#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { using LogAST = DebugASTLog; /// set to true to enable logs namespace ErrorCodes { extern const int BAD_ARGUMENTS; extern const int ILLEGAL_PREWHERE; extern const int ILLEGAL_TYPE_OF_ARGUMENT; extern const int ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER; extern const int LOGICAL_ERROR; extern const int NOT_IMPLEMENTED; extern const int UNKNOWN_IDENTIFIER; extern const int UNKNOWN_TYPE_OF_AST_NODE; } namespace { /// Check if there is an ignore function. It's used for disabling constant folding in query /// predicates because some performance tests use ignore function as a non-optimize guard. bool allowEarlyConstantFolding(const ActionsDAG & actions, const Settings & settings) { if (!settings.enable_early_constant_folding) return false; for (const auto & node : actions.getNodes()) { if (node.type == ActionsDAG::ActionType::FUNCTION && node.function_base) { if (!node.function_base->isSuitableForConstantFolding()) return false; } } return true; } Poco::Logger * getLogger() { return &Poco::Logger::get("ExpressionAnalyzer"); } } bool sanitizeBlock(Block & block, bool throw_if_cannot_create_column) { for (auto & col : block) { if (!col.column) { if (isNotCreatable(col.type->getTypeId())) { if (throw_if_cannot_create_column) throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Cannot create column of type {}", col.type->getName()); return false; } col.column = col.type->createColumn(); } else if (!col.column->empty()) col.column = col.column->cloneEmpty(); } return true; } ExpressionAnalyzerData::~ExpressionAnalyzerData() = default; ExpressionAnalyzer::ExtractedSettings::ExtractedSettings(const Settings & settings_) : use_index_for_in_with_subqueries(settings_.use_index_for_in_with_subqueries) , size_limits_for_set(settings_.max_rows_in_set, settings_.max_bytes_in_set, settings_.set_overflow_mode) , distributed_group_by_no_merge(settings_.distributed_group_by_no_merge) {} ExpressionAnalyzer::~ExpressionAnalyzer() = default; ExpressionAnalyzer::ExpressionAnalyzer( const ASTPtr & query_, const TreeRewriterResultPtr & syntax_analyzer_result_, ContextPtr context_, size_t subquery_depth_, bool do_global, bool is_explain, PreparedSetsPtr prepared_sets_, bool is_create_parameterized_view_) : WithContext(context_) , query(query_), settings(getContext()->getSettings()) , subquery_depth(subquery_depth_) , syntax(syntax_analyzer_result_) , is_create_parameterized_view(is_create_parameterized_view_) { /// Cache prepared sets because we might run analysis multiple times if (prepared_sets_) prepared_sets = prepared_sets_; else prepared_sets = std::make_shared(); /// external_tables, sets for global subqueries. /// Replaces global subqueries with the generated names of temporary tables that will be sent to remote servers. initGlobalSubqueriesAndExternalTables(do_global, is_explain); auto temp_actions = std::make_shared(sourceColumns()); columns_after_array_join = getColumnsAfterArrayJoin(temp_actions, sourceColumns()); columns_after_join = analyzeJoin(temp_actions, columns_after_array_join); /// has_aggregation, aggregation_keys, aggregate_descriptions, aggregated_columns. /// This analysis should be performed after processing global subqueries, because otherwise, /// if the aggregate function contains a global subquery, then `analyzeAggregation` method will save /// in `aggregate_descriptions` the information about the parameters of this aggregate function, among which /// global subquery. Then, when you call `initGlobalSubqueriesAndExternalTables` method, this /// the global subquery will be replaced with a temporary table, resulting in aggregate_descriptions /// will contain out-of-date information, which will lead to an error when the query is executed. analyzeAggregation(temp_actions); } NamesAndTypesList ExpressionAnalyzer::getColumnsAfterArrayJoin(ActionsDAGPtr & actions, const NamesAndTypesList & src_columns) { const auto * select_query = query->as(); if (!select_query) return {}; auto [array_join_expression_list, is_array_join_left] = select_query->arrayJoinExpressionList(); if (!array_join_expression_list) return src_columns; getRootActionsNoMakeSet(array_join_expression_list, actions, false); auto array_join = addMultipleArrayJoinAction(actions, is_array_join_left); auto sample_columns = actions->getResultColumns(); array_join->prepare(sample_columns); actions = std::make_shared(sample_columns); NamesAndTypesList new_columns_after_array_join; NameSet added_columns; for (auto & column : actions->getResultColumns()) { if (syntax->array_join_result_to_source.contains(column.name)) { new_columns_after_array_join.emplace_back(column.name, column.type); added_columns.emplace(column.name); } } for (const auto & column : src_columns) if (!added_columns.contains(column.name)) new_columns_after_array_join.emplace_back(column.name, column.type); return new_columns_after_array_join; } NamesAndTypesList ExpressionAnalyzer::analyzeJoin(ActionsDAGPtr & actions, const NamesAndTypesList & src_columns) { const auto * select_query = query->as(); if (!select_query) return {}; const ASTTablesInSelectQueryElement * join = select_query->join(); if (join) { getRootActionsNoMakeSet(analyzedJoin().leftKeysList(), actions, false); auto sample_columns = actions->getNamesAndTypesList(); syntax->analyzed_join->addJoinedColumnsAndCorrectTypes(sample_columns, true); actions = std::make_shared(sample_columns); } NamesAndTypesList result_columns = src_columns; syntax->analyzed_join->addJoinedColumnsAndCorrectTypes(result_columns, false); return result_columns; } void ExpressionAnalyzer::analyzeAggregation(ActionsDAGPtr & temp_actions) { /** Find aggregation keys (aggregation_keys), information about aggregate functions (aggregate_descriptions), * as well as a set of columns obtained after the aggregation, if any, * or after all the actions that are usually performed before aggregation (aggregated_columns). * * Everything below (compiling temporary ExpressionActions) - only for the purpose of query analysis (type output). */ auto * select_query = query->as(); makeAggregateDescriptions(temp_actions, aggregate_descriptions); has_aggregation = !aggregate_descriptions.empty() || (select_query && select_query->groupBy()); if (!has_aggregation) { aggregated_columns = temp_actions->getNamesAndTypesList(); return; } /// Find out aggregation keys. if (select_query) { if (ASTPtr group_by_ast = select_query->groupBy()) { NameToIndexMap unique_keys; ASTs & group_asts = group_by_ast->children; if (select_query->group_by_with_rollup) group_by_kind = GroupByKind::ROLLUP; else if (select_query->group_by_with_cube) group_by_kind = GroupByKind::CUBE; else if (select_query->group_by_with_grouping_sets && group_asts.size() > 1) group_by_kind = GroupByKind::GROUPING_SETS; else group_by_kind = GroupByKind::ORDINARY; bool use_nulls = group_by_kind != GroupByKind::ORDINARY && getContext()->getSettingsRef().group_by_use_nulls; /// For GROUPING SETS with multiple groups we always add virtual __grouping_set column /// With set number, which is used as an additional key at the stage of merging aggregating data. if (group_by_kind != GroupByKind::ORDINARY) aggregated_columns.emplace_back("__grouping_set", std::make_shared()); for (ssize_t i = 0; i < static_cast(group_asts.size()); ++i) { ssize_t size = group_asts.size(); if (getContext()->getSettingsRef().enable_positional_arguments) replaceForPositionalArguments(group_asts[i], select_query, ASTSelectQuery::Expression::GROUP_BY); if (select_query->group_by_with_grouping_sets) { ASTs group_elements_ast; const ASTExpressionList * group_ast_element = group_asts[i]->as(); group_elements_ast = group_ast_element->children; NamesAndTypesList grouping_set_list; ColumnNumbers grouping_set_indexes_list; for (ssize_t j = 0; j < ssize_t(group_elements_ast.size()); ++j) { getRootActionsNoMakeSet(group_elements_ast[j], temp_actions, false); ssize_t group_size = group_elements_ast.size(); const auto & column_name = group_elements_ast[j]->getColumnName(); const auto * node = temp_actions->tryFindInOutputs(column_name); if (!node) throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER, "Unknown identifier (in GROUP BY): {}", column_name); /// Only removes constant keys if it's an initiator or distributed_group_by_no_merge is enabled. if (getContext()->getClientInfo().distributed_depth == 0 || settings.distributed_group_by_no_merge > 0) { /// Constant expressions have non-null column pointer at this stage. if (node->column && isColumnConst(*node->column)) { select_query->group_by_with_constant_keys = true; /// But don't remove last key column if no aggregate functions, otherwise aggregation will not work. if (!aggregate_descriptions.empty() || group_size > 1) { if (j + 1 < static_cast(group_size)) group_elements_ast[j] = std::move(group_elements_ast.back()); group_elements_ast.pop_back(); --j; continue; } } } NameAndTypePair key{column_name, use_nulls ? makeNullableSafe(node->result_type) : node->result_type }; grouping_set_list.push_back(key); /// Aggregation keys are unique. if (!unique_keys.contains(key.name)) { unique_keys[key.name] = aggregation_keys.size(); grouping_set_indexes_list.push_back(aggregation_keys.size()); aggregation_keys.push_back(key); /// Key is no longer needed, therefore we can save a little by moving it. aggregated_columns.push_back(std::move(key)); } else { grouping_set_indexes_list.push_back(unique_keys[key.name]); } } aggregation_keys_list.push_back(std::move(grouping_set_list)); aggregation_keys_indexes_list.push_back(std::move(grouping_set_indexes_list)); } else { getRootActionsNoMakeSet(group_asts[i], temp_actions, false); const auto & column_name = group_asts[i]->getColumnName(); const auto * node = temp_actions->tryFindInOutputs(column_name); if (!node) throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER, "Unknown identifier (in GROUP BY): {}", column_name); /// Only removes constant keys if it's an initiator or distributed_group_by_no_merge is enabled. if (getContext()->getClientInfo().distributed_depth == 0 || settings.distributed_group_by_no_merge > 0) { /// Constant expressions have non-null column pointer at this stage. if (node->column && isColumnConst(*node->column)) { select_query->group_by_with_constant_keys = true; /// But don't remove last key column if no aggregate functions, otherwise aggregation will not work. if (!aggregate_descriptions.empty() || size > 1) { if (i + 1 < static_cast(size)) group_asts[i] = std::move(group_asts.back()); group_asts.pop_back(); --i; continue; } } } NameAndTypePair key = NameAndTypePair{ column_name, use_nulls ? makeNullableSafe(node->result_type) : node->result_type }; /// Aggregation keys are uniqued. if (!unique_keys.contains(key.name)) { unique_keys[key.name] = aggregation_keys.size(); aggregation_keys.push_back(key); /// Key is no longer needed, therefore we can save a little by moving it. aggregated_columns.push_back(std::move(key)); } } } if (!select_query->group_by_with_grouping_sets) { auto & list = aggregation_keys_indexes_list.emplace_back(); for (size_t i = 0; i < aggregation_keys.size(); ++i) list.push_back(i); } if (group_asts.empty()) { select_query->setExpression(ASTSelectQuery::Expression::GROUP_BY, {}); has_aggregation = !aggregate_descriptions.empty(); } } /// Constant expressions are already removed during first 'analyze' run. /// So for second `analyze` information is taken from select_query. has_const_aggregation_keys = select_query->group_by_with_constant_keys; } else aggregated_columns = temp_actions->getNamesAndTypesList(); for (const auto & desc : aggregate_descriptions) aggregated_columns.emplace_back(desc.column_name, desc.function->getResultType()); } void ExpressionAnalyzer::initGlobalSubqueriesAndExternalTables(bool do_global, bool is_explain) { if (do_global) { GlobalSubqueriesVisitor::Data subqueries_data( getContext(), subquery_depth, isRemoteStorage(), is_explain, external_tables, prepared_sets, has_global_subqueries); GlobalSubqueriesVisitor(subqueries_data).visit(query); } } void ExpressionAnalyzer::tryMakeSetForIndexFromSubquery(const ASTPtr & subquery_or_table_name, const SelectQueryOptions & query_options) { if (!prepared_sets) return; auto set_key = PreparedSetKey::forSubquery(*subquery_or_table_name); if (prepared_sets->get(set_key)) return; /// Already prepared. if (auto set_ptr_from_storage_set = isPlainStorageSetInSubquery(subquery_or_table_name)) { prepared_sets->set(set_key, set_ptr_from_storage_set); return; } auto interpreter_subquery = interpretSubquery(subquery_or_table_name, getContext(), {}, query_options); auto io = interpreter_subquery->execute(); PullingAsyncPipelineExecutor executor(io.pipeline); SetPtr set = std::make_shared(settings.size_limits_for_set, true, getContext()->getSettingsRef().transform_null_in); set->setHeader(executor.getHeader().getColumnsWithTypeAndName()); Block block; while (executor.pull(block)) { if (block.rows() == 0) continue; /// If the limits have been exceeded, give up and let the default subquery processing actions take place. if (!set->insertFromBlock(block.getColumnsWithTypeAndName())) return; } set->finishInsert(); prepared_sets->set(set_key, std::move(set)); } SetPtr ExpressionAnalyzer::isPlainStorageSetInSubquery(const ASTPtr & subquery_or_table_name) { const auto * table = subquery_or_table_name->as(); if (!table) return nullptr; auto table_id = getContext()->resolveStorageID(subquery_or_table_name); const auto storage = DatabaseCatalog::instance().getTable(table_id, getContext()); if (storage->getName() != "Set") return nullptr; const auto storage_set = std::dynamic_pointer_cast(storage); return storage_set->getSet(); } /// Performance optimization for IN() if storage supports it. void SelectQueryExpressionAnalyzer::makeSetsForIndex(const ASTPtr & node) { if (!node || !storage() || !storage()->supportsIndexForIn()) return; for (auto & child : node->children) { /// Don't descend into subqueries. if (child->as()) continue; /// Don't descend into lambda functions const auto * func = child->as(); if (func && func->name == "lambda") continue; makeSetsForIndex(child); } const auto * func = node->as(); if (func && functionIsInOrGlobalInOperator(func->name)) { const IAST & args = *func->arguments; const ASTPtr & left_in_operand = args.children.at(0); if (storage()->mayBenefitFromIndexForIn(left_in_operand, getContext(), metadata_snapshot)) { const ASTPtr & arg = args.children.at(1); if (arg->as() || arg->as()) { if (settings.use_index_for_in_with_subqueries) tryMakeSetForIndexFromSubquery(arg, query_options); } else { auto temp_actions = std::make_shared(columns_after_join); getRootActions(left_in_operand, true, temp_actions); if (prepared_sets && temp_actions->tryFindInOutputs(left_in_operand->getColumnName())) makeExplicitSet(func, *temp_actions, true, getContext(), settings.size_limits_for_set, *prepared_sets); } } } } void ExpressionAnalyzer::getRootActions(const ASTPtr & ast, bool no_makeset_for_subqueries, ActionsDAGPtr & actions, bool only_consts) { LogAST log; ActionsVisitor::Data visitor_data( getContext(), settings.size_limits_for_set, subquery_depth, sourceColumns(), std::move(actions), prepared_sets, no_makeset_for_subqueries, false /* no_makeset */, only_consts, !isRemoteStorage() /* create_source_for_in */, getAggregationKeysInfo(), false /* build_expression_with_window_functions */, is_create_parameterized_view); ActionsVisitor(visitor_data, log.stream()).visit(ast); actions = visitor_data.getActions(); } void ExpressionAnalyzer::getRootActionsNoMakeSet(const ASTPtr & ast, ActionsDAGPtr & actions, bool only_consts) { LogAST log; ActionsVisitor::Data visitor_data( getContext(), settings.size_limits_for_set, subquery_depth, sourceColumns(), std::move(actions), prepared_sets, true /* no_makeset_for_subqueries, no_makeset implies no_makeset_for_subqueries */, true /* no_makeset */, only_consts, !isRemoteStorage() /* create_source_for_in */, getAggregationKeysInfo(), false /* build_expression_with_window_functions */, is_create_parameterized_view); ActionsVisitor(visitor_data, log.stream()).visit(ast); actions = visitor_data.getActions(); } void ExpressionAnalyzer::getRootActionsForHaving( const ASTPtr & ast, bool no_makeset_for_subqueries, ActionsDAGPtr & actions, bool only_consts) { LogAST log; ActionsVisitor::Data visitor_data( getContext(), settings.size_limits_for_set, subquery_depth, sourceColumns(), std::move(actions), prepared_sets, no_makeset_for_subqueries, false /* no_makeset */, only_consts, true /* create_source_for_in */, getAggregationKeysInfo(), false /* build_expression_with_window_functions */, is_create_parameterized_view); ActionsVisitor(visitor_data, log.stream()).visit(ast); actions = visitor_data.getActions(); } void ExpressionAnalyzer::getRootActionsForWindowFunctions(const ASTPtr & ast, bool no_makeset_for_subqueries, ActionsDAGPtr & actions) { LogAST log; ActionsVisitor::Data visitor_data( getContext(), settings.size_limits_for_set, subquery_depth, sourceColumns(), std::move(actions), prepared_sets, no_makeset_for_subqueries, false /* no_makeset */, false /*only_consts */, !isRemoteStorage() /* create_source_for_in */, getAggregationKeysInfo(), true); ActionsVisitor(visitor_data, log.stream()).visit(ast); actions = visitor_data.getActions(); } void ExpressionAnalyzer::makeAggregateDescriptions(ActionsDAGPtr & actions, AggregateDescriptions & descriptions) { for (const ASTFunction * node : aggregates()) { AggregateDescription aggregate; if (node->arguments) getRootActionsNoMakeSet(node->arguments, actions); aggregate.column_name = node->getColumnName(); const ASTs & arguments = node->arguments ? node->arguments->children : ASTs(); aggregate.argument_names.resize(arguments.size()); DataTypes types(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) { const std::string & name = arguments[i]->getColumnName(); const auto * dag_node = actions->tryFindInOutputs(name); if (!dag_node) { throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER, "Unknown identifier '{}' in aggregate function '{}'", name, node->formatForErrorMessage()); } types[i] = dag_node->result_type; aggregate.argument_names[i] = name; } AggregateFunctionProperties properties; aggregate.parameters = (node->parameters) ? getAggregateFunctionParametersArray(node->parameters, "", getContext()) : Array(); aggregate.function = AggregateFunctionFactory::instance().get(node->name, types, aggregate.parameters, properties); descriptions.push_back(aggregate); } } void ExpressionAnalyzer::makeWindowDescriptionFromAST(const Context & context_, const WindowDescriptions & existing_descriptions, WindowDescription & desc, const IAST * ast) { const auto & definition = ast->as(); if (!definition.parent_window_name.empty()) { auto it = existing_descriptions.find(definition.parent_window_name); if (it == existing_descriptions.end()) { throw Exception(ErrorCodes::BAD_ARGUMENTS, "Window definition '{}' references an unknown window '{}'", definition.formatForErrorMessage(), definition.parent_window_name); } const auto & parent = it->second; desc.partition_by = parent.partition_by; desc.order_by = parent.order_by; desc.frame = parent.frame; // If an existing_window_name is specified it must refer to an earlier // entry in the WINDOW list; the new window copies its partitioning clause // from that entry, as well as its ordering clause if any. In this case // the new window cannot specify its own PARTITION BY clause, and it can // specify ORDER BY only if the copied window does not have one. The new // window always uses its own frame clause; the copied window must not // specify a frame clause. // -- https://www.postgresql.org/docs/current/sql-select.html if (definition.partition_by) { throw Exception(ErrorCodes::BAD_ARGUMENTS, "Derived window definition '{}' is not allowed to override PARTITION BY", definition.formatForErrorMessage()); } if (definition.order_by && !parent.order_by.empty()) { throw Exception(ErrorCodes::BAD_ARGUMENTS, "Derived window definition '{}' is not allowed to override a non-empty ORDER BY", definition.formatForErrorMessage()); } if (!parent.frame.is_default) { throw Exception(ErrorCodes::BAD_ARGUMENTS, "Parent window '{}' is not allowed to define a frame: while processing derived window definition '{}'", definition.parent_window_name, definition.formatForErrorMessage()); } } if (definition.partition_by) { for (const auto & column_ast : definition.partition_by->children) { const auto * with_alias = dynamic_cast( column_ast.get()); if (!with_alias) { throw Exception(ErrorCodes::BAD_ARGUMENTS, "Expected a column in PARTITION BY in window definition," " got '{}'", column_ast->formatForErrorMessage()); } desc.partition_by.push_back(SortColumnDescription( with_alias->getColumnName(), 1 /* direction */, 1 /* nulls_direction */)); auto actions_dag = std::make_shared(aggregated_columns); getRootActions(column_ast, false, actions_dag); desc.partition_by_actions.push_back(std::move(actions_dag)); } } if (definition.order_by) { for (const auto & column_ast : definition.order_by->children) { // Parser should have checked that we have a proper element here. const auto & order_by_element = column_ast->as(); // Ignore collation for now. desc.order_by.push_back( SortColumnDescription( order_by_element.children.front()->getColumnName(), order_by_element.direction, order_by_element.nulls_direction)); auto actions_dag = std::make_shared(aggregated_columns); getRootActions(column_ast, false, actions_dag); desc.order_by_actions.push_back(std::move(actions_dag)); } } desc.full_sort_description = desc.partition_by; desc.full_sort_description.insert(desc.full_sort_description.end(), desc.order_by.begin(), desc.order_by.end()); if (definition.frame_type != WindowFrame::FrameType::ROWS && definition.frame_type != WindowFrame::FrameType::RANGE) { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Window frame '{}' is not implemented (while processing '{}')", definition.frame_type, ast->formatForErrorMessage()); } desc.frame.is_default = definition.frame_is_default; desc.frame.type = definition.frame_type; desc.frame.begin_type = definition.frame_begin_type; desc.frame.begin_preceding = definition.frame_begin_preceding; desc.frame.end_type = definition.frame_end_type; desc.frame.end_preceding = definition.frame_end_preceding; if (definition.frame_end_type == WindowFrame::BoundaryType::Offset) { auto [value, _] = evaluateConstantExpression(definition.frame_end_offset, context_.shared_from_this()); desc.frame.end_offset = value; } if (definition.frame_begin_type == WindowFrame::BoundaryType::Offset) { auto [value, _] = evaluateConstantExpression(definition.frame_begin_offset, context_.shared_from_this()); desc.frame.begin_offset = value; } } void ExpressionAnalyzer::makeWindowDescriptions(ActionsDAGPtr actions) { auto current_context = getContext(); // Window definitions from the WINDOW clause const auto * select_query = query->as(); if (select_query && select_query->window()) { for (const auto & ptr : select_query->window()->children) { const auto & elem = ptr->as(); WindowDescription desc; desc.window_name = elem.name; makeWindowDescriptionFromAST(*current_context, window_descriptions, desc, elem.definition.get()); auto [it, inserted] = window_descriptions.insert( {desc.window_name, desc}); if (!inserted) { throw Exception(ErrorCodes::BAD_ARGUMENTS, "Window '{}' is defined twice in the WINDOW clause", desc.window_name); } } } // Window functions for (const ASTFunction * function_node : syntax->window_function_asts) { assert(function_node->is_window_function); WindowFunctionDescription window_function; window_function.function_node = function_node; window_function.column_name = window_function.function_node->getColumnName(); window_function.function_parameters = window_function.function_node->parameters ? getAggregateFunctionParametersArray( window_function.function_node->parameters, "", getContext()) : Array(); // Requiring a constant reference to a shared pointer to non-const AST // doesn't really look sane, but the visitor does indeed require it. // Hence we clone the node (not very sane either, I know). getRootActionsNoMakeSet(window_function.function_node->clone(), actions); const ASTs & arguments = window_function.function_node->arguments->children; window_function.argument_types.resize(arguments.size()); window_function.argument_names.resize(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) { const std::string & name = arguments[i]->getColumnName(); const auto * node = actions->tryFindInOutputs(name); if (!node) { throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER, "Unknown identifier '{}' in window function '{}'", name, window_function.function_node->formatForErrorMessage()); } window_function.argument_types[i] = node->result_type; window_function.argument_names[i] = name; } AggregateFunctionProperties properties; window_function.aggregate_function = AggregateFunctionFactory::instance().get( window_function.function_node->name, window_function.argument_types, window_function.function_parameters, properties); // Find the window corresponding to this function. It may be either // referenced by name and previously defined in WINDOW clause, or it // may be defined inline. if (!function_node->window_name.empty()) { auto it = window_descriptions.find(function_node->window_name); if (it == std::end(window_descriptions)) { throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER, "Window '{}' is not defined (referenced by '{}')", function_node->window_name, function_node->formatForErrorMessage()); } it->second.window_functions.push_back(window_function); } else { const auto & definition = function_node->window_definition->as< const ASTWindowDefinition &>(); WindowDescription desc; desc.window_name = definition.getDefaultWindowName(); makeWindowDescriptionFromAST(*current_context, window_descriptions, desc, &definition); auto [it, inserted] = window_descriptions.insert( {desc.window_name, desc}); if (!inserted) { assert(it->second.full_sort_description == desc.full_sort_description); } it->second.window_functions.push_back(window_function); } } bool compile_sort_description = current_context->getSettingsRef().compile_sort_description; size_t min_count_to_compile_sort_description = current_context->getSettingsRef().min_count_to_compile_sort_description; for (auto & [_, window_description] : window_descriptions) { window_description.full_sort_description.compile_sort_description = compile_sort_description; window_description.full_sort_description.min_count_to_compile_sort_description = min_count_to_compile_sort_description; window_description.partition_by.compile_sort_description = compile_sort_description; window_description.partition_by.min_count_to_compile_sort_description = min_count_to_compile_sort_description; } } const ASTSelectQuery * ExpressionAnalyzer::getSelectQuery() const { const auto * select_query = query->as(); if (!select_query) throw Exception(ErrorCodes::LOGICAL_ERROR, "Not a select query"); return select_query; } const ASTSelectQuery * SelectQueryExpressionAnalyzer::getAggregatingQuery() const { if (!has_aggregation) throw Exception(ErrorCodes::LOGICAL_ERROR, "No aggregation"); return getSelectQuery(); } /// "Big" ARRAY JOIN. ArrayJoinActionPtr ExpressionAnalyzer::addMultipleArrayJoinAction(ActionsDAGPtr & actions, bool array_join_is_left) const { NameSet result_columns; for (const auto & result_source : syntax->array_join_result_to_source) { /// Assign new names to columns, if needed. if (result_source.first != result_source.second) { const auto & node = actions->findInOutputs(result_source.second); actions->getOutputs().push_back(&actions->addAlias(node, result_source.first)); } /// Make ARRAY JOIN (replace arrays with their insides) for the columns in these new names. result_columns.insert(result_source.first); } return std::make_shared(result_columns, array_join_is_left, getContext()); } ArrayJoinActionPtr SelectQueryExpressionAnalyzer::appendArrayJoin(ExpressionActionsChain & chain, ActionsDAGPtr & before_array_join, bool only_types) { const auto * select_query = getSelectQuery(); auto [array_join_expression_list, is_array_join_left] = select_query->arrayJoinExpressionList(); if (!array_join_expression_list) return nullptr; ExpressionActionsChain::Step & step = chain.lastStep(sourceColumns()); getRootActions(array_join_expression_list, only_types, step.actions()); auto array_join = addMultipleArrayJoinAction(step.actions(), is_array_join_left); before_array_join = chain.getLastActions(); chain.steps.push_back(std::make_unique(array_join, step.getResultColumns())); chain.addStep(); return array_join; } bool SelectQueryExpressionAnalyzer::appendJoinLeftKeys(ExpressionActionsChain & chain, bool only_types) { ExpressionActionsChain::Step & step = chain.lastStep(columns_after_array_join); getRootActions(analyzedJoin().leftKeysList(), only_types, step.actions()); return true; } JoinPtr SelectQueryExpressionAnalyzer::appendJoin( ExpressionActionsChain & chain, ActionsDAGPtr & converting_join_columns) { const ColumnsWithTypeAndName & left_sample_columns = chain.getLastStep().getResultColumns(); JoinPtr join = makeJoin(*syntax->ast_join, left_sample_columns, converting_join_columns); if (converting_join_columns) { chain.steps.push_back(std::make_unique(converting_join_columns)); chain.addStep(); } ExpressionActionsChain::Step & step = chain.lastStep(columns_after_array_join); chain.steps.push_back(std::make_unique( syntax->analyzed_join, join, step.getResultColumns())); chain.addStep(); return join; } static ActionsDAGPtr createJoinedBlockActions(ContextPtr context, const TableJoin & analyzed_join) { ASTPtr expression_list = analyzed_join.rightKeysList(); auto syntax_result = TreeRewriter(context).analyze(expression_list, analyzed_join.columnsFromJoinedTable()); return ExpressionAnalyzer(expression_list, syntax_result, context).getActionsDAG(true, false); } std::shared_ptr tryKeyValueJoin(std::shared_ptr analyzed_join, const Block & right_sample_block); static std::shared_ptr chooseJoinAlgorithm( std::shared_ptr analyzed_join, const ColumnsWithTypeAndName & left_sample_columns, std::unique_ptr & joined_plan, ContextPtr context) { const auto & settings = context->getSettings(); Block left_sample_block(left_sample_columns); for (auto & column : left_sample_block) { if (!column.column) column.column = column.type->createColumn(); } Block right_sample_block = joined_plan->getCurrentDataStream().header; std::vector tried_algorithms; if (analyzed_join->isEnabledAlgorithm(JoinAlgorithm::DIRECT)) { tried_algorithms.push_back(toString(JoinAlgorithm::DIRECT)); JoinPtr direct_join = tryKeyValueJoin(analyzed_join, right_sample_block); if (direct_join) { /// Do not need to execute plan for right part, it's ready. joined_plan.reset(); return direct_join; } } if (analyzed_join->isEnabledAlgorithm(JoinAlgorithm::PARTIAL_MERGE) || analyzed_join->isEnabledAlgorithm(JoinAlgorithm::PREFER_PARTIAL_MERGE)) { tried_algorithms.push_back(toString(JoinAlgorithm::PARTIAL_MERGE)); if (MergeJoin::isSupported(analyzed_join)) return std::make_shared(analyzed_join, right_sample_block); } if (analyzed_join->isEnabledAlgorithm(JoinAlgorithm::HASH) || /// partial_merge is preferred, but can't be used for specified kind of join, fallback to hash analyzed_join->isEnabledAlgorithm(JoinAlgorithm::PREFER_PARTIAL_MERGE) || analyzed_join->isEnabledAlgorithm(JoinAlgorithm::PARALLEL_HASH)) { tried_algorithms.push_back(toString(JoinAlgorithm::HASH)); if (analyzed_join->allowParallelHashJoin()) return std::make_shared(context, analyzed_join, settings.max_threads, right_sample_block); return std::make_shared(analyzed_join, right_sample_block); } if (analyzed_join->isEnabledAlgorithm(JoinAlgorithm::FULL_SORTING_MERGE)) { tried_algorithms.push_back(toString(JoinAlgorithm::FULL_SORTING_MERGE)); if (FullSortingMergeJoin::isSupported(analyzed_join)) return std::make_shared(analyzed_join, right_sample_block); } if (analyzed_join->isEnabledAlgorithm(JoinAlgorithm::GRACE_HASH)) { tried_algorithms.push_back(toString(JoinAlgorithm::GRACE_HASH)); if (GraceHashJoin::isSupported(analyzed_join)) return std::make_shared(context, analyzed_join, left_sample_block, right_sample_block, context->getTempDataOnDisk()); } if (analyzed_join->isEnabledAlgorithm(JoinAlgorithm::AUTO)) { tried_algorithms.push_back(toString(JoinAlgorithm::AUTO)); if (MergeJoin::isSupported(analyzed_join)) return std::make_shared(analyzed_join, right_sample_block); return std::make_shared(analyzed_join, right_sample_block); } throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Can't execute {} join algorithm for this strictness/kind and right storage type", fmt::join(tried_algorithms, " or ")); } static std::unique_ptr buildJoinedPlan( ContextPtr context, const ASTTablesInSelectQueryElement & join_element, TableJoin & analyzed_join, SelectQueryOptions query_options) { /// Actions which need to be calculated on joined block. auto joined_block_actions = createJoinedBlockActions(context, analyzed_join); NamesWithAliases required_columns_with_aliases = analyzed_join.getRequiredColumns( Block(joined_block_actions->getResultColumns()), joined_block_actions->getRequiredColumns().getNames()); Names original_right_column_names; for (auto & pr : required_columns_with_aliases) original_right_column_names.push_back(pr.first); /** For GLOBAL JOINs (in the case, for example, of the push method for executing GLOBAL subqueries), the following occurs * - in the addExternalStorage function, the JOIN (SELECT ...) subquery is replaced with JOIN _data1, * in the subquery_for_set object this subquery is exposed as source and the temporary table _data1 as the `table`. * - this function shows the expression JOIN _data1. * - JOIN tables will need aliases to correctly resolve USING clause. */ auto interpreter = interpretSubquery( join_element.table_expression, context, original_right_column_names, query_options.copy().setWithAllColumns().ignoreProjections(false).ignoreAlias(false)); auto joined_plan = std::make_unique(); interpreter->buildQueryPlan(*joined_plan); { Block original_right_columns = interpreter->getSampleBlock(); auto rename_dag = std::make_unique(original_right_columns.getColumnsWithTypeAndName()); for (const auto & name_with_alias : required_columns_with_aliases) { if (name_with_alias.first != name_with_alias.second && original_right_columns.has(name_with_alias.first)) { auto pos = original_right_columns.getPositionByName(name_with_alias.first); const auto & alias = rename_dag->addAlias(*rename_dag->getInputs()[pos], name_with_alias.second); rename_dag->getOutputs()[pos] = &alias; } } rename_dag->projectInput(); auto rename_step = std::make_unique(joined_plan->getCurrentDataStream(), std::move(rename_dag)); rename_step->setStepDescription("Rename joined columns"); joined_plan->addStep(std::move(rename_step)); } auto joined_actions_step = std::make_unique(joined_plan->getCurrentDataStream(), std::move(joined_block_actions)); joined_actions_step->setStepDescription("Joined actions"); joined_plan->addStep(std::move(joined_actions_step)); return joined_plan; } std::shared_ptr tryKeyValueJoin(std::shared_ptr analyzed_join, const Block & right_sample_block) { if (!analyzed_join->isEnabledAlgorithm(JoinAlgorithm::DIRECT)) return nullptr; auto storage = analyzed_join->getStorageKeyValue(); if (!storage) return nullptr; bool allowed_inner = isInner(analyzed_join->kind()) && analyzed_join->strictness() == JoinStrictness::All; bool allowed_left = isLeft(analyzed_join->kind()) && (analyzed_join->strictness() == JoinStrictness::Any || analyzed_join->strictness() == JoinStrictness::All || analyzed_join->strictness() == JoinStrictness::Semi || analyzed_join->strictness() == JoinStrictness::Anti); if (!allowed_inner && !allowed_left) { LOG_TRACE(getLogger(), "Can't use direct join: {} {} is not supported", analyzed_join->kind(), analyzed_join->strictness()); return nullptr; } const auto & clauses = analyzed_join->getClauses(); bool only_one_key = clauses.size() == 1 && clauses[0].key_names_left.size() == 1 && clauses[0].key_names_right.size() == 1 && !clauses[0].on_filter_condition_left && !clauses[0].on_filter_condition_right; if (!only_one_key) { LOG_TRACE(getLogger(), "Can't use direct join: only one key is supported"); return nullptr; } String key_name = clauses[0].key_names_right[0]; String original_key_name = analyzed_join->getOriginalName(key_name); const auto & storage_primary_key = storage->getPrimaryKey(); if (storage_primary_key.size() != 1 || storage_primary_key[0] != original_key_name) { LOG_TRACE(getLogger(), "Can't use direct join: join key '{}' doesn't match to storage key ({})", original_key_name, fmt::join(storage_primary_key, ", ")); return nullptr; } return std::make_shared(analyzed_join, right_sample_block, storage); } JoinPtr SelectQueryExpressionAnalyzer::makeJoin( const ASTTablesInSelectQueryElement & join_element, const ColumnsWithTypeAndName & left_columns, ActionsDAGPtr & left_convert_actions) { /// Two JOINs are not supported with the same subquery, but different USINGs. if (joined_plan) throw Exception(ErrorCodes::LOGICAL_ERROR, "Table join was already created for query"); ActionsDAGPtr right_convert_actions = nullptr; const auto & analyzed_join = syntax->analyzed_join; if (auto storage = analyzed_join->getStorageJoin()) { auto right_columns = storage->getRightSampleBlock().getColumnsWithTypeAndName(); std::tie(left_convert_actions, right_convert_actions) = analyzed_join->createConvertingActions(left_columns, right_columns); return storage->getJoinLocked(analyzed_join, getContext()); } joined_plan = buildJoinedPlan(getContext(), join_element, *analyzed_join, query_options); const ColumnsWithTypeAndName & right_columns = joined_plan->getCurrentDataStream().header.getColumnsWithTypeAndName(); std::tie(left_convert_actions, right_convert_actions) = analyzed_join->createConvertingActions(left_columns, right_columns); if (right_convert_actions) { auto converting_step = std::make_unique(joined_plan->getCurrentDataStream(), right_convert_actions); converting_step->setStepDescription("Convert joined columns"); joined_plan->addStep(std::move(converting_step)); } JoinPtr join = chooseJoinAlgorithm(analyzed_join, left_columns, joined_plan, getContext()); return join; } ActionsDAGPtr SelectQueryExpressionAnalyzer::appendPrewhere( ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getSelectQuery(); if (!select_query->prewhere()) return nullptr; Names first_action_names; if (!chain.steps.empty()) first_action_names = chain.steps.front()->getRequiredColumns().getNames(); auto & step = chain.lastStep(sourceColumns()); getRootActions(select_query->prewhere(), only_types, step.actions()); String prewhere_column_name = select_query->prewhere()->getColumnName(); step.addRequiredOutput(prewhere_column_name); const auto & node = step.actions()->findInOutputs(prewhere_column_name); auto filter_type = node.result_type; if (!filter_type->canBeUsedInBooleanContext()) throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER, "Invalid type for filter in PREWHERE: {}", filter_type->getName()); ActionsDAGPtr prewhere_actions; { /// Remove unused source_columns from prewhere actions. auto tmp_actions_dag = std::make_shared(sourceColumns()); getRootActions(select_query->prewhere(), only_types, tmp_actions_dag); /// Constants cannot be removed since they can be used in other parts of the query. /// And if they are not used anywhere, except PREWHERE, they will be removed on the next step. tmp_actions_dag->removeUnusedActions( NameSet{prewhere_column_name}, /* allow_remove_inputs= */ true, /* allow_constant_folding= */ false); auto required_columns = tmp_actions_dag->getRequiredColumnsNames(); NameSet required_source_columns(required_columns.begin(), required_columns.end()); required_source_columns.insert(first_action_names.begin(), first_action_names.end()); auto names = step.actions()->getNames(); NameSet name_set(names.begin(), names.end()); for (const auto & column : sourceColumns()) if (!required_source_columns.contains(column.name)) name_set.erase(column.name); Names required_output(name_set.begin(), name_set.end()); prewhere_actions = chain.getLastActions(); prewhere_actions->removeUnusedActions(required_output); } { /// Add empty action with input = {prewhere actions output} + {unused source columns} /// Reasons: /// 1. Remove remove source columns which are used only in prewhere actions during prewhere actions execution. /// Example: select A prewhere B > 0. B can be removed at prewhere step. /// 2. Store side columns which were calculated during prewhere actions execution if they are used. /// Example: select F(A) prewhere F(A) > 0. F(A) can be saved from prewhere step. /// 3. Check if we can remove filter column at prewhere step. If we can, action will store single REMOVE_COLUMN. ColumnsWithTypeAndName columns = prewhere_actions->getResultColumns(); auto required_columns = prewhere_actions->getRequiredColumns(); NameSet prewhere_input_names; NameSet unused_source_columns; for (const auto & col : required_columns) prewhere_input_names.insert(col.name); for (const auto & column : sourceColumns()) { if (!prewhere_input_names.contains(column.name)) { columns.emplace_back(column.type, column.name); unused_source_columns.emplace(column.name); } } chain.steps.emplace_back( std::make_unique(std::make_shared(std::move(columns)))); chain.steps.back()->additional_input = std::move(unused_source_columns); chain.getLastActions(); chain.addStep(); } return prewhere_actions; } bool SelectQueryExpressionAnalyzer::appendWhere(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getSelectQuery(); if (!select_query->where()) return false; ExpressionActionsChain::Step & step = chain.lastStep(columns_after_join); getRootActions(select_query->where(), only_types, step.actions()); auto where_column_name = select_query->where()->getColumnName(); step.addRequiredOutput(where_column_name); const auto & node = step.actions()->findInOutputs(where_column_name); auto filter_type = node.result_type; if (!filter_type->canBeUsedInBooleanContext()) throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_COLUMN_FOR_FILTER, "Invalid type for filter in WHERE: {}", filter_type->getName()); return true; } bool SelectQueryExpressionAnalyzer::appendGroupBy(ExpressionActionsChain & chain, bool only_types, bool optimize_aggregation_in_order, ManyExpressionActions & group_by_elements_actions) { const auto * select_query = getAggregatingQuery(); if (!select_query->groupBy()) return false; ExpressionActionsChain::Step & step = chain.lastStep(columns_after_join); ASTs asts = select_query->groupBy()->children; if (select_query->group_by_with_grouping_sets) { for (const auto & ast : asts) { for (const auto & ast_element : ast->children) { step.addRequiredOutput(ast_element->getColumnName()); getRootActions(ast_element, only_types, step.actions()); } } } else { for (const auto & ast : asts) { step.addRequiredOutput(ast->getColumnName()); getRootActions(ast, only_types, step.actions()); } } if (optimize_aggregation_in_order) { for (auto & child : asts) { auto actions_dag = std::make_shared(columns_after_join); getRootActions(child, only_types, actions_dag); group_by_elements_actions.emplace_back( std::make_shared(actions_dag, ExpressionActionsSettings::fromContext(getContext(), CompileExpressions::yes))); } } return true; } void SelectQueryExpressionAnalyzer::appendAggregateFunctionsArguments(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getAggregatingQuery(); ExpressionActionsChain::Step & step = chain.lastStep(columns_after_join); for (const auto & desc : aggregate_descriptions) for (const auto & name : desc.argument_names) step.addRequiredOutput(name); /// Collect aggregates removing duplicates by node.getColumnName() /// It's not clear why we recollect aggregates (for query parts) while we're able to use previously collected ones (for entire query) /// @note The original recollection logic didn't remove duplicates. GetAggregatesVisitor::Data data; GetAggregatesVisitor(data).visit(select_query->select()); if (select_query->having()) GetAggregatesVisitor(data).visit(select_query->having()); if (select_query->orderBy()) GetAggregatesVisitor(data).visit(select_query->orderBy()); /// TODO: data.aggregates -> aggregates() for (const ASTFunction * node : data.aggregates) if (node->arguments) for (auto & argument : node->arguments->children) getRootActions(argument, only_types, step.actions()); } void SelectQueryExpressionAnalyzer::appendWindowFunctionsArguments( ExpressionActionsChain & chain, bool /* only_types */) { ExpressionActionsChain::Step & step = chain.lastStep(aggregated_columns); // (1) Add actions for window functions and the columns they require. // (2) Mark the columns that are really required. We have to mark them as // required because we finish the expression chain before processing the // window functions. // The required columns are: // (a) window function arguments, // (b) the columns from PARTITION BY and ORDER BY. // (1a) Actions for PARTITION BY and ORDER BY for windows defined in the // WINDOW clause. The inline window definitions will be processed // recursively together with (1b) as ASTFunction::window_definition. if (getSelectQuery()->window()) { getRootActionsNoMakeSet(getSelectQuery()->window(), step.actions()); } for (const auto & [_, w] : window_descriptions) { for (const auto & f : w.window_functions) { // (1b) Actions for function arguments, and also the inline window // definitions (1a). // Requiring a constant reference to a shared pointer to non-const AST // doesn't really look sane, but the visitor does indeed require it. getRootActionsNoMakeSet(f.function_node->clone(), step.actions()); // (2b) Required function argument columns. for (const auto & a : f.function_node->arguments->children) { step.addRequiredOutput(a->getColumnName()); } } // (2a) Required PARTITION BY and ORDER BY columns. for (const auto & c : w.full_sort_description) { step.addRequiredOutput(c.column_name); } } } void SelectQueryExpressionAnalyzer::appendExpressionsAfterWindowFunctions(ExpressionActionsChain & chain, bool /* only_types */) { ExpressionActionsChain::Step & step = chain.lastStep(columns_after_window); for (const auto & expression : syntax->expressions_with_window_function) { getRootActionsForWindowFunctions(expression->clone(), true, step.actions()); } } void SelectQueryExpressionAnalyzer::appendGroupByModifiers(ActionsDAGPtr & before_aggregation, ExpressionActionsChain & chain, bool /* only_types */) { const auto * select_query = getAggregatingQuery(); if (!select_query->groupBy() || !(select_query->group_by_with_rollup || select_query->group_by_with_cube)) return; auto source_columns = before_aggregation->getResultColumns(); ColumnsWithTypeAndName result_columns; for (const auto & source_column : source_columns) { if (source_column.type->canBeInsideNullable()) result_columns.emplace_back(makeNullableSafe(source_column.type), source_column.name); else result_columns.push_back(source_column); } ExpressionActionsChain::Step & step = chain.lastStep(before_aggregation->getNamesAndTypesList()); step.actions() = ActionsDAG::makeConvertingActions(source_columns, result_columns, ActionsDAG::MatchColumnsMode::Position); } void SelectQueryExpressionAnalyzer::appendSelectSkipWindowExpressions(ExpressionActionsChain::Step & step, ASTPtr const & node) { if (auto * function = node->as()) { // Skip window function columns here -- they are calculated after // other SELECT expressions by a special step. // Also skipping lambda functions because they can't be explicitly evaluated. if (function->is_window_function || function->name == "lambda") return; if (function->compute_after_window_functions) { for (auto & arg : function->arguments->children) appendSelectSkipWindowExpressions(step, arg); return; } } step.addRequiredOutput(node->getColumnName()); } bool SelectQueryExpressionAnalyzer::appendHaving(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getAggregatingQuery(); if (!select_query->having()) return false; ExpressionActionsChain::Step & step = chain.lastStep(aggregated_columns); getRootActionsForHaving(select_query->having(), only_types, step.actions()); step.addRequiredOutput(select_query->having()->getColumnName()); return true; } void SelectQueryExpressionAnalyzer::appendSelect(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getSelectQuery(); ExpressionActionsChain::Step & step = chain.lastStep(aggregated_columns); getRootActions(select_query->select(), only_types, step.actions()); for (const auto & child : select_query->select()->children) appendSelectSkipWindowExpressions(step, child); } ActionsDAGPtr SelectQueryExpressionAnalyzer::appendOrderBy(ExpressionActionsChain & chain, bool only_types, bool optimize_read_in_order, ManyExpressionActions & order_by_elements_actions) { const auto * select_query = getSelectQuery(); if (!select_query->orderBy()) { auto actions = chain.getLastActions(); chain.addStep(); return actions; } ExpressionActionsChain::Step & step = chain.lastStep(aggregated_columns); for (auto & child : select_query->orderBy()->children) { auto * ast = child->as(); if (!ast || ast->children.empty()) throw Exception(ErrorCodes::UNKNOWN_TYPE_OF_AST_NODE, "Bad ORDER BY expression AST"); if (getContext()->getSettingsRef().enable_positional_arguments) replaceForPositionalArguments(ast->children.at(0), select_query, ASTSelectQuery::Expression::ORDER_BY); } getRootActions(select_query->orderBy(), only_types, step.actions()); bool with_fill = false; for (auto & child : select_query->orderBy()->children) { auto * ast = child->as(); ASTPtr order_expression = ast->children.at(0); const String & column_name = order_expression->getColumnName(); step.addRequiredOutput(column_name); order_by_keys.emplace(column_name); if (ast->with_fill) with_fill = true; } if (auto interpolate_list = select_query->interpolate()) { NameSet select; for (const auto & child : select_query->select()->children) select.insert(child->getAliasOrColumnName()); /// collect columns required for interpolate expressions - /// interpolate expression can use any available column auto find_columns = [&step, &select](IAST * function) { auto f_impl = [&step, &select](IAST * fn, auto fi) { if (auto * ident = fn->as()) { /// exclude columns from select expression - they are already available if (!select.contains(ident->getColumnName())) step.addRequiredOutput(ident->getColumnName()); return; } if (fn->as() || fn->as()) for (const auto & ch : fn->children) fi(ch.get(), fi); return; }; f_impl(function, f_impl); }; for (const auto & interpolate : interpolate_list->children) find_columns(interpolate->as()->expr.get()); } if (optimize_read_in_order) { for (const auto & child : select_query->orderBy()->children) { auto actions_dag = std::make_shared(columns_after_join); getRootActions(child, only_types, actions_dag); order_by_elements_actions.emplace_back( std::make_shared(actions_dag, ExpressionActionsSettings::fromContext(getContext(), CompileExpressions::yes))); } } NameSet non_constant_inputs; if (with_fill) { for (const auto & column : step.getResultColumns()) non_constant_inputs.insert(column.name); } auto actions = chain.getLastActions(); chain.addStep(non_constant_inputs); return actions; } bool SelectQueryExpressionAnalyzer::appendLimitBy(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getSelectQuery(); if (!select_query->limitBy()) return false; ExpressionActionsChain::Step & step = chain.lastStep(aggregated_columns); getRootActions(select_query->limitBy(), only_types, step.actions()); NameSet existing_column_names; for (const auto & column : aggregated_columns) { step.addRequiredOutput(column.name); existing_column_names.insert(column.name); } /// Columns from ORDER BY could be required to do ORDER BY on the initiator in case of distributed queries. for (const auto & column_name : order_by_keys) { step.addRequiredOutput(column_name); existing_column_names.insert(column_name); } auto & children = select_query->limitBy()->children; for (auto & child : children) { if (getContext()->getSettingsRef().enable_positional_arguments) replaceForPositionalArguments(child, select_query, ASTSelectQuery::Expression::LIMIT_BY); auto child_name = child->getColumnName(); if (!existing_column_names.contains(child_name)) step.addRequiredOutput(child_name); } return true; } ActionsDAGPtr SelectQueryExpressionAnalyzer::appendProjectResult(ExpressionActionsChain & chain) const { const auto * select_query = getSelectQuery(); ExpressionActionsChain::Step & step = chain.lastStep(aggregated_columns); NamesWithAliases result_columns; NameSet required_result_columns_set(required_result_columns.begin(), required_result_columns.end()); ASTs asts = select_query->select()->children; for (const auto & ast : asts) { String result_name = ast->getAliasOrColumnName(); if (required_result_columns_set.empty() || required_result_columns_set.contains(result_name)) { std::string source_name = ast->getColumnName(); /* * For temporary columns created by ExpressionAnalyzer for literals, * use the correct source column. Using the default display name * returned by getColumnName is not enough, and we have to use the * column id set by EA. In principle, this logic applies to all kinds * of columns, not only literals. Literals are especially problematic * for two reasons: * 1) confusing different literal columns leads to weird side * effects (see 01101_literal_columns_clash); * 2) the disambiguation mechanism in SyntaxAnalyzer, that, among * other things, creates unique aliases for columns with same * names from different tables, is applied before these temporary * columns are created by ExpressionAnalyzer. * Similar problems should also manifest for function columns, which * are likewise created at a later stage by EA. * In general, we need to have explicit separation between display * names and identifiers for columns. This code is a workaround for * a particular subclass of problems, and not a proper solution. */ if (const auto * as_literal = ast->as()) { source_name = as_literal->unique_column_name; assert(!source_name.empty()); } result_columns.emplace_back(source_name, result_name); step.addRequiredOutput(result_columns.back().second); } } auto actions = chain.getLastActions(); actions->project(result_columns); if (!required_result_columns.empty()) { result_columns.clear(); for (const auto & column : required_result_columns) result_columns.emplace_back(column, std::string{}); actions->project(result_columns); } return actions; } void ExpressionAnalyzer::appendExpression(ExpressionActionsChain & chain, const ASTPtr & expr, bool only_types) { ExpressionActionsChain::Step & step = chain.lastStep(sourceColumns()); getRootActions(expr, only_types, step.actions()); step.addRequiredOutput(expr->getColumnName()); } ActionsDAGPtr ExpressionAnalyzer::getActionsDAG(bool add_aliases, bool project_result) { auto actions_dag = std::make_shared(aggregated_columns); NamesWithAliases result_columns; Names result_names; ASTs asts; if (const auto * node = query->as()) asts = node->children; else asts = ASTs(1, query); for (const auto & ast : asts) { std::string name = ast->getColumnName(); std::string alias; if (add_aliases) alias = ast->getAliasOrColumnName(); else alias = name; result_columns.emplace_back(name, alias); result_names.push_back(alias); getRootActions(ast, false /* no_makeset_for_subqueries */, actions_dag); } if (add_aliases) { if (project_result) actions_dag->project(result_columns); else actions_dag->addAliases(result_columns); } if (!(add_aliases && project_result)) { NameSet name_set(result_names.begin(), result_names.end()); /// We will not delete the original columns. for (const auto & column_name_type : sourceColumns()) { if (!name_set.contains(column_name_type.name)) { result_names.push_back(column_name_type.name); name_set.insert(column_name_type.name); } } actions_dag->removeUnusedActions(name_set); } return actions_dag; } ExpressionActionsPtr ExpressionAnalyzer::getActions(bool add_aliases, bool project_result, CompileExpressions compile_expressions) { return std::make_shared( getActionsDAG(add_aliases, project_result), ExpressionActionsSettings::fromContext(getContext(), compile_expressions)); } ActionsDAGPtr ExpressionAnalyzer::getConstActionsDAG(const ColumnsWithTypeAndName & constant_inputs) { auto actions = std::make_shared(constant_inputs); getRootActions(query, true /* no_makeset_for_subqueries */, actions, true /* only_consts */); return actions; } ExpressionActionsPtr ExpressionAnalyzer::getConstActions(const ColumnsWithTypeAndName & constant_inputs) { auto actions = getConstActionsDAG(constant_inputs); return std::make_shared(actions, ExpressionActionsSettings::fromContext(getContext())); } std::unique_ptr SelectQueryExpressionAnalyzer::getJoinedPlan() { return std::move(joined_plan); } ActionsDAGPtr SelectQueryExpressionAnalyzer::simpleSelectActions() { ExpressionActionsChain new_chain(getContext()); appendSelect(new_chain, false); return new_chain.getLastActions(); } ExpressionAnalysisResult::ExpressionAnalysisResult( SelectQueryExpressionAnalyzer & query_analyzer, const StorageMetadataPtr & metadata_snapshot, bool first_stage_, bool second_stage_, bool only_types, const FilterDAGInfoPtr & filter_info_, const FilterDAGInfoPtr & additional_filter, const Block & source_header) : first_stage(first_stage_) , second_stage(second_stage_) , need_aggregate(query_analyzer.hasAggregation()) , has_window(query_analyzer.hasWindow()) , use_grouping_set_key(query_analyzer.useGroupingSetKey()) { /// first_stage: Do I need to perform the first part of the pipeline - running on remote servers during distributed processing. /// second_stage: Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing. /** First we compose a chain of actions and remember the necessary steps from it. * Regardless of from_stage and to_stage, we will compose a complete sequence of actions to perform optimization and * throw out unnecessary columns based on the entire query. In unnecessary parts of the query, we will not execute subqueries. */ const ASTSelectQuery & query = *query_analyzer.getSelectQuery(); auto context = query_analyzer.getContext(); const Settings & settings = context->getSettingsRef(); const ConstStoragePtr & storage = query_analyzer.storage(); Names additional_required_columns_after_prewhere; ssize_t prewhere_step_num = -1; ssize_t where_step_num = -1; ssize_t having_step_num = -1; auto finalize_chain = [&](ExpressionActionsChain & chain) -> ColumnsWithTypeAndName { if (prewhere_step_num >= 0) { ExpressionActionsChain::Step & step = *chain.steps.at(prewhere_step_num); auto required_columns = prewhere_info->prewhere_actions->getRequiredColumnsNames(); NameSet required_source_columns(required_columns.begin(), required_columns.end()); /// Add required columns to required output in order not to remove them after prewhere execution. /// TODO: add sampling and final execution to common chain. for (const auto & column : additional_required_columns_after_prewhere) { if (required_source_columns.contains(column)) step.addRequiredOutput(column); } } chain.finalize(); finalize(chain, prewhere_step_num, where_step_num, having_step_num, query); auto res = chain.getLastStep().getResultColumns(); chain.clear(); return res; }; { ExpressionActionsChain chain(context); if (storage && (query.sampleSize() || settings.parallel_replicas_count > 1)) { // we evaluate sampling for Merge lazily so we need to get all the columns if (storage->getName() == "Merge") { const auto columns = metadata_snapshot->getColumns().getAll(); for (const auto & column : columns) { additional_required_columns_after_prewhere.push_back(column.name); } } else { Names columns_for_sampling = metadata_snapshot->getColumnsRequiredForSampling(); additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), columns_for_sampling.begin(), columns_for_sampling.end()); } } if (storage && query.final()) { Names columns_for_final = metadata_snapshot->getColumnsRequiredForFinal(); additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), columns_for_final.begin(), columns_for_final.end()); } if (storage && additional_filter) { Names columns_for_additional_filter = additional_filter->actions->getRequiredColumnsNames(); additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), columns_for_additional_filter.begin(), columns_for_additional_filter.end()); } if (storage && filter_info_) { filter_info = filter_info_; filter_info->do_remove_column = true; } if (auto actions = query_analyzer.appendPrewhere(chain, !first_stage)) { /// Prewhere is always the first one. prewhere_step_num = 0; prewhere_info = std::make_shared(actions, query.prewhere()->getColumnName()); if (allowEarlyConstantFolding(*prewhere_info->prewhere_actions, settings)) { Block before_prewhere_sample = source_header; if (sanitizeBlock(before_prewhere_sample)) { ExpressionActions( prewhere_info->prewhere_actions, ExpressionActionsSettings::fromSettings(context->getSettingsRef())).execute(before_prewhere_sample); auto & column_elem = before_prewhere_sample.getByName(query.prewhere()->getColumnName()); /// If the filter column is a constant, record it. if (column_elem.column) prewhere_constant_filter_description = ConstantFilterDescription(*column_elem.column); } } } array_join = query_analyzer.appendArrayJoin(chain, before_array_join, only_types || !first_stage); if (query_analyzer.hasTableJoin()) { query_analyzer.appendJoinLeftKeys(chain, only_types || !first_stage); before_join = chain.getLastActions(); join = query_analyzer.appendJoin(chain, converting_join_columns); chain.addStep(); } if (query_analyzer.appendWhere(chain, only_types || !first_stage)) { where_step_num = chain.steps.size() - 1; before_where = chain.getLastActions(); if (allowEarlyConstantFolding(*before_where, settings)) { Block before_where_sample; if (chain.steps.size() > 1) before_where_sample = Block(chain.steps[chain.steps.size() - 2]->getResultColumns()); else before_where_sample = source_header; if (sanitizeBlock(before_where_sample)) { ExpressionActions( before_where, ExpressionActionsSettings::fromSettings(context->getSettingsRef())).execute(before_where_sample); auto & column_elem = before_where_sample.getByName(query.where()->getColumnName()); /// If the filter column is a constant, record it. if (column_elem.column) where_constant_filter_description = ConstantFilterDescription(*column_elem.column); } } chain.addStep(); } if (need_aggregate) { /// TODO correct conditions optimize_aggregation_in_order = context->getSettingsRef().optimize_aggregation_in_order && (!context->getSettingsRef().query_plan_aggregation_in_order) && storage && query.groupBy(); query_analyzer.appendGroupBy(chain, only_types || !first_stage, optimize_aggregation_in_order, group_by_elements_actions); query_analyzer.appendAggregateFunctionsArguments(chain, only_types || !first_stage); before_aggregation = chain.getLastActions(); if (settings.group_by_use_nulls) query_analyzer.appendGroupByModifiers(before_aggregation, chain, only_types); auto columns_before_aggregation = finalize_chain(chain); /// Here we want to check that columns after aggregation have the same type as /// were promised in query_analyzer.aggregated_columns /// Ideally, they should be equal. In practice, this may be not true. /// As an example, we don't build sets for IN inside ExpressionAnalysis::analyzeAggregation, /// so that constant folding for expression (1 in 1) will not work. This may change the return type /// for functions with LowCardinality argument: function "substr(toLowCardinality('abc'), 1 IN 1)" /// should usually return LowCardinality(String) when (1 IN 1) is constant, but without built set /// for (1 IN 1) constant is not propagated and "substr" returns String type. /// See 02503_in_lc_const_args_bug.sql /// /// As a temporary solution, we add converting actions to the next chain. /// Hopefully, later we can /// * use a new analyzer where this issue is absent /// * or remove ExpressionActionsChain completely and re-implement its logic on top of the query plan { for (auto & col : columns_before_aggregation) if (!col.column) col.column = col.type->createColumn(); Block header_before_aggregation(std::move(columns_before_aggregation)); auto keys = query_analyzer.aggregationKeys().getNames(); const auto & aggregates = query_analyzer.aggregates(); bool has_grouping = query_analyzer.group_by_kind != GroupByKind::ORDINARY; auto actual_header = Aggregator::Params::getHeader( header_before_aggregation, /*only_merge*/ false, keys, aggregates, /*final*/ true); actual_header = AggregatingStep::appendGroupingColumn( std::move(actual_header), keys, has_grouping, settings.group_by_use_nulls); Block expected_header; for (const auto & expected : query_analyzer.aggregated_columns) expected_header.insert(ColumnWithTypeAndName(expected.type, expected.name)); if (!blocksHaveEqualStructure(actual_header, expected_header)) { auto converting = ActionsDAG::makeConvertingActions( actual_header.getColumnsWithTypeAndName(), expected_header.getColumnsWithTypeAndName(), ActionsDAG::MatchColumnsMode::Name, true); auto & step = chain.lastStep(query_analyzer.aggregated_columns); auto & actions = step.actions(); actions = ActionsDAG::merge(std::move(*actions), std::move(*converting)); } } if (query_analyzer.appendHaving(chain, only_types || !second_stage)) { having_step_num = chain.steps.size() - 1; before_having = chain.getLastActions(); chain.addStep(); } } bool join_allow_read_in_order = true; if (hasJoin()) { /// You may find it strange but we support read_in_order for HashJoin and do not support for MergeJoin. join_has_delayed_stream = query_analyzer.analyzedJoin().needStreamWithNonJoinedRows(); join_allow_read_in_order = typeid_cast(join.get()) && !join_has_delayed_stream; } optimize_read_in_order = settings.optimize_read_in_order && (!settings.query_plan_read_in_order) && storage && query.orderBy() && !query_analyzer.hasAggregation() && !query_analyzer.hasWindow() && !query.final() && join_allow_read_in_order; /// If there is aggregation, we execute expressions in SELECT and ORDER BY on the initiating server, otherwise on the source servers. query_analyzer.appendSelect(chain, only_types || (need_aggregate ? !second_stage : !first_stage)); // Window functions are processed in a separate expression chain after // the main SELECT, similar to what we do for aggregate functions. if (has_window) { query_analyzer.makeWindowDescriptions(chain.getLastActions()); query_analyzer.appendWindowFunctionsArguments(chain, only_types || !first_stage); // Build a list of output columns of the window step. // 1) We need the columns that are the output of ExpressionActions. for (const auto & x : chain.getLastActions()->getNamesAndTypesList()) { query_analyzer.columns_after_window.push_back(x); } // 2) We also have to manually add the output of the window function // to the list of the output columns of the window step, because the // window functions are not in the ExpressionActions. for (const auto & [_, w] : query_analyzer.window_descriptions) { for (const auto & f : w.window_functions) { query_analyzer.columns_after_window.push_back( {f.column_name, f.aggregate_function->getResultType()}); } } // Here we need to set order by expression as required output to avoid // their removal from the ActionsDAG. const auto * select_query = query_analyzer.getSelectQuery(); if (select_query->orderBy()) { for (auto & child : select_query->orderBy()->children) { auto * ast = child->as(); ASTPtr order_expression = ast->children.at(0); if (auto * function = order_expression->as(); function && (function->is_window_function || function->compute_after_window_functions)) continue; const String & column_name = order_expression->getColumnName(); chain.getLastStep().addRequiredOutput(column_name); } } before_window = chain.getLastActions(); finalize_chain(chain); query_analyzer.appendExpressionsAfterWindowFunctions(chain, only_types || !first_stage); for (const auto & x : chain.getLastActions()->getNamesAndTypesList()) { query_analyzer.columns_after_window.push_back(x); } auto & step = chain.lastStep(query_analyzer.columns_after_window); // The output of this expression chain is the result of // SELECT (before "final projection" i.e. renaming the columns), so // we have to mark the expressions that are required in the output, // again. We did it for the previous expression chain ("select without // window functions") earlier, in appendSelect(). But that chain also // produced the expressions required to calculate window functions. // They are not needed in the final SELECT result. Knowing the correct // list of columns is important when we apply SELECT DISTINCT later. for (const auto & child : select_query->select()->children) { step.addRequiredOutput(child->getColumnName()); } } selected_columns.clear(); selected_columns.reserve(chain.getLastStep().required_output.size()); for (const auto & it : chain.getLastStep().required_output) selected_columns.emplace_back(it.first); has_order_by = query.orderBy() != nullptr; before_order_by = query_analyzer.appendOrderBy( chain, only_types || (need_aggregate ? !second_stage : !first_stage), optimize_read_in_order, order_by_elements_actions); if (query_analyzer.appendLimitBy(chain, only_types || !second_stage)) { before_limit_by = chain.getLastActions(); chain.addStep(); } final_projection = query_analyzer.appendProjectResult(chain); finalize_chain(chain); } /// Before executing WHERE and HAVING, remove the extra columns from the block (mostly the aggregation keys). removeExtraColumns(); checkActions(); } void ExpressionAnalysisResult::finalize( const ExpressionActionsChain & chain, ssize_t & prewhere_step_num, ssize_t & where_step_num, ssize_t & having_step_num, const ASTSelectQuery & query) { if (prewhere_step_num >= 0) { const ExpressionActionsChain::Step & step = *chain.steps.at(prewhere_step_num); prewhere_info->prewhere_actions->projectInput(false); NameSet columns_to_remove; for (const auto & [name, can_remove] : step.required_output) { if (name == prewhere_info->prewhere_column_name) prewhere_info->remove_prewhere_column = can_remove; else if (can_remove) columns_to_remove.insert(name); } columns_to_remove_after_prewhere = std::move(columns_to_remove); prewhere_step_num = -1; } if (where_step_num >= 0) { where_column_name = query.where()->getColumnName(); remove_where_filter = chain.steps.at(where_step_num)->required_output.find(where_column_name)->second; where_step_num = -1; } if (having_step_num >= 0) { having_column_name = query.having()->getColumnName(); remove_having_filter = chain.steps.at(having_step_num)->required_output.find(having_column_name)->second; having_step_num = -1; } } void ExpressionAnalysisResult::removeExtraColumns() const { if (hasWhere()) before_where->projectInput(); if (hasHaving()) before_having->projectInput(); } void ExpressionAnalysisResult::checkActions() const { /// Check that PREWHERE doesn't contain unusual actions. Unusual actions are that can change number of rows. if (hasPrewhere()) { auto check_actions = [](const ActionsDAGPtr & actions) { if (actions) for (const auto & node : actions->getNodes()) if (node.type == ActionsDAG::ActionType::ARRAY_JOIN) throw Exception(ErrorCodes::ILLEGAL_PREWHERE, "PREWHERE cannot contain ARRAY JOIN action"); }; check_actions(prewhere_info->prewhere_actions); } } std::string ExpressionAnalysisResult::dump() const { WriteBufferFromOwnString ss; ss << "need_aggregate " << need_aggregate << "\n"; ss << "has_order_by " << has_order_by << "\n"; ss << "has_window " << has_window << "\n"; if (before_array_join) { ss << "before_array_join " << before_array_join->dumpDAG() << "\n"; } if (array_join) { ss << "array_join " << "FIXME doesn't have dump" << "\n"; } if (before_join) { ss << "before_join " << before_join->dumpDAG() << "\n"; } if (before_where) { ss << "before_where " << before_where->dumpDAG() << "\n"; } if (prewhere_info) { ss << "prewhere_info " << prewhere_info->dump() << "\n"; } if (filter_info) { ss << "filter_info " << filter_info->dump() << "\n"; } if (before_aggregation) { ss << "before_aggregation " << before_aggregation->dumpDAG() << "\n"; } if (before_having) { ss << "before_having " << before_having->dumpDAG() << "\n"; } if (before_window) { ss << "before_window " << before_window->dumpDAG() << "\n"; } if (before_order_by) { ss << "before_order_by " << before_order_by->dumpDAG() << "\n"; } if (before_limit_by) { ss << "before_limit_by " << before_limit_by->dumpDAG() << "\n"; } if (final_projection) { ss << "final_projection " << final_projection->dumpDAG() << "\n"; } if (!selected_columns.empty()) { ss << "selected_columns "; for (size_t i = 0; i < selected_columns.size(); ++i) { if (i > 0) { ss << ", "; } ss << backQuote(selected_columns[i]); } ss << "\n"; } return ss.str(); } }