#include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int ILLEGAL_TYPE_OF_ARGUMENT; } /** Calculates the distance between two geographical locations. * There are three variants: * greatCircleAngle: calculates the distance on a sphere in degrees: https://en.wikipedia.org/wiki/Great-circle_distance * greatCircleDistance: calculates the distance on a sphere in meters. * geoDistance: calculates the distance on WGS-84 ellipsoid in meters. * * The function calculates distance between two points on Earth specified by longitude and latitude in degrees. * * Latitude must be in [-90, 90], longitude must be [-180, 180]. * * Original code of this implementation of this function is here: * https://github.com/sphinxsearch/sphinx/blob/409f2c2b5b2ff70b04e38f92b6b1a890326bad65/src/sphinxexpr.cpp#L3825. * Andrey Aksenov, the author of original code, permitted to use this code in ClickHouse under the Apache 2.0 license. * Presentation about this code from Highload++ Siberia 2019 is here https://github.com/ClickHouse/ClickHouse/files/3324740/1_._._GEODIST_._.pdf * The main idea of this implementation is optimisations based on Taylor series, trigonometric identity * and calculated constants once for cosine, arcsine(sqrt) and look up table. */ namespace { constexpr double PI = 3.14159265358979323846; constexpr float RAD_IN_DEG = static_cast(PI / 180.0); constexpr float RAD_IN_DEG_HALF = static_cast(PI / 360.0); constexpr size_t COS_LUT_SIZE = 1024; // maxerr 0.00063% constexpr size_t ASIN_SQRT_LUT_SIZE = 512; constexpr size_t METRIC_LUT_SIZE = 1024; /** Earth radius in meters using WGS84 authalic radius. * We use this value to be consistent with H3 library. */ constexpr float EARTH_RADIUS = 6371007.180918475; constexpr float EARTH_DIAMETER = 2 * EARTH_RADIUS; float cos_lut[COS_LUT_SIZE + 1]; /// cos(x) table float asin_sqrt_lut[ASIN_SQRT_LUT_SIZE + 1]; /// asin(sqrt(x)) * earth_diameter table float sphere_metric_lut[METRIC_LUT_SIZE + 1]; /// sphere metric, unitless: the distance in degrees for one degree across longitude depending on latitude float sphere_metric_meters_lut[METRIC_LUT_SIZE + 1]; /// sphere metric: the distance in meters for one degree across longitude depending on latitude float wgs84_metric_meters_lut[2 * (METRIC_LUT_SIZE + 1)]; /// ellipsoid metric: the distance in meters across one degree latitude/longitude depending on latitude inline double sqr(double v) { return v * v; } inline float sqrf(float v) { return v * v; } void geodistInit() { for (size_t i = 0; i <= COS_LUT_SIZE; ++i) cos_lut[i] = static_cast(cos(2 * PI * i / COS_LUT_SIZE)); // [0, 2 * pi] -> [0, COS_LUT_SIZE] for (size_t i = 0; i <= ASIN_SQRT_LUT_SIZE; ++i) asin_sqrt_lut[i] = static_cast(asin( sqrt(static_cast(i) / ASIN_SQRT_LUT_SIZE))); // [0, 1] -> [0, ASIN_SQRT_LUT_SIZE] for (size_t i = 0; i <= METRIC_LUT_SIZE; ++i) { double latitude = i * (PI / METRIC_LUT_SIZE) - PI * 0.5; // [-pi / 2, pi / 2] -> [0, METRIC_LUT_SIZE] /// Squared metric coefficients (for the distance in meters) on a tangent plane, for latitude and longitude (in degrees), /// depending on the latitude (in radians). /// https://github.com/mapbox/cheap-ruler/blob/master/index.js#L67 wgs84_metric_meters_lut[i * 2] = static_cast(sqr(111132.09 - 566.05 * cos(2 * latitude) + 1.20 * cos(4 * latitude))); wgs84_metric_meters_lut[i * 2 + 1] = static_cast(sqr(111415.13 * cos(latitude) - 94.55 * cos(3 * latitude) + 0.12 * cos(5 * latitude))); sphere_metric_meters_lut[i] = static_cast(sqr((EARTH_DIAMETER * PI / 360) * cos(latitude))); sphere_metric_lut[i] = cosf(latitude); } } inline float geodistDegDiff(float f) { f = fabsf(f); if (f > 180) f = 360 - f; return f; } inline float geodistFastCos(float x) { float y = fabsf(x) * (COS_LUT_SIZE / PI / 2); size_t i = static_cast(y); y -= i; i &= (COS_LUT_SIZE - 1); return cos_lut[i] + (cos_lut[i + 1] - cos_lut[i]) * y; } inline float geodistFastSin(float x) { float y = fabsf(x) * (COS_LUT_SIZE / PI / 2); size_t i = static_cast(y); y -= i; i = (i - COS_LUT_SIZE / 4) & (COS_LUT_SIZE - 1); // cos(x - pi / 2) = sin(x), costable / 4 = pi / 2 return cos_lut[i] + (cos_lut[i + 1] - cos_lut[i]) * y; } /// fast implementation of asin(sqrt(x)) /// max error in floats 0.00369%, in doubles 0.00072% inline float geodistFastAsinSqrt(float x) { if (x < 0.122f) { // distance under 4546 km, Taylor error under 0.00072% float y = sqrtf(x); return y + x * y * 0.166666666666666f + x * x * y * 0.075f + x * x * x * y * 0.044642857142857f; } if (x < 0.948f) { // distance under 17083 km, 512-entry LUT error under 0.00072% x *= ASIN_SQRT_LUT_SIZE; size_t i = static_cast(x); return asin_sqrt_lut[i] + (asin_sqrt_lut[i + 1] - asin_sqrt_lut[i]) * (x - i); } return asinf(sqrtf(x)); // distance over 17083 km, just compute exact } enum class Method { SPHERE_DEGREES, SPHERE_METERS, WGS84_METERS, }; } DECLARE_MULTITARGET_CODE( namespace { template float distance(float lon1deg, float lat1deg, float lon2deg, float lat2deg) { float lat_diff = geodistDegDiff(lat1deg - lat2deg); float lon_diff = geodistDegDiff(lon1deg - lon2deg); if (lon_diff < 13) { // points are close enough; use flat ellipsoid model // interpolate metric coefficients using latitudes midpoint /// Why comparing only difference in longitude? /// If longitudes are different enough, there is a big difference between great circle line and a line with constant latitude. /// (Remember how a plane flies from Moscow to New York) /// But if longitude is close but latitude is different enough, there is no difference between meridian and great circle line. float latitude_midpoint = (lat1deg + lat2deg + 180) * METRIC_LUT_SIZE / 360; // [-90, 90] degrees -> [0, KTABLE] indexes size_t latitude_midpoint_index = static_cast(latitude_midpoint) & (METRIC_LUT_SIZE - 1); /// This is linear interpolation between two table items at index "latitude_midpoint_index" and "latitude_midpoint_index + 1". float k_lat; float k_lon; if constexpr (method == Method::SPHERE_DEGREES) { k_lat = 1; k_lon = sphere_metric_lut[latitude_midpoint_index] + (sphere_metric_lut[latitude_midpoint_index + 1] - sphere_metric_lut[latitude_midpoint_index]) * (latitude_midpoint - latitude_midpoint_index); } else if constexpr (method == Method::SPHERE_METERS) { k_lat = sqr(EARTH_DIAMETER * PI / 360); k_lon = sphere_metric_meters_lut[latitude_midpoint_index] + (sphere_metric_meters_lut[latitude_midpoint_index + 1] - sphere_metric_meters_lut[latitude_midpoint_index]) * (latitude_midpoint - latitude_midpoint_index); } else if constexpr (method == Method::WGS84_METERS) { k_lat = wgs84_metric_meters_lut[latitude_midpoint_index * 2] + (wgs84_metric_meters_lut[(latitude_midpoint_index + 1) * 2] - wgs84_metric_meters_lut[latitude_midpoint_index * 2]) * (latitude_midpoint - latitude_midpoint_index); k_lon = wgs84_metric_meters_lut[latitude_midpoint_index * 2 + 1] + (wgs84_metric_meters_lut[(latitude_midpoint_index + 1) * 2 + 1] - wgs84_metric_meters_lut[latitude_midpoint_index * 2 + 1]) * (latitude_midpoint - latitude_midpoint_index); } /// Metric on a tangent plane: it differs from Euclidean metric only by scale of coordinates. return sqrtf(k_lat * lat_diff * lat_diff + k_lon * lon_diff * lon_diff); } else { // points too far away; use haversine float a = sqrf(geodistFastSin(lat_diff * RAD_IN_DEG_HALF)) + geodistFastCos(lat1deg * RAD_IN_DEG) * geodistFastCos(lat2deg * RAD_IN_DEG) * sqrf(geodistFastSin(lon_diff * RAD_IN_DEG_HALF)); if constexpr (method == Method::SPHERE_DEGREES) return (360.0f / PI) * geodistFastAsinSqrt(a); else return EARTH_DIAMETER * geodistFastAsinSqrt(a); } } } template class FunctionGeoDistance : public IFunction { public: static constexpr auto name = (method == Method::SPHERE_DEGREES) ? "greatCircleAngle" : ((method == Method::SPHERE_METERS) ? "greatCircleDistance" : "geoDistance"); private: String getName() const override { return name; } size_t getNumberOfArguments() const override { return 4; } bool useDefaultImplementationForConstants() const override { return true; } DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override { for (const auto arg_idx : ext::range(0, arguments.size())) { const auto * arg = arguments[arg_idx].get(); if (!isNumber(WhichDataType(arg))) throw Exception( "Illegal type " + arg->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be numeric", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } return std::make_shared(); } void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) const override { auto dst = ColumnVector::create(); auto & dst_data = dst->getData(); dst_data.resize(input_rows_count); const IColumn & col_lon1 = *block.getByPosition(arguments[0]).column; const IColumn & col_lat1 = *block.getByPosition(arguments[1]).column; const IColumn & col_lon2 = *block.getByPosition(arguments[2]).column; const IColumn & col_lat2 = *block.getByPosition(arguments[3]).column; for (size_t row_num = 0; row_num < input_rows_count; ++row_num) dst_data[row_num] = distance( col_lon1.getFloat32(row_num), col_lat1.getFloat32(row_num), col_lon2.getFloat32(row_num), col_lat2.getFloat32(row_num)); block.getByPosition(result).column = std::move(dst); } }; ) // DECLARE_MULTITARGET_CODE template class FunctionGeoDistance : public TargetSpecific::Default::FunctionGeoDistance { public: explicit FunctionGeoDistance(const Context & context) : selector(context) { selector.registerImplementation>(); #if USE_MULTITARGET_CODE selector.registerImplementation>(); selector.registerImplementation>(); selector.registerImplementation>(); #endif } void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) const override { selector.selectAndExecute(block, arguments, result, input_rows_count); } static FunctionPtr create(const Context & context) { return std::make_shared>(context); } private: ImplementationSelector selector; }; void registerFunctionGeoDistance(FunctionFactory & factory) { geodistInit(); factory.registerFunction>(); factory.registerFunction>(); factory.registerFunction>(); } }