#if !defined(ARCADIA_BUILD) # include "config_functions.h" #endif #if USE_S2_GEOMETRY #include #include #include #include #include #include #include #include #include "s2_fwd.h" namespace DB { namespace ErrorCodes { extern const int ILLEGAL_TYPE_OF_ARGUMENT; extern const int BAD_ARGUMENTS; } namespace { /** * The cap represents a portion of the sphere that has been cut off by a plane. * It is defined by a point on a sphere and a radius in degrees. * Imagine that we draw a line through the center of the sphere and our point. * An infinite number of planes pass through this line, but any plane will intersect the cap in two points. * Thus the angle is defined by one of this points and the entire line. * So, the radius of Pi/2 defines a hemisphere and the radius of Pi defines a whole sphere. * * This function returns whether a cap contains a point. */ class FunctionS2CapContains : public IFunction { public: static constexpr auto name = "s2CapContains"; static FunctionPtr create(ContextPtr) { return std::make_shared(); } std::string getName() const override { return name; } size_t getNumberOfArguments() const override { return 3; } bool useDefaultImplementationForConstants() const override { return true; } bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; } DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override { for (size_t index = 0; index < getNumberOfArguments(); ++index) { const auto * arg = arguments[index].get(); /// Radius if (index == 1) { if (!WhichDataType(arg).isFloat64()) throw Exception( ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument {} of function {}. Must be Float64", arg->getName(), 2, getName()); } else if (!WhichDataType(arg).isUInt64()) throw Exception( ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument {} of function {}. Must be UInt64", arg->getName(), index + 1, getName()); } return std::make_shared(); } ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override { const auto * col_center = arguments[0].column.get(); const auto * col_degrees = arguments[1].column.get(); const auto * col_point = arguments[2].column.get(); auto dst = ColumnUInt8::create(); auto & dst_data = dst->getData(); dst_data.reserve(input_rows_count); for (const auto row : collections::range(0, input_rows_count)) { const auto center = S2CellId(col_center->getUInt(row)); const Float64 degrees = col_degrees->getFloat64(row); const auto point = S2CellId(col_point->getUInt(row)); if (isNaN(degrees)) throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Radius of the cap must not be nan"); if (std::isinf(degrees)) throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Radius of the cap must not be infinite"); if (!center.is_valid()) throw Exception(ErrorCodes::BAD_ARGUMENTS, "Center is not valid"); if (!point.is_valid()) throw Exception(ErrorCodes::BAD_ARGUMENTS, "Point is not valid"); S1Angle angle = S1Angle::Degrees(degrees); S2Cap cap(center.ToPoint(), angle); dst_data.emplace_back(cap.Contains(point.ToPoint())); } return dst; } }; } void registerFunctionS2CapContains(FunctionFactory & factory) { factory.registerFunction(); } } #endif