#pragma once #include #include #include #include namespace StopWatchDetail { inline UInt64 nanoseconds(clockid_t clock_type) { struct timespec ts; clock_gettime(clock_type, &ts); return UInt64(ts.tv_sec * 1000000000LL + ts.tv_nsec); } } /** Differs from Poco::Stopwatch only by using 'clock_gettime' instead of 'gettimeofday', * returns nanoseconds instead of microseconds, and also by other minor differencies. */ class Stopwatch { public: /** CLOCK_MONOTONIC works relatively efficient (~15 million calls/sec) and doesn't lead to syscall. * Pass CLOCK_MONOTONIC_COARSE, if you need better performance with acceptable cost of several milliseconds of inaccuracy. */ Stopwatch(clockid_t clock_type_ = CLOCK_MONOTONIC) : clock_type(clock_type_) { start(); } void start() { start_ns = nanoseconds(); is_running = true; } void stop() { stop_ns = nanoseconds(); is_running = false; } void reset() { start_ns = 0; stop_ns = 0; is_running = false; } void restart() { start(); } UInt64 elapsed() const { return elapsedNanoseconds(); } UInt64 elapsedNanoseconds() const { return is_running ? nanoseconds() - start_ns : stop_ns - start_ns; } UInt64 elapsedMicroseconds() const { return elapsedNanoseconds() / 1000U; } UInt64 elapsedMilliseconds() const { return elapsedNanoseconds() / 1000000UL; } double elapsedSeconds() const { return static_cast(elapsedNanoseconds()) / 1000000000ULL; } private: UInt64 start_ns = 0; UInt64 stop_ns = 0; clockid_t clock_type; bool is_running = false; UInt64 nanoseconds() const { return StopWatchDetail::nanoseconds(clock_type); } }; class AtomicStopwatch { public: AtomicStopwatch(clockid_t clock_type_ = CLOCK_MONOTONIC) : clock_type(clock_type_) { restart(); } void restart() { start_ns = nanoseconds(); } UInt64 elapsed() const { return nanoseconds() - start_ns; } UInt64 elapsedMilliseconds() const { return elapsed() / 1000000UL; } double elapsedSeconds() const { return static_cast(elapsed()) / 1000000000ULL; } /** If specified amount of time has passed, then restarts timer and returns true. * Otherwise returns false. * This is done atomically. */ bool compareAndRestart(double seconds) { UInt64 threshold = static_cast(seconds * 1000000000.0); UInt64 current_ns = nanoseconds(); UInt64 current_start_ns = start_ns; while (true) { if (current_ns < current_start_ns + threshold) return false; if (start_ns.compare_exchange_weak(current_start_ns, current_ns)) return true; } } struct Lock { AtomicStopwatch * parent = nullptr; Lock() {} operator bool() const { return parent != nullptr; } Lock(AtomicStopwatch * parent) : parent(parent) {} Lock(Lock &&) = default; ~Lock() { if (parent) parent->restart(); } }; /** If specified amount of time has passed and timer is not locked right now, then returns Lock object, * which locks timer and, on destruction, restarts timer and releases the lock. * Otherwise returns object, that is implicitly casting to false. * This is done atomically. * * Usage: * if (auto lock = timer.compareAndRestartDeferred(1)) * /// do some work, that must be done in one thread and not more frequently than each second. */ Lock compareAndRestartDeferred(double seconds) { UInt64 threshold = UInt64(seconds * 1000000000.0); UInt64 current_ns = nanoseconds(); UInt64 current_start_ns = start_ns; while (true) { if ((current_start_ns & 0x8000000000000000ULL)) return {}; if (current_ns < current_start_ns + threshold) return {}; if (start_ns.compare_exchange_weak(current_start_ns, current_ns | 0x8000000000000000ULL)) return Lock(this); } } private: std::atomic start_ns; std::atomic lock {false}; clockid_t clock_type; /// Most significant bit is a lock. When it is set, compareAndRestartDeferred method will return false. UInt64 nanoseconds() const { return StopWatchDetail::nanoseconds(clock_type) & 0x7FFFFFFFFFFFFFFFULL; } }; /// Like ordinary StopWatch, but uses getrusage() system call struct StopwatchRUsage { StopwatchRUsage() = default; void start() { start_ts = Timestamp::current(); is_running = true; } void stop() { stop_ts = Timestamp::current(); is_running = false; } void reset() { start_ts = Timestamp(); stop_ts = Timestamp(); is_running = false; } void restart() { start(); } UInt64 elapsed(bool count_user = true, bool count_sys = true) const { return elapsedNanoseconds(count_user, count_sys); } UInt64 elapsedNanoseconds(bool count_user = true, bool count_sys = true) const { return (is_running ? Timestamp::current() : stop_ts).nanoseconds(count_user, count_sys) - start_ts.nanoseconds(count_user, count_sys); } UInt64 elapsedMicroseconds(bool count_user = true, bool count_sys = true) const { return elapsedNanoseconds(count_user, count_sys) / 1000UL; } UInt64 elapsedMilliseconds(bool count_user = true, bool count_sys = true) const { return elapsedNanoseconds(count_user, count_sys) / 1000000UL; } double elapsedSeconds(bool count_user = true, bool count_sys = true) const { return static_cast(elapsedNanoseconds(count_user, count_sys)) / 1000000000.0; } private: struct Timestamp { UInt64 user_ns = 0; UInt64 sys_ns = 0; static Timestamp current(); UInt64 nanoseconds(bool count_user = true, bool count_sys = true) const { return (count_user ? user_ns : 0) + (count_sys ? sys_ns : 0); } }; Timestamp start_ts; Timestamp stop_ts; bool is_running = false; };