mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-27 01:51:59 +00:00
983 lines
32 KiB
C++
983 lines
32 KiB
C++
// Copyright 2010 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#include "double-conversion.h"
|
|
|
|
#include "bignum-dtoa.h"
|
|
#include "fast-dtoa.h"
|
|
#include "fixed-dtoa.h"
|
|
#include "ieee.h"
|
|
#include "strtod.h"
|
|
#include "utils.h"
|
|
|
|
namespace double_conversion {
|
|
|
|
const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() {
|
|
int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN;
|
|
static DoubleToStringConverter converter(flags,
|
|
"Infinity",
|
|
"NaN",
|
|
'e',
|
|
-6, 21,
|
|
6, 0);
|
|
return converter;
|
|
}
|
|
|
|
|
|
bool DoubleToStringConverter::HandleSpecialValues(
|
|
double value,
|
|
StringBuilder* result_builder) const {
|
|
Double double_inspect(value);
|
|
if (double_inspect.IsInfinite()) {
|
|
if (infinity_symbol_ == NULL) return false;
|
|
if (value < 0) {
|
|
result_builder->AddCharacter('-');
|
|
}
|
|
result_builder->AddString(infinity_symbol_);
|
|
return true;
|
|
}
|
|
if (double_inspect.IsNan()) {
|
|
if (nan_symbol_ == NULL) return false;
|
|
result_builder->AddString(nan_symbol_);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void DoubleToStringConverter::CreateExponentialRepresentation(
|
|
const char* decimal_digits,
|
|
int length,
|
|
int exponent,
|
|
StringBuilder* result_builder) const {
|
|
ASSERT(length != 0);
|
|
result_builder->AddCharacter(decimal_digits[0]);
|
|
if (length != 1) {
|
|
result_builder->AddCharacter('.');
|
|
result_builder->AddSubstring(&decimal_digits[1], length-1);
|
|
}
|
|
result_builder->AddCharacter(exponent_character_);
|
|
if (exponent < 0) {
|
|
result_builder->AddCharacter('-');
|
|
exponent = -exponent;
|
|
} else {
|
|
if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) {
|
|
result_builder->AddCharacter('+');
|
|
}
|
|
}
|
|
if (exponent == 0) {
|
|
result_builder->AddCharacter('0');
|
|
return;
|
|
}
|
|
ASSERT(exponent < 1e4);
|
|
const int kMaxExponentLength = 5;
|
|
char buffer[kMaxExponentLength + 1];
|
|
buffer[kMaxExponentLength] = '\0';
|
|
int first_char_pos = kMaxExponentLength;
|
|
while (exponent > 0) {
|
|
buffer[--first_char_pos] = '0' + (exponent % 10);
|
|
exponent /= 10;
|
|
}
|
|
result_builder->AddSubstring(&buffer[first_char_pos],
|
|
kMaxExponentLength - first_char_pos);
|
|
}
|
|
|
|
|
|
void DoubleToStringConverter::CreateDecimalRepresentation(
|
|
const char* decimal_digits,
|
|
int length,
|
|
int decimal_point,
|
|
int digits_after_point,
|
|
StringBuilder* result_builder) const {
|
|
// Create a representation that is padded with zeros if needed.
|
|
if (decimal_point <= 0) {
|
|
// "0.00000decimal_rep".
|
|
result_builder->AddCharacter('0');
|
|
if (digits_after_point > 0) {
|
|
result_builder->AddCharacter('.');
|
|
result_builder->AddPadding('0', -decimal_point);
|
|
ASSERT(length <= digits_after_point - (-decimal_point));
|
|
result_builder->AddSubstring(decimal_digits, length);
|
|
int remaining_digits = digits_after_point - (-decimal_point) - length;
|
|
result_builder->AddPadding('0', remaining_digits);
|
|
}
|
|
} else if (decimal_point >= length) {
|
|
// "decimal_rep0000.00000" or "decimal_rep.0000"
|
|
result_builder->AddSubstring(decimal_digits, length);
|
|
result_builder->AddPadding('0', decimal_point - length);
|
|
if (digits_after_point > 0) {
|
|
result_builder->AddCharacter('.');
|
|
result_builder->AddPadding('0', digits_after_point);
|
|
}
|
|
} else {
|
|
// "decima.l_rep000"
|
|
ASSERT(digits_after_point > 0);
|
|
result_builder->AddSubstring(decimal_digits, decimal_point);
|
|
result_builder->AddCharacter('.');
|
|
ASSERT(length - decimal_point <= digits_after_point);
|
|
result_builder->AddSubstring(&decimal_digits[decimal_point],
|
|
length - decimal_point);
|
|
int remaining_digits = digits_after_point - (length - decimal_point);
|
|
result_builder->AddPadding('0', remaining_digits);
|
|
}
|
|
if (digits_after_point == 0) {
|
|
if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) {
|
|
result_builder->AddCharacter('.');
|
|
}
|
|
if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) {
|
|
result_builder->AddCharacter('0');
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool DoubleToStringConverter::ToShortestIeeeNumber(
|
|
double value,
|
|
StringBuilder* result_builder,
|
|
DoubleToStringConverter::DtoaMode mode) const {
|
|
ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE);
|
|
if (Double(value).IsSpecial()) {
|
|
return HandleSpecialValues(value, result_builder);
|
|
}
|
|
|
|
int decimal_point;
|
|
bool sign;
|
|
const int kDecimalRepCapacity = kBase10MaximalLength + 1;
|
|
char decimal_rep[kDecimalRepCapacity];
|
|
int decimal_rep_length;
|
|
|
|
DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity,
|
|
&sign, &decimal_rep_length, &decimal_point);
|
|
|
|
bool unique_zero = (flags_ & UNIQUE_ZERO) != 0;
|
|
if (sign && (value != 0.0 || !unique_zero)) {
|
|
result_builder->AddCharacter('-');
|
|
}
|
|
|
|
int exponent = decimal_point - 1;
|
|
if ((decimal_in_shortest_low_ <= exponent) &&
|
|
(exponent < decimal_in_shortest_high_)) {
|
|
CreateDecimalRepresentation(decimal_rep, decimal_rep_length,
|
|
decimal_point,
|
|
Max(0, decimal_rep_length - decimal_point),
|
|
result_builder);
|
|
} else {
|
|
CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent,
|
|
result_builder);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool DoubleToStringConverter::ToFixed(double value,
|
|
int requested_digits,
|
|
StringBuilder* result_builder) const {
|
|
ASSERT(kMaxFixedDigitsBeforePoint == 60);
|
|
const double kFirstNonFixed = 1e60;
|
|
|
|
if (Double(value).IsSpecial()) {
|
|
return HandleSpecialValues(value, result_builder);
|
|
}
|
|
|
|
if (requested_digits > kMaxFixedDigitsAfterPoint) return false;
|
|
if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false;
|
|
|
|
// Find a sufficiently precise decimal representation of n.
|
|
int decimal_point;
|
|
bool sign;
|
|
// Add space for the '\0' byte.
|
|
const int kDecimalRepCapacity =
|
|
kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1;
|
|
char decimal_rep[kDecimalRepCapacity];
|
|
int decimal_rep_length;
|
|
DoubleToAscii(value, FIXED, requested_digits,
|
|
decimal_rep, kDecimalRepCapacity,
|
|
&sign, &decimal_rep_length, &decimal_point);
|
|
|
|
bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
|
|
if (sign && (value != 0.0 || !unique_zero)) {
|
|
result_builder->AddCharacter('-');
|
|
}
|
|
|
|
CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
|
|
requested_digits, result_builder);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool DoubleToStringConverter::ToExponential(
|
|
double value,
|
|
int requested_digits,
|
|
StringBuilder* result_builder) const {
|
|
if (Double(value).IsSpecial()) {
|
|
return HandleSpecialValues(value, result_builder);
|
|
}
|
|
|
|
if (requested_digits < -1) return false;
|
|
if (requested_digits > kMaxExponentialDigits) return false;
|
|
|
|
int decimal_point;
|
|
bool sign;
|
|
// Add space for digit before the decimal point and the '\0' character.
|
|
const int kDecimalRepCapacity = kMaxExponentialDigits + 2;
|
|
ASSERT(kDecimalRepCapacity > kBase10MaximalLength);
|
|
char decimal_rep[kDecimalRepCapacity];
|
|
int decimal_rep_length;
|
|
|
|
if (requested_digits == -1) {
|
|
DoubleToAscii(value, SHORTEST, 0,
|
|
decimal_rep, kDecimalRepCapacity,
|
|
&sign, &decimal_rep_length, &decimal_point);
|
|
} else {
|
|
DoubleToAscii(value, PRECISION, requested_digits + 1,
|
|
decimal_rep, kDecimalRepCapacity,
|
|
&sign, &decimal_rep_length, &decimal_point);
|
|
ASSERT(decimal_rep_length <= requested_digits + 1);
|
|
|
|
for (int i = decimal_rep_length; i < requested_digits + 1; ++i) {
|
|
decimal_rep[i] = '0';
|
|
}
|
|
decimal_rep_length = requested_digits + 1;
|
|
}
|
|
|
|
bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
|
|
if (sign && (value != 0.0 || !unique_zero)) {
|
|
result_builder->AddCharacter('-');
|
|
}
|
|
|
|
int exponent = decimal_point - 1;
|
|
CreateExponentialRepresentation(decimal_rep,
|
|
decimal_rep_length,
|
|
exponent,
|
|
result_builder);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool DoubleToStringConverter::ToPrecision(double value,
|
|
int precision,
|
|
StringBuilder* result_builder) const {
|
|
if (Double(value).IsSpecial()) {
|
|
return HandleSpecialValues(value, result_builder);
|
|
}
|
|
|
|
if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) {
|
|
return false;
|
|
}
|
|
|
|
// Find a sufficiently precise decimal representation of n.
|
|
int decimal_point;
|
|
bool sign;
|
|
// Add one for the terminating null character.
|
|
const int kDecimalRepCapacity = kMaxPrecisionDigits + 1;
|
|
char decimal_rep[kDecimalRepCapacity];
|
|
int decimal_rep_length;
|
|
|
|
DoubleToAscii(value, PRECISION, precision,
|
|
decimal_rep, kDecimalRepCapacity,
|
|
&sign, &decimal_rep_length, &decimal_point);
|
|
ASSERT(decimal_rep_length <= precision);
|
|
|
|
bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0);
|
|
if (sign && (value != 0.0 || !unique_zero)) {
|
|
result_builder->AddCharacter('-');
|
|
}
|
|
|
|
// The exponent if we print the number as x.xxeyyy. That is with the
|
|
// decimal point after the first digit.
|
|
int exponent = decimal_point - 1;
|
|
|
|
int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0;
|
|
if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) ||
|
|
(decimal_point - precision + extra_zero >
|
|
max_trailing_padding_zeroes_in_precision_mode_)) {
|
|
// Fill buffer to contain 'precision' digits.
|
|
// Usually the buffer is already at the correct length, but 'DoubleToAscii'
|
|
// is allowed to return less characters.
|
|
for (int i = decimal_rep_length; i < precision; ++i) {
|
|
decimal_rep[i] = '0';
|
|
}
|
|
|
|
CreateExponentialRepresentation(decimal_rep,
|
|
precision,
|
|
exponent,
|
|
result_builder);
|
|
} else {
|
|
CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point,
|
|
Max(0, precision - decimal_point),
|
|
result_builder);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
static BignumDtoaMode DtoaToBignumDtoaMode(
|
|
DoubleToStringConverter::DtoaMode dtoa_mode) {
|
|
switch (dtoa_mode) {
|
|
case DoubleToStringConverter::SHORTEST: return BIGNUM_DTOA_SHORTEST;
|
|
case DoubleToStringConverter::SHORTEST_SINGLE:
|
|
return BIGNUM_DTOA_SHORTEST_SINGLE;
|
|
case DoubleToStringConverter::FIXED: return BIGNUM_DTOA_FIXED;
|
|
case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
void DoubleToStringConverter::DoubleToAscii(double v,
|
|
DtoaMode mode,
|
|
int requested_digits,
|
|
char* buffer,
|
|
int buffer_length,
|
|
bool* sign,
|
|
int* length,
|
|
int* point) {
|
|
Vector<char> vector(buffer, buffer_length);
|
|
ASSERT(!Double(v).IsSpecial());
|
|
ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0);
|
|
|
|
if (Double(v).Sign() < 0) {
|
|
*sign = true;
|
|
v = -v;
|
|
} else {
|
|
*sign = false;
|
|
}
|
|
|
|
if (mode == PRECISION && requested_digits == 0) {
|
|
vector[0] = '\0';
|
|
*length = 0;
|
|
return;
|
|
}
|
|
|
|
if (v == 0) {
|
|
vector[0] = '0';
|
|
vector[1] = '\0';
|
|
*length = 1;
|
|
*point = 1;
|
|
return;
|
|
}
|
|
|
|
bool fast_worked;
|
|
switch (mode) {
|
|
case SHORTEST:
|
|
fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point);
|
|
break;
|
|
case SHORTEST_SINGLE:
|
|
fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0,
|
|
vector, length, point);
|
|
break;
|
|
case FIXED:
|
|
fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point);
|
|
break;
|
|
case PRECISION:
|
|
fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits,
|
|
vector, length, point);
|
|
break;
|
|
default:
|
|
fast_worked = false;
|
|
UNREACHABLE();
|
|
}
|
|
if (fast_worked) return;
|
|
|
|
// If the fast dtoa didn't succeed use the slower bignum version.
|
|
BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode);
|
|
BignumDtoa(v, bignum_mode, requested_digits, vector, length, point);
|
|
vector[*length] = '\0';
|
|
}
|
|
|
|
|
|
// Consumes the given substring from the iterator.
|
|
// Returns false, if the substring does not match.
|
|
template <class Iterator>
|
|
static bool ConsumeSubString(Iterator* current,
|
|
Iterator end,
|
|
const char* substring) {
|
|
ASSERT(**current == *substring);
|
|
for (substring++; *substring != '\0'; substring++) {
|
|
++*current;
|
|
if (*current == end || **current != *substring) return false;
|
|
}
|
|
++*current;
|
|
return true;
|
|
}
|
|
|
|
|
|
// Maximum number of significant digits in decimal representation.
|
|
// The longest possible double in decimal representation is
|
|
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
|
|
// (768 digits). If we parse a number whose first digits are equal to a
|
|
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
|
|
// must be rounded to the bigger one unless the tail consists of zeros, so
|
|
// we don't need to preserve all the digits.
|
|
const int kMaxSignificantDigits = 772;
|
|
|
|
|
|
static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
|
|
static const int kWhitespaceTable7Length = ARRAY_SIZE(kWhitespaceTable7);
|
|
|
|
|
|
static const uc16 kWhitespaceTable16[] = {
|
|
160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
|
|
8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
|
|
};
|
|
static const int kWhitespaceTable16Length = ARRAY_SIZE(kWhitespaceTable16);
|
|
|
|
|
|
static bool isWhitespace(int x) {
|
|
if (x < 128) {
|
|
for (int i = 0; i < kWhitespaceTable7Length; i++) {
|
|
if (kWhitespaceTable7[i] == x) return true;
|
|
}
|
|
} else {
|
|
for (int i = 0; i < kWhitespaceTable16Length; i++) {
|
|
if (kWhitespaceTable16[i] == x) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Returns true if a nonspace found and false if the end has reached.
|
|
template <class Iterator>
|
|
static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
|
|
while (*current != end) {
|
|
if (!isWhitespace(**current)) return true;
|
|
++*current;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool isDigit(int x, int radix) {
|
|
return (x >= '0' && x <= '9' && x < '0' + radix)
|
|
|| (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
|
|
|| (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
|
|
}
|
|
|
|
|
|
static double SignedZero(bool sign) {
|
|
return sign ? -0.0 : 0.0;
|
|
}
|
|
|
|
|
|
// Returns true if 'c' is a decimal digit that is valid for the given radix.
|
|
//
|
|
// The function is small and could be inlined, but VS2012 emitted a warning
|
|
// because it constant-propagated the radix and concluded that the last
|
|
// condition was always true. By moving it into a separate function the
|
|
// compiler wouldn't warn anymore.
|
|
#if _MSC_VER
|
|
#pragma optimize("",off)
|
|
static bool IsDecimalDigitForRadix(int c, int radix) {
|
|
return '0' <= c && c <= '9' && (c - '0') < radix;
|
|
}
|
|
#pragma optimize("",on)
|
|
#else
|
|
static bool inline IsDecimalDigitForRadix(int c, int radix) {
|
|
return '0' <= c && c <= '9' && (c - '0') < radix;
|
|
}
|
|
#endif
|
|
// Returns true if 'c' is a character digit that is valid for the given radix.
|
|
// The 'a_character' should be 'a' or 'A'.
|
|
//
|
|
// The function is small and could be inlined, but VS2012 emitted a warning
|
|
// because it constant-propagated the radix and concluded that the first
|
|
// condition was always false. By moving it into a separate function the
|
|
// compiler wouldn't warn anymore.
|
|
static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
|
|
return radix > 10 && c >= a_character && c < a_character + radix - 10;
|
|
}
|
|
|
|
|
|
// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
|
|
template <int radix_log_2, class Iterator>
|
|
static double RadixStringToIeee(Iterator* current,
|
|
Iterator end,
|
|
bool sign,
|
|
bool allow_trailing_junk,
|
|
double junk_string_value,
|
|
bool read_as_double,
|
|
bool* result_is_junk) {
|
|
ASSERT(*current != end);
|
|
|
|
const int kDoubleSize = Double::kSignificandSize;
|
|
const int kSingleSize = Single::kSignificandSize;
|
|
const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
|
|
|
|
*result_is_junk = true;
|
|
|
|
// Skip leading 0s.
|
|
while (**current == '0') {
|
|
++(*current);
|
|
if (*current == end) {
|
|
*result_is_junk = false;
|
|
return SignedZero(sign);
|
|
}
|
|
}
|
|
|
|
int64_t number = 0;
|
|
int exponent = 0;
|
|
const int radix = (1 << radix_log_2);
|
|
|
|
do {
|
|
int digit;
|
|
if (IsDecimalDigitForRadix(**current, radix)) {
|
|
digit = static_cast<char>(**current) - '0';
|
|
} else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
|
|
digit = static_cast<char>(**current) - 'a' + 10;
|
|
} else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
|
|
digit = static_cast<char>(**current) - 'A' + 10;
|
|
} else {
|
|
if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
|
|
break;
|
|
} else {
|
|
return junk_string_value;
|
|
}
|
|
}
|
|
|
|
number = number * radix + digit;
|
|
int overflow = static_cast<int>(number >> kSignificandSize);
|
|
if (overflow != 0) {
|
|
// Overflow occurred. Need to determine which direction to round the
|
|
// result.
|
|
int overflow_bits_count = 1;
|
|
while (overflow > 1) {
|
|
overflow_bits_count++;
|
|
overflow >>= 1;
|
|
}
|
|
|
|
int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
|
|
int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
|
|
number >>= overflow_bits_count;
|
|
exponent = overflow_bits_count;
|
|
|
|
bool zero_tail = true;
|
|
for (;;) {
|
|
++(*current);
|
|
if (*current == end || !isDigit(**current, radix)) break;
|
|
zero_tail = zero_tail && **current == '0';
|
|
exponent += radix_log_2;
|
|
}
|
|
|
|
if (!allow_trailing_junk && AdvanceToNonspace(current, end)) {
|
|
return junk_string_value;
|
|
}
|
|
|
|
int middle_value = (1 << (overflow_bits_count - 1));
|
|
if (dropped_bits > middle_value) {
|
|
number++; // Rounding up.
|
|
} else if (dropped_bits == middle_value) {
|
|
// Rounding to even to consistency with decimals: half-way case rounds
|
|
// up if significant part is odd and down otherwise.
|
|
if ((number & 1) != 0 || !zero_tail) {
|
|
number++; // Rounding up.
|
|
}
|
|
}
|
|
|
|
// Rounding up may cause overflow.
|
|
if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
|
|
exponent++;
|
|
number >>= 1;
|
|
}
|
|
break;
|
|
}
|
|
++(*current);
|
|
} while (*current != end);
|
|
|
|
ASSERT(number < ((int64_t)1 << kSignificandSize));
|
|
ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
|
|
|
|
*result_is_junk = false;
|
|
|
|
if (exponent == 0) {
|
|
if (sign) {
|
|
if (number == 0) return -0.0;
|
|
number = -number;
|
|
}
|
|
return static_cast<double>(number);
|
|
}
|
|
|
|
ASSERT(number != 0);
|
|
return Double(DiyFp(number, exponent)).value();
|
|
}
|
|
|
|
|
|
template <class Iterator>
|
|
double StringToDoubleConverter::StringToIeee(
|
|
Iterator input,
|
|
int length,
|
|
bool read_as_double,
|
|
int* processed_characters_count) const {
|
|
Iterator current = input;
|
|
Iterator end = input + length;
|
|
|
|
*processed_characters_count = 0;
|
|
|
|
const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
|
|
const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
|
|
const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
|
|
const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
|
|
|
|
// To make sure that iterator dereferencing is valid the following
|
|
// convention is used:
|
|
// 1. Each '++current' statement is followed by check for equality to 'end'.
|
|
// 2. If AdvanceToNonspace returned false then current == end.
|
|
// 3. If 'current' becomes equal to 'end' the function returns or goes to
|
|
// 'parsing_done'.
|
|
// 4. 'current' is not dereferenced after the 'parsing_done' label.
|
|
// 5. Code before 'parsing_done' may rely on 'current != end'.
|
|
if (current == end) return empty_string_value_;
|
|
|
|
if (allow_leading_spaces || allow_trailing_spaces) {
|
|
if (!AdvanceToNonspace(¤t, end)) {
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
return empty_string_value_;
|
|
}
|
|
if (!allow_leading_spaces && (input != current)) {
|
|
// No leading spaces allowed, but AdvanceToNonspace moved forward.
|
|
return junk_string_value_;
|
|
}
|
|
}
|
|
|
|
// The longest form of simplified number is: "-<significant digits>.1eXXX\0".
|
|
const int kBufferSize = kMaxSignificantDigits + 10;
|
|
char buffer[kBufferSize]; // NOLINT: size is known at compile time.
|
|
int buffer_pos = 0;
|
|
|
|
// Exponent will be adjusted if insignificant digits of the integer part
|
|
// or insignificant leading zeros of the fractional part are dropped.
|
|
int exponent = 0;
|
|
int significant_digits = 0;
|
|
int insignificant_digits = 0;
|
|
bool nonzero_digit_dropped = false;
|
|
|
|
bool sign = false;
|
|
|
|
if (*current == '+' || *current == '-') {
|
|
sign = (*current == '-');
|
|
++current;
|
|
Iterator next_non_space = current;
|
|
// Skip following spaces (if allowed).
|
|
if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
|
|
if (!allow_spaces_after_sign && (current != next_non_space)) {
|
|
return junk_string_value_;
|
|
}
|
|
current = next_non_space;
|
|
}
|
|
|
|
if (infinity_symbol_ != NULL) {
|
|
if (*current == infinity_symbol_[0]) {
|
|
if (!ConsumeSubString(¤t, end, infinity_symbol_)) {
|
|
return junk_string_value_;
|
|
}
|
|
|
|
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
|
|
return junk_string_value_;
|
|
}
|
|
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
|
|
return junk_string_value_;
|
|
}
|
|
|
|
ASSERT(buffer_pos == 0);
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
return sign ? -Double::Infinity() : Double::Infinity();
|
|
}
|
|
}
|
|
|
|
if (nan_symbol_ != NULL) {
|
|
if (*current == nan_symbol_[0]) {
|
|
if (!ConsumeSubString(¤t, end, nan_symbol_)) {
|
|
return junk_string_value_;
|
|
}
|
|
|
|
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
|
|
return junk_string_value_;
|
|
}
|
|
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
|
|
return junk_string_value_;
|
|
}
|
|
|
|
ASSERT(buffer_pos == 0);
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
return sign ? -Double::NaN() : Double::NaN();
|
|
}
|
|
}
|
|
|
|
bool leading_zero = false;
|
|
if (*current == '0') {
|
|
++current;
|
|
if (current == end) {
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
return SignedZero(sign);
|
|
}
|
|
|
|
leading_zero = true;
|
|
|
|
// It could be hexadecimal value.
|
|
if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
|
|
++current;
|
|
if (current == end || !isDigit(*current, 16)) {
|
|
return junk_string_value_; // "0x".
|
|
}
|
|
|
|
bool result_is_junk;
|
|
double result = RadixStringToIeee<4>(¤t,
|
|
end,
|
|
sign,
|
|
allow_trailing_junk,
|
|
junk_string_value_,
|
|
read_as_double,
|
|
&result_is_junk);
|
|
if (!result_is_junk) {
|
|
if (allow_trailing_spaces) AdvanceToNonspace(¤t, end);
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Ignore leading zeros in the integer part.
|
|
while (*current == '0') {
|
|
++current;
|
|
if (current == end) {
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
return SignedZero(sign);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
|
|
|
|
// Copy significant digits of the integer part (if any) to the buffer.
|
|
while (*current >= '0' && *current <= '9') {
|
|
if (significant_digits < kMaxSignificantDigits) {
|
|
ASSERT(buffer_pos < kBufferSize);
|
|
buffer[buffer_pos++] = static_cast<char>(*current);
|
|
significant_digits++;
|
|
// Will later check if it's an octal in the buffer.
|
|
} else {
|
|
insignificant_digits++; // Move the digit into the exponential part.
|
|
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
|
}
|
|
octal = octal && *current < '8';
|
|
++current;
|
|
if (current == end) goto parsing_done;
|
|
}
|
|
|
|
if (significant_digits == 0) {
|
|
octal = false;
|
|
}
|
|
|
|
if (*current == '.') {
|
|
if (octal && !allow_trailing_junk) return junk_string_value_;
|
|
if (octal) goto parsing_done;
|
|
|
|
++current;
|
|
if (current == end) {
|
|
if (significant_digits == 0 && !leading_zero) {
|
|
return junk_string_value_;
|
|
} else {
|
|
goto parsing_done;
|
|
}
|
|
}
|
|
|
|
if (significant_digits == 0) {
|
|
// octal = false;
|
|
// Integer part consists of 0 or is absent. Significant digits start after
|
|
// leading zeros (if any).
|
|
while (*current == '0') {
|
|
++current;
|
|
if (current == end) {
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
return SignedZero(sign);
|
|
}
|
|
exponent--; // Move this 0 into the exponent.
|
|
}
|
|
}
|
|
|
|
// There is a fractional part.
|
|
// We don't emit a '.', but adjust the exponent instead.
|
|
while (*current >= '0' && *current <= '9') {
|
|
if (significant_digits < kMaxSignificantDigits) {
|
|
ASSERT(buffer_pos < kBufferSize);
|
|
buffer[buffer_pos++] = static_cast<char>(*current);
|
|
significant_digits++;
|
|
exponent--;
|
|
} else {
|
|
// Ignore insignificant digits in the fractional part.
|
|
nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
|
|
}
|
|
++current;
|
|
if (current == end) goto parsing_done;
|
|
}
|
|
}
|
|
|
|
if (!leading_zero && exponent == 0 && significant_digits == 0) {
|
|
// If leading_zeros is true then the string contains zeros.
|
|
// If exponent < 0 then string was [+-]\.0*...
|
|
// If significant_digits != 0 the string is not equal to 0.
|
|
// Otherwise there are no digits in the string.
|
|
return junk_string_value_;
|
|
}
|
|
|
|
// Parse exponential part.
|
|
if (*current == 'e' || *current == 'E') {
|
|
if (octal && !allow_trailing_junk) return junk_string_value_;
|
|
if (octal) goto parsing_done;
|
|
++current;
|
|
if (current == end) {
|
|
if (allow_trailing_junk) {
|
|
goto parsing_done;
|
|
} else {
|
|
return junk_string_value_;
|
|
}
|
|
}
|
|
char exponen_sign = '+';
|
|
if (*current == '+' || *current == '-') {
|
|
exponen_sign = static_cast<char>(*current);
|
|
++current;
|
|
if (current == end) {
|
|
if (allow_trailing_junk) {
|
|
goto parsing_done;
|
|
} else {
|
|
return junk_string_value_;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (current == end || *current < '0' || *current > '9') {
|
|
if (allow_trailing_junk) {
|
|
goto parsing_done;
|
|
} else {
|
|
return junk_string_value_;
|
|
}
|
|
}
|
|
|
|
const int max_exponent = INT_MAX / 2;
|
|
ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
|
|
int num = 0;
|
|
do {
|
|
// Check overflow.
|
|
int digit = *current - '0';
|
|
if (num >= max_exponent / 10
|
|
&& !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
|
|
num = max_exponent;
|
|
} else {
|
|
num = num * 10 + digit;
|
|
}
|
|
++current;
|
|
} while (current != end && *current >= '0' && *current <= '9');
|
|
|
|
exponent += (exponen_sign == '-' ? -num : num);
|
|
}
|
|
|
|
if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
|
|
return junk_string_value_;
|
|
}
|
|
if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) {
|
|
return junk_string_value_;
|
|
}
|
|
if (allow_trailing_spaces) {
|
|
AdvanceToNonspace(¤t, end);
|
|
}
|
|
|
|
parsing_done:
|
|
exponent += insignificant_digits;
|
|
|
|
if (octal) {
|
|
double result;
|
|
bool result_is_junk;
|
|
char* start = buffer;
|
|
result = RadixStringToIeee<3>(&start,
|
|
buffer + buffer_pos,
|
|
sign,
|
|
allow_trailing_junk,
|
|
junk_string_value_,
|
|
read_as_double,
|
|
&result_is_junk);
|
|
ASSERT(!result_is_junk);
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
return result;
|
|
}
|
|
|
|
if (nonzero_digit_dropped) {
|
|
buffer[buffer_pos++] = '1';
|
|
exponent--;
|
|
}
|
|
|
|
ASSERT(buffer_pos < kBufferSize);
|
|
buffer[buffer_pos] = '\0';
|
|
|
|
double converted;
|
|
if (read_as_double) {
|
|
converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
|
|
} else {
|
|
converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent);
|
|
}
|
|
*processed_characters_count = static_cast<int>(current - input);
|
|
return sign? -converted: converted;
|
|
}
|
|
|
|
|
|
double StringToDoubleConverter::StringToDouble(
|
|
const char* buffer,
|
|
int length,
|
|
int* processed_characters_count) const {
|
|
return StringToIeee(buffer, length, true, processed_characters_count);
|
|
}
|
|
|
|
|
|
double StringToDoubleConverter::StringToDouble(
|
|
const uc16* buffer,
|
|
int length,
|
|
int* processed_characters_count) const {
|
|
return StringToIeee(buffer, length, true, processed_characters_count);
|
|
}
|
|
|
|
|
|
float StringToDoubleConverter::StringToFloat(
|
|
const char* buffer,
|
|
int length,
|
|
int* processed_characters_count) const {
|
|
return static_cast<float>(StringToIeee(buffer, length, false,
|
|
processed_characters_count));
|
|
}
|
|
|
|
|
|
float StringToDoubleConverter::StringToFloat(
|
|
const uc16* buffer,
|
|
int length,
|
|
int* processed_characters_count) const {
|
|
return static_cast<float>(StringToIeee(buffer, length, false,
|
|
processed_characters_count));
|
|
}
|
|
|
|
} // namespace double_conversion
|