin_unreachable(); } void MergeTreeBackgroundExecutor::updateConfiguration() { auto new_threads_count = std::max(1u, threads_count_getter()); auto new_max_tasks_count = std::max(1, max_task_count_getter()); try { pending.set_capacity(new_max_tasks_count); active.set_capacity(new_max_tasks_count); pool.setMaxFreeThreads(0); pool.setMaxThreads(new_threads_count); pool.setQueueSize(new_max_tasks_count); for (size_t number = threads_count; number < new_threads_count; ++number) pool.scheduleOrThrowOnError([this, number] { threadFunction(number); }); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__); } threads_count = new_threads_count; max_tasks_count = new_max_tasks_count; } void MergeTreeBackgroundExecutor::wait() { { std::lock_guard lock(mutex); shutdown = true; has_tasks.notify_all(); } pool.wait(); } bool MergeTreeBackgroundExecutor::trySchedule(ExecutableTaskPtr task) { std::lock_guard lock(mutex); if (shutdown) return false; try { /// This is needed to increase / decrease the number of threads at runtime if (update_timer.compareAndRestartDeferred(10.)) updateConfiguration(); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__); } auto & value = CurrentMetrics::values[metric]; if (value.load() >= static_cast(max_tasks_count)) return false; pending.push_back(std::make_shared(std::move(task), metric)); has_tasks.notify_one(); return true; } void MergeTreeBackgroundExecutor::removeTasksCorrespondingToStorage(StorageID id) { std::vector tasks_to_wait; { std::lock_guard lock(mutex); /// Erase storage related tasks from pending and select active tasks to wait for auto it = std::remove_if(pending.begin(), pending.end(), [&] (auto item) -> bool { return item->task->getStorageID() == id; }); pending.erase(it, pending.end()); /// Copy items to wait for their completion std::copy_if(active.begin(), active.end(), std::back_inserter(tasks_to_wait), [&] (auto item) -> bool { return item->task->getStorageID() == id; }); for (auto & item : tasks_to_wait) item->is_currently_deleting = true; } for (auto & item : tasks_to_wait) item->is_done.wait(); } void MergeTreeBackgroundExecutor::routine(ItemPtr item) { auto erase_from_active = [this, item] { active.erase(std::remove(active.begin(), active.end(), item), active.end()); }; try { if (item->task->execute()) { std::lock_guard guard(mutex); if (item->is_currently_deleting) { erase_from_active(); return; } pending.push_back(item); erase_from_active(); has_tasks.notify_one(); return; } std::lock_guard guard(mutex); erase_from_active(); has_tasks.notify_one(); /// In a situation of a lack of memory this method can throw an exception, /// because it may interact somehow with BackgroundSchedulePool, which may allocate memory /// But it is rather safe, because we have try...catch block here, and another one in ThreadPool. item->task->onCompleted(); item->task.reset(); } catch (...) { std::lock_guard guard(mutex); erase_from_active(); has_tasks.notify_one(); tryLogCurrentException(__PRETTY_FUNCTION__); /// Do not want any exceptions try { item->task->onCompleted(); } catch (...) {} } } void MergeTreeBackgroundExecutor::threadFunction(size_t number) { setThreadName(name.c_str()); while (true) { ItemPtr item; { std::unique_lock lock(mutex); has_tasks.wait(lock, [this](){ return !pending.empty() || shutdown; }); if (number >= threads_count) break; if (shutdown) break; item = std::move(pending.front()); pending.pop_front(); active.push_back(item); } routine(item); /// When storage shutdowns it will wait until all related background tasks /// are finished, because they may want to interact with its fields /// and this will cause segfault. if (item->is_currently_deleting) item->is_done.set(); } } }