#pragma once #include #include #include #include #include class SipHash; namespace DB { namespace ErrorCodes { extern const int CANNOT_GET_SIZE_OF_FIELD; extern const int NOT_IMPLEMENTED; extern const int SIZES_OF_COLUMNS_DOESNT_MATCH; } class Arena; class ColumnGathererStream; /// Declares interface to store columns in memory. class IColumn : public COWPtr { private: friend class COWPtr; /// Creates the same column with the same data. virtual IColumn * clone() const = 0; public: /// Name of a Column. It is used in info messages. virtual std::string getName() const { return getFamilyName(); }; /// Name of a Column kind, without parameters (example: FixedString, Array). virtual const char * getFamilyName() const = 0; /** If column isn't constant, returns nullptr (or itself). * If column is constant, transforms constant to full column (if column type allows such tranform) and return it. */ virtual MutablePtr convertToFullColumnIfConst() const { return {}; } /// Creates empty column with the same type. virtual MutablePtr cloneEmpty() const { return cloneResized(0); } /// Creates column with the same type and specified size. /// If size is less current size, then data is cut. /// If size is greater, than default values are appended. virtual MutablePtr cloneResized(size_t /*size*/) const { throw Exception("Cannot cloneResized() column " + getName(), ErrorCodes::NOT_IMPLEMENTED); } /// Returns number of values in column. virtual size_t size() const = 0; /// There are no values in columns. bool empty() const { return size() == 0; } /// Returns value of n-th element in universal Field representation. /// Is used in rare cases, since creation of Field instance is expensive usually. virtual Field operator[](size_t n) const = 0; /// Like the previous one, but avoids extra copying if Field is in a container, for example. virtual void get(size_t n, Field & res) const = 0; /// If possible, returns pointer to memory chunk which contains n-th element (if it isn't possible, throws an exception) /// Is used to optimize some computations (in aggregation, for example). virtual StringRef getDataAt(size_t n) const = 0; /// Like getData, but has special behavior for columns that contain variable-length strings. /// Returns zero-ending memory chunk (i.e. its size is 1 byte longer). virtual StringRef getDataAtWithTerminatingZero(size_t n) const { return getDataAt(n); } /// If column stores integers, it returns n-th element transformed to UInt64 using static_cast. /// If column stores floting point numbers, bits of n-th elements are copied to lower bits of UInt64, the remaining bits are zeros. /// Is used to optimize some computations (in aggregation, for example). virtual UInt64 get64(size_t /*n*/) const { throw Exception("Method get64 is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } /** If column is numeric, return value of n-th element, casted to UInt64. * Otherwise throw an exception. */ virtual UInt64 getUInt(size_t /*n*/) const { throw Exception("Method getUInt is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } virtual Int64 getInt(size_t /*n*/) const { throw Exception("Method getInt is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } virtual bool isNullAt(size_t /*n*/) const { return false; } /// Removes all elements outside of specified range. /// Is used in LIMIT operation, for example. virtual MutablePtr cut(size_t start, size_t length) const { MutablePtr res = cloneEmpty(); res->insertRangeFrom(*this, start, length); return res; } /// Appends new value at the end of column (column's size is increased by 1). /// Is used to transform raw strings to Blocks (for example, inside input format parsers) virtual void insert(const Field & x) = 0; /// Appends n-th element from other column with the same type. /// Is used in merge-sort and merges. It could be implemented in inherited classes more optimally than default implementation. virtual void insertFrom(const IColumn & src, size_t n) { insert(src[n]); } /// Appends range of elements from other column. /// Could be used to concatenate columns. virtual void insertRangeFrom(const IColumn & src, size_t start, size_t length) = 0; /// Appends data located in specified memory chunk if it is possible (throws an exception if it cannot be implemented). /// Is used to optimize some computations (in aggregation, for example). /// Parameter length could be ignored if column values have fixed size. virtual void insertData(const char * pos, size_t length) = 0; /// Like getData, but has special behavior for columns that contain variable-length strings. /// In this special case inserting data should be zero-ending (i.e. length is 1 byte greater than real string size). virtual void insertDataWithTerminatingZero(const char * pos, size_t length) { insertData(pos, length); } /// Appends "default value". /// Is used when there are need to increase column size, but inserting value doesn't make sense. /// For example, ColumnNullable(Nested) absolutely ignores values of nested column if it is marked as NULL. virtual void insertDefault() = 0; /** Removes last n elements. * Is used to support exeption-safety of several operations. * For example, sometimes insertion should be reverted if we catch an exception during operation processing. * If column has less than n elements or n == 0 - undefined behavior. */ virtual void popBack(size_t n) = 0; /** Serializes n-th element. Serialized element should be placed continuously inside Arena's memory. * Serialized value can be deserialized to reconstruct original object. Is used in aggregation. * The method is similar to getDataAt(), but can work when element's value cannot be mapped to existing continuous memory chunk, * For example, to obtain unambiguous representation of Array of strings, strings data should be interleaved with their sizes. * Parameter begin should be used with Arena::allocContinue. */ virtual StringRef serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const = 0; /// Deserializes a value that was serialized using IColumn::serializeValueIntoArena method. /// Returns pointer to the position after the read data. virtual const char * deserializeAndInsertFromArena(const char * pos) = 0; /// Update state of hash function with value of n-th element. /// On subsequent calls of this method for sequence of column values of arbitary types, /// passed bytes to hash must identify sequence of values unambiguously. virtual void updateHashWithValue(size_t n, SipHash & hash) const = 0; /** Removes elements that don't match the filter. * Is used in WHERE and HAVING operations. * If result_size_hint > 0, then makes advance reserve(result_size_hint) for the result column; * if 0, then don't makes reserve(), * otherwise (i.e. < 0), makes reserve() using size of source column. */ using Filter = PaddedPODArray; virtual MutablePtr filter(const Filter & filt, ssize_t result_size_hint) const = 0; /// Permutes elements using specified permutation. Is used in sortings. /// limit - if it isn't 0, puts only first limit elements in the result. using Permutation = PaddedPODArray; virtual MutablePtr permute(const Permutation & perm, size_t limit) const = 0; /** Compares (*this)[n] and rhs[m]. * Returns negative number, 0, or positive number (*this)[n] is less, equal, greater than rhs[m] respectively. * Is used in sortings. * * If one of element's value is NaN or NULLs, then: * - if nan_direction_hint == -1, NaN and NULLs are considered as least than everything other; * - if nan_direction_hint == 1, NaN and NULLs are considered as greatest than everything other. * For example, if nan_direction_hint == -1 is used by descending sorting, NaNs will be at the end. * * For non Nullable and non floating point types, nan_direction_hint is ignored. */ virtual int compareAt(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint) const = 0; /** Returns a permutation that sorts elements of this column, * i.e. perm[i]-th element of source column should be i-th element of sorted column. * reverse - reverse ordering (acsending). * limit - if isn't 0, then only first limit elements of the result column could be sorted. * nan_direction_hint - see above. */ virtual void getPermutation(bool reverse, size_t limit, int nan_direction_hint, Permutation & res) const = 0; /** Copies each element according offsets parameter. * (i-th element should be copied offsets[i] - offsets[i - 1] times.) * It is necessary in ARRAY JOIN operation. */ using Offset_t = UInt64; using Offsets_t = PaddedPODArray; virtual MutablePtr replicate(const Offsets_t & offsets) const = 0; /** Split column to smaller columns. Each value goes to column index, selected by corresponding element of 'selector'. * Selector must contain values from 0 to num_columns - 1. * For default implementation, see scatterImpl. */ using ColumnIndex = UInt64; using Selector = PaddedPODArray; virtual std::vector scatter(ColumnIndex num_columns, const Selector & selector) const = 0; /// Insert data from several other columns according to source mask (used in vertical merge). /// For now it is a helper to de-virtualize calls to insert*() functions inside gather loop /// (descendants should call gatherer_stream.gather(*this) to implement this function.) /// TODO: interface decoupled from ColumnGathererStream that allows non-generic specializations. virtual void gather(ColumnGathererStream & gatherer_stream) = 0; /** Computes minimum and maximum element of the column. * In addition to numeric types, the funtion is completely implemented for Date and DateTime. * For strings and arrays function should retrurn default value. * (except for constant columns; they should return value of the constant). * If column is empty function should return default value. */ virtual void getExtremes(Field & min, Field & max) const = 0; /// Reserves memory for specified amount of elements. If reservation isn't possible, does nothing. /// It affects performance only (not correctness). virtual void reserve(size_t /*n*/) {}; /// Size of column data in memory (may be approximate) - for profiling. Zero, if could not be determined. virtual size_t byteSize() const = 0; /// Size of memory, allocated for column. /// This is greater or equals to byteSize due to memory reservation in containers. /// Zero, if could be determined. virtual size_t allocatedBytes() const = 0; /// If the column contains subcolumns (such as Array, Nullable, etc), do callback on them. /// Shallow: doesn't do recursive calls; don't do call for itself. using ColumnCallback = std::function; virtual void forEachSubcolumn(ColumnCallback) {} MutablePtr mutate() const { MutablePtr res = COWPtr::mutate(); res->forEachSubcolumn([](Ptr & subcolumn) { subcolumn = subcolumn->mutate(); }); return res; } /** Some columns can contain another columns inside. * So, we have a tree of columns. But not all combinations are possible. * There are the following rules: * * ColumnConst may be only at top. It cannot be inside any column. * ColumnNullable can contain only simple columns. */ /// Various properties on behaviour of column type. /// Is this column a container for Nullable values? It's true only for ColumnNullable. /// Note that ColumnConst(ColumnNullable(...)) is not considered. virtual bool isColumnNullable() const { return false; } /// Column stores a constant value. It's true only for ColumnConst wrapper. virtual bool isColumnConst() const { return false; } /// It's a special kind of column, that contain single value, but is not a ColumnConst. virtual bool isDummy() const { return false; } /** Memory layout properties. * * Each value of a column can be placed in memory contiguously or not. * * Example: simple columns like UInt64 or FixedString store their values contiguously in single memory buffer. * * Example: Tuple store values of each component in separate subcolumn, so the values of Tuples with at least two components are not contiguous. * Another example is Nullable. Each value have null flag, that is stored separately, so the value is not contiguous in memory. * * There are some important cases, when values are not stored contiguously, but for each value, you can get contiguous memory segment, * that will unambiguously identify the value. In this case, methods getDataAt and insertData are implemented. * Example: String column: bytes of strings are stored concatenated in one memory buffer * and offsets to that buffer are stored in another buffer. The same is for Array of fixed-size contiguous elements. * * To avoid confusion between these cases, we don't have isContiguous method. */ /// Values in column have fixed size (including the case when values span many memory segments). virtual bool valuesHaveFixedSize() const { return isFixedAndContiguous(); } /// Values in column are represented as continuous memory segment of fixed size. Implies valuesHaveFixedSize. virtual bool isFixedAndContiguous() const { return false; } /// If valuesHaveFixedSize, returns size of value, otherwise throw an exception. virtual size_t sizeOfValueIfFixed() const { throw Exception("Values of column " + getName() + " are not fixed size.", ErrorCodes::CANNOT_GET_SIZE_OF_FIELD); } /// Column is ColumnVector of numbers or ColumnConst of it. Note that Nullable columns are not numeric. /// Implies isFixedAndContiguous. virtual bool isNumeric() const { return false; } /// If the only value column can contain is NULL. /// Does not imply type of object, because it can be ColumnNullable(ColumnNothing) or ColumnConst(ColumnNullable(ColumnNothing)) virtual bool onlyNull() const { return false; } /// Can be inside ColumnNullable. virtual bool canBeInsideNullable() const { return false; } virtual ~IColumn() {} /** Print column name, size, and recursively print all subcolumns. */ String dumpStructure() const; protected: /// Template is to devirtualize calls to insertFrom method. /// In derived classes (that use final keyword), implement scatter method as call to scatterImpl. template std::vector scatterImpl(ColumnIndex num_columns, const Selector & selector) const { size_t num_rows = size(); if (num_rows != selector.size()) throw Exception( "Size of selector: " + std::to_string(selector.size()) + " doesn't match size of column: " + std::to_string(num_rows), ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH); std::vector columns(num_columns); for (auto & column : columns) column = cloneEmpty(); { size_t reserve_size = num_rows * 1.1 / num_columns; /// 1.1 is just a guess. Better to use n-sigma rule. if (reserve_size > 1) for (auto & column : columns) column->reserve(reserve_size); } for (size_t i = 0; i < num_rows; ++i) static_cast(*columns[selector[i]]).insertFrom(*this, i); return columns; } }; using ColumnPtr = IColumn::Ptr; using MutableColumnPtr = IColumn::MutablePtr; using Columns = std::vector; using MutableColumns = std::vector; using ColumnRawPtrs = std::vector; using MutableColumnRawPtrs = std::vector; }