#!/usr/bin/env python3 import os import sys import pyspark from delta import * # pip install delta-spark # Usage example: # ./data-lakes-importer.py iceberg data.parquet result_path def get_spark_for_iceberg(result_path): builder = ( pyspark.sql.SparkSession.builder.appName("spark_test") .config( "spark.jars.packages", "org.apache.iceberg:iceberg-spark-runtime-3.3_2.12:1.1.0", ) .config( "spark.sql.catalog.spark_catalog", "org.apache.iceberg.spark.SparkSessionCatalog", ) .config("spark.sql.catalog.local", "org.apache.iceberg.spark.SparkCatalog") .config("spark.sql.catalog.spark_catalog.type", "hadoop") .config("spark.sql.catalog.spark_catalog.warehouse", result_path) .master("local") ) return builder.master("local").getOrCreate() def get_spark_for_delta(): builder = ( pyspark.sql.SparkSession.builder.appName("spark_test") .config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension") .config( "spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog", ) .master("local") ) return configure_spark_with_delta_pip(builder).master("local").getOrCreate() def get_spark_for_hudi(): builder = ( pyspark.sql.SparkSession.builder.appName("spark_test") .config( "spark.jars.packages", "org.apache.hudi:hudi-spark3.3-bundle_2.12:0.13.0", ) .config( "org.apache.spark.sql.hudi.catalog.HoodieCatalog", ) .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") .config( "spark.sql.catalog.local", "org.apache.spark.sql.hudi.catalog.HoodieCatalog" ) .config("spark.driver.memory", "20g") \ # .config('spark.sql.extensions", "org.apache.spark.sql.hudi.HoodieSparkSessionExtension') .master("local") ) return builder.master("local").getOrCreate() def main(): data_lake_name = str(sys.argv[1]).strip() file_path = sys.argv[2] result_path = sys.argv[3] if not file_path.startswith("/"): print(f"Expected absolute path, got relative: {file_path}") exit(1) if not result_path.startswith("/"): print(f"Expected absolute path, got relative: {result_path}") exit(1) spark = None if data_lake_name == "iceberg": spark = get_spark_for_iceberg(result_path) spark.conf.set("spark.sql.debug.maxToStringFields", 100000) spark.read.load(f"file://{file_path}").writeTo("iceberg_table").using( "iceberg" ).create() elif data_lake_name == "delta": spark = get_spark_for_delta() spark.conf.set("spark.sql.debug.maxToStringFields", 100000) spark.read.load(f"file://{file_path}").write.mode("overwrite").option( "compression", "none" ).format("delta").option("delta.columnMapping.mode", "name").save(result_path) elif data_lake_name == "hudi": spark = get_spark_for_hudi() spark.conf.set("spark.sql.debug.maxToStringFields", 100000) spark.read.load(f"file://{file_path}").write.mode("overwrite").option( "compression", "none" ).format("hudi").option("hoodie.table.name", "hudi").option( "hoodie.datasource.write.partitionpath.field", "partitionpath" ).option( "hoodie.datasource.write.table.name", "hudi" ).option( "hoodie.datasource.write.operation", "insert_overwrite" ).save( result_path ) else: print( f"Unknown data lake name {data_lake_name}. Support only: 'iceberg', 'delta'" ) exit(1) if __name__ == "__main__": main()