#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int TOO_DEEP_SUBQUERIES; extern const int THERE_IS_NO_COLUMN; extern const int SAMPLING_NOT_SUPPORTED; extern const int ILLEGAL_FINAL; extern const int ILLEGAL_PREWHERE; extern const int TOO_MANY_COLUMNS; extern const int LOGICAL_ERROR; extern const int NOT_IMPLEMENTED; extern const int PARAMETER_OUT_OF_BOUND; extern const int ARGUMENT_OUT_OF_BOUND; } InterpreterSelectQuery::InterpreterSelectQuery( const ASTPtr & query_ptr_, const Context & context_, const Names & required_result_column_names, QueryProcessingStage::Enum to_stage_, size_t subquery_depth_, bool only_analyze_) : InterpreterSelectQuery(query_ptr_, context_, nullptr, nullptr, required_result_column_names, to_stage_, subquery_depth_, only_analyze_) { } InterpreterSelectQuery::InterpreterSelectQuery( const ASTPtr & query_ptr_, const Context & context_, const BlockInputStreamPtr & input_, QueryProcessingStage::Enum to_stage_, bool only_analyze_) : InterpreterSelectQuery(query_ptr_, context_, input_, nullptr, Names{}, to_stage_, 0, only_analyze_) { } InterpreterSelectQuery::InterpreterSelectQuery( const ASTPtr & query_ptr_, const Context & context_, const StoragePtr & storage_, QueryProcessingStage::Enum to_stage_, bool only_analyze_) : InterpreterSelectQuery(query_ptr_, context_, nullptr, storage_, Names{}, to_stage_, 0, only_analyze_) { } InterpreterSelectQuery::~InterpreterSelectQuery() = default; /** There are no limits on the maximum size of the result for the subquery. * Since the result of the query is not the result of the entire query. */ static Context getSubqueryContext(const Context & context) { Context subquery_context = context; Settings subquery_settings = context.getSettings(); subquery_settings.max_result_rows = 0; subquery_settings.max_result_bytes = 0; /// The calculation of extremes does not make sense and is not necessary (if you do it, then the extremes of the subquery can be taken for whole query). subquery_settings.extremes = 0; subquery_context.setSettings(subquery_settings); return subquery_context; } InterpreterSelectQuery::InterpreterSelectQuery( const ASTPtr & query_ptr_, const Context & context_, const BlockInputStreamPtr & input_, const StoragePtr & storage_, const Names & required_result_column_names, QueryProcessingStage::Enum to_stage_, size_t subquery_depth_, bool only_analyze_) : query_ptr(query_ptr_->clone()) /// Note: the query is cloned because it will be modified during analysis. , query(typeid_cast(*query_ptr)) , context(context_) , to_stage(to_stage_) , subquery_depth(subquery_depth_) , only_analyze(only_analyze_) , storage(storage_) , input(input_) , log(&Logger::get("InterpreterSelectQuery")) { initSettings(); const Settings & settings = context.getSettingsRef(); if (settings.max_subquery_depth && subquery_depth > settings.max_subquery_depth) throw Exception("Too deep subqueries. Maximum: " + settings.max_subquery_depth.toString(), ErrorCodes::TOO_DEEP_SUBQUERIES); max_streams = settings.max_threads; const auto & table_expression = query.table(); if (input) { /// Read from prepared input. source_header = input->getHeader(); } else if (table_expression && typeid_cast(table_expression.get())) { /// Read from subquery. interpreter_subquery = std::make_unique( table_expression, getSubqueryContext(context), required_columns, QueryProcessingStage::Complete, subquery_depth + 1, only_analyze); source_header = interpreter_subquery->getSampleBlock(); } else if (!storage) { if (table_expression && typeid_cast(table_expression.get())) { /// Read from table function. storage = context.getQueryContext().executeTableFunction(table_expression); } else { /// Read from table. Even without table expression (implicit SELECT ... FROM system.one). String database_name; String table_name; getDatabaseAndTableNames(database_name, table_name); storage = context.getTable(database_name, table_name); } } if (storage) table_lock = storage->lockStructure(false, __PRETTY_FUNCTION__); query_analyzer = std::make_unique( query_ptr, context, storage, source_header.getNamesAndTypesList(), required_result_column_names, subquery_depth, !only_analyze); if (!only_analyze) { if (query.sample_size() && (input || !storage || !storage->supportsSampling())) throw Exception("Illegal SAMPLE: table doesn't support sampling", ErrorCodes::SAMPLING_NOT_SUPPORTED); if (query.final() && (input || !storage || !storage->supportsFinal())) throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support FINAL" : "Illegal FINAL", ErrorCodes::ILLEGAL_FINAL); if (query.prewhere_expression && (input || !storage || !storage->supportsPrewhere())) throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support PREWHERE" : "Illegal PREWHERE", ErrorCodes::ILLEGAL_PREWHERE); /// Save the new temporary tables in the query context for (const auto & it : query_analyzer->getExternalTables()) if (!context.tryGetExternalTable(it.first)) context.addExternalTable(it.first, it.second); if (query_analyzer->isRewriteSubqueriesPredicate()) interpreter_subquery = std::make_unique( table_expression, getSubqueryContext(context), required_columns, QueryProcessingStage::Complete, subquery_depth + 1, only_analyze); } if (interpreter_subquery) { /// If there is an aggregation in the outer query, WITH TOTALS is ignored in the subquery. if (query_analyzer->hasAggregation()) interpreter_subquery->ignoreWithTotals(); } required_columns = query_analyzer->getRequiredSourceColumns(); if (storage) source_header = storage->getSampleBlockForColumns(required_columns); /// Calculate structure of the result. { Pipeline pipeline; executeImpl(pipeline, nullptr, true); result_header = pipeline.firstStream()->getHeader(); } } void InterpreterSelectQuery::getDatabaseAndTableNames(String & database_name, String & table_name) { auto query_database = query.database(); auto query_table = query.table(); /** If the table is not specified - use the table `system.one`. * If the database is not specified - use the current database. */ if (query_database) database_name = typeid_cast(*query_database).name; if (query_table) table_name = typeid_cast(*query_table).name; if (!query_table) { database_name = "system"; table_name = "one"; } else if (!query_database) { if (context.tryGetTable("", table_name)) database_name = ""; else database_name = context.getCurrentDatabase(); } } Block InterpreterSelectQuery::getSampleBlock() { return result_header; } BlockIO InterpreterSelectQuery::execute() { Pipeline pipeline; executeImpl(pipeline, input, only_analyze); executeUnion(pipeline); BlockIO res; res.in = pipeline.firstStream(); return res; } BlockInputStreams InterpreterSelectQuery::executeWithMultipleStreams() { Pipeline pipeline; executeImpl(pipeline, input, only_analyze); return pipeline.streams; } InterpreterSelectQuery::AnalysisResult InterpreterSelectQuery::analyzeExpressions(QueryProcessingStage::Enum from_stage, bool dry_run) { AnalysisResult res; /// Do I need to perform the first part of the pipeline - running on remote servers during distributed processing. res.first_stage = from_stage < QueryProcessingStage::WithMergeableState && to_stage >= QueryProcessingStage::WithMergeableState; /// Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing. res.second_stage = from_stage <= QueryProcessingStage::WithMergeableState && to_stage > QueryProcessingStage::WithMergeableState; /** First we compose a chain of actions and remember the necessary steps from it. * Regardless of from_stage and to_stage, we will compose a complete sequence of actions to perform optimization and * throw out unnecessary columns based on the entire query. In unnecessary parts of the query, we will not execute subqueries. */ bool has_prewhere = false; bool has_where = false; size_t where_step_num; auto finalizeChain = [&](ExpressionActionsChain & chain) { chain.finalize(); if (has_prewhere) { const ExpressionActionsChain::Step & step = chain.steps.at(0); res.prewhere_info->remove_prewhere_column = step.can_remove_required_output.at(0); Names columns_to_remove_after_sampling; for (size_t i = 1; i < step.required_output.size(); ++i) { if (step.can_remove_required_output[i]) columns_to_remove_after_sampling.push_back(step.required_output[i]); } if (!columns_to_remove_after_sampling.empty()) { auto columns = res.prewhere_info->prewhere_actions->getSampleBlock().getNamesAndTypesList(); ExpressionActionsPtr actions = std::make_shared(columns, context); for (const auto & column : columns_to_remove_after_sampling) actions->add(ExpressionAction::removeColumn(column)); res.prewhere_info->after_sampling_actions = std::move(actions); } } if (has_where) res.remove_where_filter = chain.steps.at(where_step_num).can_remove_required_output.at(0); has_prewhere = has_where = false; chain.clear(); }; { ExpressionActionsChain chain(context); ASTPtr sampling_expression = storage && query.sample_size() ? storage->getSamplingExpression() : nullptr; if (query_analyzer->appendPrewhere(chain, !res.first_stage, sampling_expression)) { has_prewhere = true; res.prewhere_info = std::make_shared( chain.steps.front().actions, query.prewhere_expression->getColumnName()); chain.addStep(); } res.need_aggregate = query_analyzer->hasAggregation(); query_analyzer->appendArrayJoin(chain, dry_run || !res.first_stage); if (query_analyzer->appendJoin(chain, dry_run || !res.first_stage)) { res.has_join = true; res.before_join = chain.getLastActions(); chain.addStep(); } if (query_analyzer->appendWhere(chain, dry_run || !res.first_stage)) { where_step_num = chain.steps.size() - 1; has_where = res.has_where = true; res.before_where = chain.getLastActions(); chain.addStep(); } if (res.need_aggregate) { query_analyzer->appendGroupBy(chain, dry_run || !res.first_stage); query_analyzer->appendAggregateFunctionsArguments(chain, dry_run || !res.first_stage); res.before_aggregation = chain.getLastActions(); finalizeChain(chain); if (query_analyzer->appendHaving(chain, dry_run || !res.second_stage)) { res.has_having = true; res.before_having = chain.getLastActions(); chain.addStep(); } } /// If there is aggregation, we execute expressions in SELECT and ORDER BY on the initiating server, otherwise on the source servers. query_analyzer->appendSelect(chain, dry_run || (res.need_aggregate ? !res.second_stage : !res.first_stage)); res.selected_columns = chain.getLastStep().required_output; res.has_order_by = query_analyzer->appendOrderBy(chain, dry_run || (res.need_aggregate ? !res.second_stage : !res.first_stage)); res.before_order_and_select = chain.getLastActions(); chain.addStep(); if (query_analyzer->appendLimitBy(chain, dry_run || !res.second_stage)) { res.has_limit_by = true; res.before_limit_by = chain.getLastActions(); chain.addStep(); } query_analyzer->appendProjectResult(chain); res.final_projection = chain.getLastActions(); finalizeChain(chain); } /// Before executing WHERE and HAVING, remove the extra columns from the block (mostly the aggregation keys). if (res.has_where) res.before_where->prependProjectInput(); if (res.has_having) res.before_having->prependProjectInput(); res.subqueries_for_sets = query_analyzer->getSubqueriesForSets(); return res; } void InterpreterSelectQuery::executeImpl(Pipeline & pipeline, const BlockInputStreamPtr & prepared_input, bool dry_run) { /** Streams of data. When the query is executed in parallel, we have several data streams. * If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then * if there is an ORDER BY, then glue the streams using UnionBlockInputStream, and then MergeSortingBlockInputStream, * if not, then glue it using UnionBlockInputStream, * then apply LIMIT. * If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel; * a parallel GROUP BY will glue streams into one, * then perform the remaining operations with one resulting stream. */ const Settings & settings = context.getSettingsRef(); QueryProcessingStage::Enum from_stage = QueryProcessingStage::FetchColumns; /// PREWHERE optimization if (storage) { if (!dry_run) from_stage = storage->getQueryProcessingStage(context); query_analyzer->makeSetsForIndex(); auto optimize_prewhere = [&](auto & merge_tree) { SelectQueryInfo query_info; query_info.query = query_ptr; query_info.sets = query_analyzer->getPreparedSets(); /// Try transferring some condition from WHERE to PREWHERE if enabled and viable if (settings.optimize_move_to_prewhere && query.where_expression && !query.prewhere_expression && !query.final()) MergeTreeWhereOptimizer{query_info, context, merge_tree.getData(), query_analyzer->getRequiredSourceColumns(), log}; }; if (const StorageMergeTree * merge_tree = dynamic_cast(storage.get())) optimize_prewhere(*merge_tree); else if (const StorageReplicatedMergeTree * replicated_merge_tree = dynamic_cast(storage.get())) optimize_prewhere(*replicated_merge_tree); } AnalysisResult expressions; if (dry_run) { pipeline.streams.emplace_back(std::make_shared(source_header)); expressions = analyzeExpressions(QueryProcessingStage::FetchColumns, true); if (expressions.prewhere_info) pipeline.streams.back() = std::make_shared( pipeline.streams.back(), expressions.prewhere_info->prewhere_actions, expressions.prewhere_info->prewhere_column_name, expressions.prewhere_info->remove_prewhere_column); } else { if (prepared_input) pipeline.streams.push_back(prepared_input); expressions = analyzeExpressions(from_stage, false); if (from_stage == QueryProcessingStage::WithMergeableState && to_stage == QueryProcessingStage::WithMergeableState) throw Exception("Distributed on Distributed is not supported", ErrorCodes::NOT_IMPLEMENTED); /** Read the data from Storage. from_stage - to what stage the request was completed in Storage. */ executeFetchColumns(from_stage, pipeline, expressions.prewhere_info); LOG_TRACE(log, QueryProcessingStage::toString(from_stage) << " -> " << QueryProcessingStage::toString(to_stage)); } if (to_stage > QueryProcessingStage::FetchColumns) { /// Now we will compose block streams that perform the necessary actions. /// Do I need to aggregate in a separate row rows that have not passed max_rows_to_group_by. bool aggregate_overflow_row = expressions.need_aggregate && query.group_by_with_totals && settings.max_rows_to_group_by && settings.group_by_overflow_mode == OverflowMode::ANY && settings.totals_mode != TotalsMode::AFTER_HAVING_EXCLUSIVE; /// Do I need to immediately finalize the aggregate functions after the aggregation? bool aggregate_final = expressions.need_aggregate && to_stage > QueryProcessingStage::WithMergeableState && !query.group_by_with_totals && !query.group_by_with_rollup && !query.group_by_with_cube; if (expressions.first_stage) { if (expressions.has_join) { const ASTTableJoin & join = static_cast(*query.join()->table_join); if (join.kind == ASTTableJoin::Kind::Full || join.kind == ASTTableJoin::Kind::Right) pipeline.stream_with_non_joined_data = expressions.before_join->createStreamWithNonJoinedDataIfFullOrRightJoin( pipeline.firstStream()->getHeader(), settings.max_block_size); for (auto & stream : pipeline.streams) /// Applies to all sources except stream_with_non_joined_data. stream = std::make_shared(stream, expressions.before_join); } if (expressions.has_where) executeWhere(pipeline, expressions.before_where, expressions.remove_where_filter); if (expressions.need_aggregate) executeAggregation(pipeline, expressions.before_aggregation, aggregate_overflow_row, aggregate_final); else { executeExpression(pipeline, expressions.before_order_and_select); executeDistinct(pipeline, true, expressions.selected_columns); } /** For distributed query processing, * if no GROUP, HAVING set, * but there is an ORDER or LIMIT, * then we will perform the preliminary sorting and LIMIT on the remote server. */ if (!expressions.second_stage && !expressions.need_aggregate && !expressions.has_having) { if (expressions.has_order_by) executeOrder(pipeline); if (expressions.has_order_by && query.limit_length) executeDistinct(pipeline, false, expressions.selected_columns); if (query.limit_length) executePreLimit(pipeline); } } if (expressions.second_stage) { bool need_second_distinct_pass = false; bool need_merge_streams = false; if (expressions.need_aggregate) { /// If you need to combine aggregated results from multiple servers if (!expressions.first_stage) executeMergeAggregated(pipeline, aggregate_overflow_row, aggregate_final); if (!aggregate_final) { if (query.group_by_with_totals) { bool final = !query.group_by_with_rollup && !query.group_by_with_cube; executeTotalsAndHaving(pipeline, expressions.has_having, expressions.before_having, aggregate_overflow_row, final); } if (query.group_by_with_rollup) executeRollupOrCube(pipeline, true); else if(query.group_by_with_cube) executeRollupOrCube(pipeline, false); } else if (expressions.has_having) executeHaving(pipeline, expressions.before_having); executeExpression(pipeline, expressions.before_order_and_select); executeDistinct(pipeline, true, expressions.selected_columns); need_second_distinct_pass = query.distinct && pipeline.hasMoreThanOneStream(); } else { need_second_distinct_pass = query.distinct && pipeline.hasMoreThanOneStream(); if (query.group_by_with_totals && !aggregate_final) { bool final = !query.group_by_with_rollup && !query.group_by_with_cube; executeTotalsAndHaving(pipeline, expressions.has_having, expressions.before_having, aggregate_overflow_row, final); } if (query.group_by_with_rollup && !aggregate_final) executeRollupOrCube(pipeline, true); else if (query.group_by_with_cube && !aggregate_final) executeRollupOrCube(pipeline, false); } if (expressions.has_order_by) { /** If there is an ORDER BY for distributed query processing, * but there is no aggregation, then on the remote servers ORDER BY was made * - therefore, we merge the sorted streams from remote servers. */ if (!expressions.first_stage && !expressions.need_aggregate && !(query.group_by_with_totals && !aggregate_final)) executeMergeSorted(pipeline); else /// Otherwise, just sort. executeOrder(pipeline); } /** Optimization - if there are several sources and there is LIMIT, then first apply the preliminary LIMIT, * limiting the number of rows in each up to `offset + limit`. */ if (query.limit_length && pipeline.hasMoreThanOneStream() && !query.distinct && !expressions.has_limit_by && !settings.extremes) { executePreLimit(pipeline); } if (need_second_distinct_pass || query.limit_length || query.limit_by_expression_list || pipeline.stream_with_non_joined_data) { need_merge_streams = true; } if (need_merge_streams) executeUnion(pipeline); /** If there was more than one stream, * then DISTINCT needs to be performed once again after merging all streams. */ if (need_second_distinct_pass) executeDistinct(pipeline, false, expressions.selected_columns); if (expressions.has_limit_by) { executeExpression(pipeline, expressions.before_limit_by); executeLimitBy(pipeline); } /** We must do projection after DISTINCT because projection may remove some columns. */ executeProjection(pipeline, expressions.final_projection); /** Extremes are calculated before LIMIT, but after LIMIT BY. This is Ok. */ executeExtremes(pipeline); executeLimit(pipeline); } } if (!expressions.subqueries_for_sets.empty()) executeSubqueriesInSetsAndJoins(pipeline, expressions.subqueries_for_sets); } static void getLimitLengthAndOffset(ASTSelectQuery & query, size_t & length, size_t & offset) { length = 0; offset = 0; if (query.limit_length) { length = safeGet(typeid_cast(*query.limit_length).value); if (query.limit_offset) offset = safeGet(typeid_cast(*query.limit_offset).value); } } void InterpreterSelectQuery::executeFetchColumns( QueryProcessingStage::Enum processing_stage, Pipeline & pipeline, const PrewhereInfoPtr & prewhere_info) { const Settings & settings = context.getSettingsRef(); /// Actions to calculate ALIAS if required. ExpressionActionsPtr alias_actions; /// Are ALIAS columns required for query execution? auto alias_columns_required = false; if (storage && !storage->getColumns().aliases.empty()) { const auto & column_defaults = storage->getColumns().defaults; for (const auto & column : required_columns) { const auto default_it = column_defaults.find(column); if (default_it != std::end(column_defaults) && default_it->second.kind == ColumnDefaultKind::Alias) { alias_columns_required = true; break; } } if (alias_columns_required) { /// Columns required for prewhere actions. NameSet required_prewhere_columns; /// Columns required for prewhere actions which are aliases in storage. NameSet required_prewhere_aliases; Block prewhere_actions_result; if (prewhere_info) { auto required_columns = prewhere_info->prewhere_actions->getRequiredColumns(); required_prewhere_columns.insert(required_columns.begin(), required_columns.end()); prewhere_actions_result = prewhere_info->prewhere_actions->getSampleBlock(); } /// We will create an expression to return all the requested columns, with the calculation of the required ALIAS columns. auto required_columns_expr_list = std::make_shared(); /// Separate expression for columns used in prewhere. auto required_prewhere_columns_expr_list = std::make_shared(); for (const auto & column : required_columns) { ASTPtr column_expr; const auto default_it = column_defaults.find(column); bool is_alias = default_it != std::end(column_defaults) && default_it->second.kind == ColumnDefaultKind::Alias; if (is_alias) column_expr = setAlias(default_it->second.expression->clone(), column); else column_expr = std::make_shared(column); if (required_prewhere_columns.count(column)) { required_prewhere_columns_expr_list->children.emplace_back(std::move(column_expr)); if (is_alias) required_prewhere_aliases.insert(column); } else required_columns_expr_list->children.emplace_back(std::move(column_expr)); } /// Columns which we will get after prewhere execution. NamesAndTypesList additional_source_columns; /// Add columns which will be added by prewhere (otherwise we will remove them in project action). for (const auto & column : prewhere_actions_result) { if (prewhere_info->remove_prewhere_column && column.name == prewhere_info->prewhere_column_name) continue; required_columns_expr_list->children.emplace_back(std::make_shared(column.name)); additional_source_columns.emplace_back(column.name, column.type); } auto additional_source_columns_set = ext::map(additional_source_columns, [] (const auto & it) { return it.name; }); alias_actions = ExpressionAnalyzer(required_columns_expr_list, context, storage, additional_source_columns).getActions(true); /// The set of required columns could be added as a result of adding an action to calculate ALIAS. required_columns = alias_actions->getRequiredColumns(); /// Do not remove prewhere filter if it is a column which is used as alias. if (prewhere_info && prewhere_info->remove_prewhere_column) if (required_columns.end() != std::find(required_columns.begin(), required_columns.end(), prewhere_info->prewhere_column_name)) prewhere_info->remove_prewhere_column = false; /// Remove columns which will be added by prewhere. size_t next_req_column_pos = 0; for (size_t i = 0; i < required_columns.size(); ++i) { if (!additional_source_columns_set.count(required_columns[i])) { if (next_req_column_pos < i) std::swap(required_columns[i], required_columns[next_req_column_pos]); ++next_req_column_pos; } } required_columns.resize(next_req_column_pos); if (prewhere_info) { /// Don't remove columns which are needed to be aliased. auto new_actions = std::make_shared(prewhere_info->prewhere_actions->getRequiredColumnsWithTypes(), context); for (const auto & action : prewhere_info->prewhere_actions->getActions()) { if (action.type != ExpressionAction::REMOVE_COLUMN || required_columns.end() == std::find(required_columns.begin(), required_columns.end(), action.source_name)) new_actions->add(action); } prewhere_info->prewhere_actions = std::move(new_actions); prewhere_info->alias_actions = ExpressionAnalyzer(required_prewhere_columns_expr_list, context, storage).getActions(true, false); /// Add columns required by alias actions. auto required_aliased_columns = prewhere_info->alias_actions->getRequiredColumns(); for (auto & column : required_aliased_columns) if (!prewhere_actions_result.has(column)) if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) required_columns.push_back(column); /// Add columns required by prewhere actions. for (const auto & column : required_prewhere_columns) if (required_prewhere_aliases.count(column) == 0) if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) required_columns.push_back(column); } } } /// Limitation on the number of columns to read. /// It's not applied in 'only_analyze' mode, because the query could be analyzed without removal of unnecessary columns. if (!only_analyze && settings.max_columns_to_read && required_columns.size() > settings.max_columns_to_read) throw Exception("Limit for number of columns to read exceeded. " "Requested: " + toString(required_columns.size()) + ", maximum: " + settings.max_columns_to_read.toString(), ErrorCodes::TOO_MANY_COLUMNS); size_t limit_length = 0; size_t limit_offset = 0; getLimitLengthAndOffset(query, limit_length, limit_offset); /** With distributed query processing, almost no computations are done in the threads, * but wait and receive data from remote servers. * If we have 20 remote servers, and max_threads = 8, then it would not be very good * connect and ask only 8 servers at a time. * To simultaneously query more remote servers, * instead of max_threads, max_distributed_connections is used. */ bool is_remote = false; if (storage && storage->isRemote()) { is_remote = true; max_streams = settings.max_distributed_connections; } size_t max_block_size = settings.max_block_size; if (!max_block_size) throw Exception("Setting 'max_block_size' cannot be zero", ErrorCodes::PARAMETER_OUT_OF_BOUND); /** Optimization - if not specified DISTINCT, WHERE, GROUP, HAVING, ORDER, LIMIT BY but LIMIT is specified, and limit + offset < max_block_size, * then as the block size we will use limit + offset (not to read more from the table than requested), * and also set the number of threads to 1. */ if (!query.distinct && !query.prewhere_expression && !query.where_expression && !query.group_expression_list && !query.having_expression && !query.order_expression_list && !query.limit_by_expression_list && query.limit_length && !query_analyzer->hasAggregation() && limit_length + limit_offset < max_block_size) { max_block_size = limit_length + limit_offset; max_streams = 1; } /// Initialize the initial data streams to which the query transforms are superimposed. Table or subquery or prepared input? if (!pipeline.streams.empty()) { /// Prepared input. } else if (interpreter_subquery) { /// Subquery. /// If we need less number of columns that subquery have - update the interpreter. if (required_columns.size() < source_header.columns()) { interpreter_subquery = std::make_unique( query.table(), getSubqueryContext(context), required_columns, QueryProcessingStage::Complete, subquery_depth + 1, only_analyze); if (query_analyzer->hasAggregation()) interpreter_subquery->ignoreWithTotals(); } pipeline.streams = interpreter_subquery->executeWithMultipleStreams(); } else if (storage) { /// Table. if (max_streams == 0) throw Exception("Logical error: zero number of streams requested", ErrorCodes::LOGICAL_ERROR); /// If necessary, we request more sources than the number of threads - to distribute the work evenly over the threads. if (max_streams > 1 && !is_remote) max_streams *= settings.max_streams_to_max_threads_ratio; SelectQueryInfo query_info; query_info.query = query_ptr; query_info.sets = query_analyzer->getPreparedSets(); query_info.prewhere_info = prewhere_info; pipeline.streams = storage->read(required_columns, query_info, context, processing_stage, max_block_size, max_streams); if (pipeline.streams.empty()) { pipeline.streams.emplace_back(std::make_shared(storage->getSampleBlockForColumns(required_columns))); if (query_info.prewhere_info) pipeline.streams.back() = std::make_shared( pipeline.streams.back(), prewhere_info->prewhere_actions, prewhere_info->prewhere_column_name, prewhere_info->remove_prewhere_column ); } pipeline.transform([&](auto & stream) { stream->addTableLock(table_lock); }); /// Set the limits and quota for reading data, the speed and time of the query. { IProfilingBlockInputStream::LocalLimits limits; limits.mode = IProfilingBlockInputStream::LIMITS_TOTAL; limits.size_limits = SizeLimits(settings.max_rows_to_read, settings.max_bytes_to_read, settings.read_overflow_mode); limits.max_execution_time = settings.max_execution_time; limits.timeout_overflow_mode = settings.timeout_overflow_mode; /** Quota and minimal speed restrictions are checked on the initiating server of the request, and not on remote servers, * because the initiating server has a summary of the execution of the request on all servers. * * But limits on data size to read and maximum execution time are reasonable to check both on initiator and * additionally on each remote server, because these limits are checked per block of data processed, * and remote servers may process way more blocks of data than are received by initiator. */ if (to_stage == QueryProcessingStage::Complete) { limits.min_execution_speed = settings.min_execution_speed; limits.timeout_before_checking_execution_speed = settings.timeout_before_checking_execution_speed; } QuotaForIntervals & quota = context.getQuota(); pipeline.transform([&](auto & stream) { if (IProfilingBlockInputStream * p_stream = dynamic_cast(stream.get())) { p_stream->setLimits(limits); if (to_stage == QueryProcessingStage::Complete) p_stream->setQuota(quota); } }); } } else throw Exception("Logical error in InterpreterSelectQuery: nowhere to read", ErrorCodes::LOGICAL_ERROR); /// Aliases in table declaration. if (processing_stage == QueryProcessingStage::FetchColumns && alias_actions) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, alias_actions); }); } } void InterpreterSelectQuery::executeWhere(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool remove_fiter) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression, query.where_expression->getColumnName(), remove_fiter); }); } void InterpreterSelectQuery::executeAggregation(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final) { pipeline.transform([&](auto & stream) { stream = std::make_shared( std::make_shared(stream, expression)); }); Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header = pipeline.firstStream()->getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header.getPositionByName(name)); for (auto & descr : aggregates) if (descr.arguments.empty()) for (const auto & name : descr.argument_names) descr.arguments.push_back(header.getPositionByName(name)); const Settings & settings = context.getSettingsRef(); /** Two-level aggregation is useful in two cases: * 1. Parallel aggregation is done, and the results should be merged in parallel. * 2. An aggregation is done with store of temporary data on the disk, and they need to be merged in a memory efficient way. */ bool allow_to_use_two_level_group_by = pipeline.streams.size() > 1 || settings.max_bytes_before_external_group_by != 0; Aggregator::Params params(header, keys, aggregates, overflow_row, settings.max_rows_to_group_by, settings.group_by_overflow_mode, settings.compile ? &context.getCompiler() : nullptr, settings.min_count_to_compile, allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0), allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0), settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, context.getTemporaryPath()); /// If there are several sources, then we perform parallel aggregation if (pipeline.streams.size() > 1) { pipeline.firstStream() = std::make_shared( pipeline.streams, pipeline.stream_with_non_joined_data, params, final, max_streams, settings.aggregation_memory_efficient_merge_threads ? static_cast(settings.aggregation_memory_efficient_merge_threads) : static_cast(settings.max_threads)); pipeline.stream_with_non_joined_data = nullptr; pipeline.streams.resize(1); } else { BlockInputStreams inputs; if (!pipeline.streams.empty()) inputs.push_back(pipeline.firstStream()); else pipeline.streams.resize(1); if (pipeline.stream_with_non_joined_data) inputs.push_back(pipeline.stream_with_non_joined_data); pipeline.firstStream() = std::make_shared(std::make_shared(inputs), params, final); pipeline.stream_with_non_joined_data = nullptr; } } void InterpreterSelectQuery::executeMergeAggregated(Pipeline & pipeline, bool overflow_row, bool final) { Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header = pipeline.firstStream()->getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header.getPositionByName(name)); /** There are two modes of distributed aggregation. * * 1. In different threads read from the remote servers blocks. * Save all the blocks in the RAM. Merge blocks. * If the aggregation is two-level - parallelize to the number of buckets. * * 2. In one thread, read blocks from different servers in order. * RAM stores only one block from each server. * If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level. * * The second option consumes less memory (up to 256 times less) * in the case of two-level aggregation, which is used for large results after GROUP BY, * but it can work more slowly. */ Aggregator::Params params(header, keys, aggregates, overflow_row); const Settings & settings = context.getSettingsRef(); if (!settings.distributed_aggregation_memory_efficient) { /// We union several sources into one, parallelizing the work. executeUnion(pipeline); /// Now merge the aggregated blocks pipeline.firstStream() = std::make_shared(pipeline.firstStream(), params, final, settings.max_threads); } else { pipeline.firstStream() = std::make_shared(pipeline.streams, params, final, max_streams, settings.aggregation_memory_efficient_merge_threads ? static_cast(settings.aggregation_memory_efficient_merge_threads) : static_cast(settings.max_threads)); pipeline.streams.resize(1); } } void InterpreterSelectQuery::executeHaving(Pipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression, query.having_expression->getColumnName()); }); } void InterpreterSelectQuery::executeTotalsAndHaving(Pipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row, bool final) { executeUnion(pipeline); const Settings & settings = context.getSettingsRef(); pipeline.firstStream() = std::make_shared( pipeline.firstStream(), overflow_row, expression, has_having ? query.having_expression->getColumnName() : "", settings.totals_mode, settings.totals_auto_threshold, final); } void InterpreterSelectQuery::executeRollupOrCube(Pipeline & pipeline, bool is_rollup) { executeUnion(pipeline); Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header = pipeline.firstStream()->getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header.getPositionByName(name)); const Settings & settings = context.getSettingsRef(); Aggregator::Params params(header, keys, aggregates, false, settings.max_rows_to_group_by, settings.group_by_overflow_mode, settings.compile ? &context.getCompiler() : nullptr, settings.min_count_to_compile, SettingUInt64(0), SettingUInt64(0), settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, context.getTemporaryPath()); if (is_rollup) pipeline.firstStream() = std::make_shared(pipeline.firstStream(), params); else pipeline.firstStream() = std::make_shared(pipeline.firstStream(), params); } void InterpreterSelectQuery::executeExpression(Pipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression); }); } static SortDescription getSortDescription(ASTSelectQuery & query) { SortDescription order_descr; order_descr.reserve(query.order_expression_list->children.size()); for (const auto & elem : query.order_expression_list->children) { String name = elem->children.front()->getColumnName(); const ASTOrderByElement & order_by_elem = typeid_cast(*elem); std::shared_ptr collator; if (order_by_elem.collation) collator = std::make_shared(typeid_cast(*order_by_elem.collation).value.get()); order_descr.emplace_back(name, order_by_elem.direction, order_by_elem.nulls_direction, collator); } return order_descr; } static size_t getLimitForSorting(ASTSelectQuery & query) { /// Partial sort can be done if there is LIMIT but no DISTINCT or LIMIT BY. size_t limit = 0; if (!query.distinct && !query.limit_by_expression_list) { size_t limit_length = 0; size_t limit_offset = 0; getLimitLengthAndOffset(query, limit_length, limit_offset); limit = limit_length + limit_offset; } return limit; } void InterpreterSelectQuery::executeOrder(Pipeline & pipeline) { SortDescription order_descr = getSortDescription(query); size_t limit = getLimitForSorting(query); const Settings & settings = context.getSettingsRef(); pipeline.transform([&](auto & stream) { auto sorting_stream = std::make_shared(stream, order_descr, limit); /// Limits on sorting IProfilingBlockInputStream::LocalLimits limits; limits.mode = IProfilingBlockInputStream::LIMITS_TOTAL; limits.size_limits = SizeLimits(settings.max_rows_to_sort, settings.max_bytes_to_sort, settings.sort_overflow_mode); sorting_stream->setLimits(limits); stream = sorting_stream; }); /// If there are several streams, we merge them into one executeUnion(pipeline); /// Merge the sorted blocks. pipeline.firstStream() = std::make_shared( pipeline.firstStream(), order_descr, settings.max_block_size, limit, settings.max_bytes_before_external_sort, context.getTemporaryPath()); } void InterpreterSelectQuery::executeMergeSorted(Pipeline & pipeline) { SortDescription order_descr = getSortDescription(query); size_t limit = getLimitForSorting(query); const Settings & settings = context.getSettingsRef(); /// If there are several streams, then we merge them into one if (pipeline.hasMoreThanOneStream()) { /** MergingSortedBlockInputStream reads the sources sequentially. * To make the data on the remote servers prepared in parallel, we wrap it in AsynchronousBlockInputStream. */ pipeline.transform([&](auto & stream) { stream = std::make_shared(stream); }); /// Merge the sorted sources into one sorted source. pipeline.firstStream() = std::make_shared(pipeline.streams, order_descr, settings.max_block_size, limit); pipeline.streams.resize(1); } } void InterpreterSelectQuery::executeProjection(Pipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression); }); } void InterpreterSelectQuery::executeDistinct(Pipeline & pipeline, bool before_order, Names columns) { if (query.distinct) { const Settings & settings = context.getSettingsRef(); size_t limit_length = 0; size_t limit_offset = 0; getLimitLengthAndOffset(query, limit_length, limit_offset); size_t limit_for_distinct = 0; /// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows. if (!query.order_expression_list || !before_order) limit_for_distinct = limit_length + limit_offset; pipeline.transform([&](auto & stream) { SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode); stream = std::make_shared(stream, limits, limit_for_distinct, columns); }); } } void InterpreterSelectQuery::executeUnion(Pipeline & pipeline) { /// If there are still several streams, then we combine them into one if (pipeline.hasMoreThanOneStream()) { pipeline.firstStream() = std::make_shared>(pipeline.streams, pipeline.stream_with_non_joined_data, max_streams); pipeline.stream_with_non_joined_data = nullptr; pipeline.streams.resize(1); } else if (pipeline.stream_with_non_joined_data) { pipeline.streams.push_back(pipeline.stream_with_non_joined_data); pipeline.stream_with_non_joined_data = nullptr; } } /// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined. void InterpreterSelectQuery::executePreLimit(Pipeline & pipeline) { size_t limit_length = 0; size_t limit_offset = 0; getLimitLengthAndOffset(query, limit_length, limit_offset); /// If there is LIMIT if (query.limit_length) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, limit_length + limit_offset, 0, false); }); } } void InterpreterSelectQuery::executeLimitBy(Pipeline & pipeline) { if (!query.limit_by_value || !query.limit_by_expression_list) return; Names columns; for (const auto & elem : query.limit_by_expression_list->children) columns.emplace_back(elem->getColumnName()); size_t value = safeGet(typeid_cast(*query.limit_by_value).value); pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, value, columns); }); } bool hasWithTotalsInAnySubqueryInFromClause(const ASTSelectQuery & query) { if (query.group_by_with_totals) return true; /** NOTE You can also check that the table in the subquery is distributed, and that it only looks at one shard. * In other cases, totals will be computed on the initiating server of the query, and it is not necessary to read the data to the end. */ auto query_table = query.table(); if (query_table) { auto ast_union = typeid_cast(query_table.get()); if (ast_union) { for (const auto & elem : ast_union->list_of_selects->children) if (hasWithTotalsInAnySubqueryInFromClause(typeid_cast(*elem))) return true; } } return false; } void InterpreterSelectQuery::executeLimit(Pipeline & pipeline) { size_t limit_length = 0; size_t limit_offset = 0; getLimitLengthAndOffset(query, limit_length, limit_offset); /// If there is LIMIT if (query.limit_length) { /** Rare case: * if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels, * then when using LIMIT, you should read the data to the end, rather than cancel the query earlier, * because if you cancel the query, we will not get `totals` data from the remote server. * * Another case: * if there is WITH TOTALS and there is no ORDER BY, then read the data to the end, * otherwise TOTALS is counted according to incomplete data. */ bool always_read_till_end = false; if (query.group_by_with_totals && !query.order_expression_list) always_read_till_end = true; if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query)) always_read_till_end = true; pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, limit_length, limit_offset, always_read_till_end); }); } } void InterpreterSelectQuery::executeExtremes(Pipeline & pipeline) { if (!context.getSettingsRef().extremes) return; pipeline.transform([&](auto & stream) { if (IProfilingBlockInputStream * p_stream = dynamic_cast(stream.get())) p_stream->enableExtremes(); }); } void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(Pipeline & pipeline, SubqueriesForSets & subqueries_for_sets) { const Settings & settings = context.getSettingsRef(); executeUnion(pipeline); pipeline.firstStream() = std::make_shared( pipeline.firstStream(), subqueries_for_sets, SizeLimits(settings.max_rows_to_transfer, settings.max_bytes_to_transfer, settings.transfer_overflow_mode)); } void InterpreterSelectQuery::ignoreWithTotals() { query.group_by_with_totals = false; } void InterpreterSelectQuery::initSettings() { if (query.settings) InterpreterSetQuery(query.settings, context).executeForCurrentContext(); } }