ClickHouse/src/Interpreters/ProcessList.cpp
2024-02-27 01:34:50 +03:00

749 lines
28 KiB
C++

#include <Interpreters/ProcessList.h>
#include <Core/Settings.h>
#include <Interpreters/Context.h>
#include <Interpreters/DatabaseAndTableWithAlias.h>
#include <Parsers/ASTSelectWithUnionQuery.h>
#include <Parsers/ASTSelectQuery.h>
#include <Parsers/ASTKillQueryQuery.h>
#include <Parsers/IAST.h>
#include <Parsers/queryNormalization.h>
#include <Processors/Executors/PipelineExecutor.h>
#include <Common/Exception.h>
#include <Common/CurrentThread.h>
#include <Common/logger_useful.h>
#include <chrono>
namespace CurrentMetrics
{
extern const Metric Query;
}
namespace DB
{
namespace ErrorCodes
{
extern const int TOO_MANY_SIMULTANEOUS_QUERIES;
extern const int QUERY_WITH_SAME_ID_IS_ALREADY_RUNNING;
extern const int LOGICAL_ERROR;
extern const int QUERY_WAS_CANCELLED;
}
/// Should we execute the query even if max_concurrent_queries limit is exhausted
static bool isUnlimitedQuery(const IAST * ast)
{
if (!ast)
return false;
/// It is KILL QUERY or an async insert flush query
if (ast->as<ASTKillQueryQuery>() || ast->getQueryKind() == IAST::QueryKind::AsyncInsertFlush)
return true;
/// It is SELECT FROM system.processes
/// NOTE: This is very rough check.
/// False negative: USE system; SELECT * FROM processes;
/// False positive: SELECT * FROM system.processes CROSS JOIN (SELECT ...)
if (const auto * ast_selects = ast->as<ASTSelectWithUnionQuery>())
{
if (!ast_selects->list_of_selects || ast_selects->list_of_selects->children.empty())
return false;
const auto * ast_select = ast_selects->list_of_selects->children[0]->as<ASTSelectQuery>();
if (!ast_select)
return false;
if (auto database_and_table = getDatabaseAndTable(*ast_select, 0))
return database_and_table->database == "system" && database_and_table->table == "processes";
return false;
}
return false;
}
ProcessList::EntryPtr
ProcessList::insert(const String & query_, const IAST * ast, ContextMutablePtr query_context, UInt64 watch_start_nanoseconds)
{
EntryPtr res;
const ClientInfo & client_info = query_context->getClientInfo();
const Settings & settings = query_context->getSettingsRef();
if (client_info.current_query_id.empty())
throw Exception(ErrorCodes::LOGICAL_ERROR, "Query id cannot be empty");
bool is_unlimited_query = isUnlimitedQuery(ast);
{
auto [lock, overcommit_blocker] = safeLock(); // To avoid deadlock in case of OOM
IAST::QueryKind query_kind = ast->getQueryKind();
const auto queue_max_wait_ms = settings.queue_max_wait_ms.totalMilliseconds();
if (!is_unlimited_query && max_size && processes.size() >= max_size)
{
if (queue_max_wait_ms)
LOG_WARNING(getLogger("ProcessList"), "Too many simultaneous queries, will wait {} ms.", queue_max_wait_ms);
if (!queue_max_wait_ms || !have_space.wait_for(lock, std::chrono::milliseconds(queue_max_wait_ms), [&]{ return processes.size() < max_size; }))
throw Exception(ErrorCodes::TOO_MANY_SIMULTANEOUS_QUERIES, "Too many simultaneous queries. Maximum: {}", max_size);
}
if (!is_unlimited_query)
{
QueryAmount amount = getQueryKindAmount(query_kind);
if (max_insert_queries_amount && query_kind == IAST::QueryKind::Insert && amount >= max_insert_queries_amount)
throw Exception(ErrorCodes::TOO_MANY_SIMULTANEOUS_QUERIES,
"Too many simultaneous insert queries. Maximum: {}, current: {}",
max_insert_queries_amount, amount);
if (max_select_queries_amount && query_kind == IAST::QueryKind::Select && amount >= max_select_queries_amount)
throw Exception(ErrorCodes::TOO_MANY_SIMULTANEOUS_QUERIES,
"Too many simultaneous select queries. Maximum: {}, current: {}",
max_select_queries_amount, amount);
}
{
/**
* `max_size` check above is controlled by `max_concurrent_queries` server setting and is a "hard" limit for how many
* queries the server can process concurrently. It is configured at startup. When the server is overloaded with queries and the
* hard limit is reached it is impossible to connect to the server to run queries for investigation.
*
* With `max_concurrent_queries_for_all_users` it is possible to configure an additional, runtime configurable, limit for query concurrency.
* Usually it should be configured just once for `default_profile` which is inherited by all users. DBAs can override
* this setting when connecting to ClickHouse, or it can be configured for a DBA profile to have a value greater than that of
* the default profile (or 0 for unlimited).
*
* One example is to set `max_size=X`, `max_concurrent_queries_for_all_users=X-10` for default profile,
* and `max_concurrent_queries_for_all_users=0` for DBAs or accounts that are vital for ClickHouse operations (like metrics
* exporters).
*
* Another creative example is to configure `max_concurrent_queries_for_all_users=50` for "analyst" profiles running adhoc queries
* and `max_concurrent_queries_for_all_users=100` for "customer facing" services. This way "analyst" queries will be rejected
* once is already processing 50+ concurrent queries (including analysts or any other users).
*/
if (!is_unlimited_query && settings.max_concurrent_queries_for_all_users
&& processes.size() >= settings.max_concurrent_queries_for_all_users)
throw Exception(ErrorCodes::TOO_MANY_SIMULTANEOUS_QUERIES, "Too many simultaneous queries for all users. "
"Current: {}, maximum: {}", processes.size(), settings.max_concurrent_queries_for_all_users.toString());
}
/** Why we use current user?
* Because initial one is passed by client and credentials for it is not verified,
* and using initial_user for limits will be insecure.
*
* Why we use current_query_id?
* Because we want to allow distributed queries that will run multiple secondary queries on same server,
* like SELECT count() FROM remote('127.0.0.{1,2}', system.numbers)
* so they must have different query_ids.
*/
{
auto user_process_list = user_to_queries.find(client_info.current_user);
if (user_process_list != user_to_queries.end())
{
if (!is_unlimited_query && settings.max_concurrent_queries_for_user
&& user_process_list->second.queries.size() >= settings.max_concurrent_queries_for_user)
throw Exception(ErrorCodes::TOO_MANY_SIMULTANEOUS_QUERIES,
"Too many simultaneous queries for user {}. "
"Current: {}, maximum: {}",
client_info.current_user, user_process_list->second.queries.size(),
settings.max_concurrent_queries_for_user.toString());
auto running_query = user_process_list->second.queries.find(client_info.current_query_id);
if (running_query != user_process_list->second.queries.end())
{
if (!settings.replace_running_query)
throw Exception(ErrorCodes::QUERY_WITH_SAME_ID_IS_ALREADY_RUNNING, "Query with id = {} is already running.", client_info.current_query_id);
/// Ask queries to cancel. They will check this flag.
running_query->second->is_killed.store(true, std::memory_order_relaxed);
const auto replace_running_query_max_wait_ms = settings.replace_running_query_max_wait_ms.totalMilliseconds();
if (!replace_running_query_max_wait_ms || !have_space.wait_for(lock, std::chrono::milliseconds(replace_running_query_max_wait_ms),
[&]
{
running_query = user_process_list->second.queries.find(client_info.current_query_id);
if (running_query == user_process_list->second.queries.end())
return true;
running_query->second->is_killed.store(true, std::memory_order_relaxed);
return false;
}))
{
throw Exception(ErrorCodes::QUERY_WITH_SAME_ID_IS_ALREADY_RUNNING,
"Query with id = {} is already running and can't be stopped",
client_info.current_query_id);
}
}
}
}
/// Check other users running query with our query_id
if (auto query_user = queries_to_user.find(client_info.current_query_id); query_user != queries_to_user.end() && query_user->second != client_info.current_user)
{
throw Exception(ErrorCodes::QUERY_WITH_SAME_ID_IS_ALREADY_RUNNING,
"Query with id = {} is already running by user {}",
client_info.current_query_id, query_user->second);
}
auto user_process_list_it = user_to_queries.find(client_info.current_user);
if (user_process_list_it == user_to_queries.end())
{
user_process_list_it = user_to_queries.emplace(std::piecewise_construct,
std::forward_as_tuple(client_info.current_user),
std::forward_as_tuple(query_context->getGlobalContext(), this)).first;
}
ProcessListForUser & user_process_list = user_process_list_it->second;
/// Actualize thread group info
CurrentThread::attachQueryForLog(query_);
auto thread_group = CurrentThread::getGroup();
if (thread_group)
{
thread_group->performance_counters.setParent(&user_process_list.user_performance_counters);
thread_group->memory_tracker.setParent(&user_process_list.user_memory_tracker);
if (user_process_list.user_temp_data_on_disk)
{
query_context->setTempDataOnDisk(std::make_shared<TemporaryDataOnDiskScope>(
user_process_list.user_temp_data_on_disk, settings.max_temporary_data_on_disk_size_for_query));
}
/// Set query-level memory trackers
thread_group->memory_tracker.setOrRaiseHardLimit(settings.max_memory_usage);
thread_group->memory_tracker.setSoftLimit(settings.memory_overcommit_ratio_denominator);
if (query_context->hasTraceCollector())
{
/// Set up memory profiling
thread_group->memory_tracker.setProfilerStep(settings.memory_profiler_step);
thread_group->memory_tracker.setSampleProbability(settings.memory_profiler_sample_probability);
thread_group->memory_tracker.setSampleMinAllocationSize(settings.memory_profiler_sample_min_allocation_size);
thread_group->memory_tracker.setSampleMaxAllocationSize(settings.memory_profiler_sample_max_allocation_size);
thread_group->performance_counters.setTraceProfileEvents(settings.trace_profile_events);
}
thread_group->memory_tracker.setDescription("(for query)");
if (settings.memory_tracker_fault_probability > 0.0)
thread_group->memory_tracker.setFaultProbability(settings.memory_tracker_fault_probability);
thread_group->memory_tracker.setOvercommitWaitingTime(settings.memory_usage_overcommit_max_wait_microseconds);
/// NOTE: Do not set the limit for thread-level memory tracker since it could show unreal values
/// since allocation and deallocation could happen in different threads
}
auto process_it = processes.emplace(
processes.end(),
std::make_shared<QueryStatus>(
query_context,
query_,
client_info,
priorities.insert(static_cast<int>(settings.priority)),
std::move(thread_group),
query_kind,
settings,
watch_start_nanoseconds));
increaseQueryKindAmount(query_kind);
res = std::make_shared<Entry>(*this, process_it);
(*process_it)->setUserProcessList(&user_process_list);
(*process_it)->setProcessListEntry(res);
user_process_list.queries.emplace(client_info.current_query_id, res->getQueryStatus());
queries_to_user.emplace(client_info.current_query_id, client_info.current_user);
/// Track memory usage for all simultaneously running queries from single user.
user_process_list.user_memory_tracker.setOrRaiseHardLimit(settings.max_memory_usage_for_user);
user_process_list.user_memory_tracker.setSoftLimit(settings.memory_overcommit_ratio_denominator_for_user);
user_process_list.user_memory_tracker.setDescription("(for user)");
if (!total_network_throttler && settings.max_network_bandwidth_for_all_users)
{
total_network_throttler = std::make_shared<Throttler>(settings.max_network_bandwidth_for_all_users);
}
if (!user_process_list.user_throttler)
{
if (settings.max_network_bandwidth_for_user)
user_process_list.user_throttler = std::make_shared<Throttler>(settings.max_network_bandwidth_for_user, total_network_throttler);
else if (settings.max_network_bandwidth_for_all_users)
user_process_list.user_throttler = total_network_throttler;
}
}
return res;
}
ProcessListEntry::~ProcessListEntry()
{
auto lock = parent.safeLock();
String user = (*it)->getClientInfo().current_user;
String query_id = (*it)->getClientInfo().current_query_id;
IAST::QueryKind query_kind = (*it)->query_kind;
const QueryStatusPtr process_list_element_ptr = *it;
auto user_process_list_it = parent.user_to_queries.find(user);
if (user_process_list_it == parent.user_to_queries.end())
{
LOG_ERROR(getLogger("ProcessList"), "Cannot find user in ProcessList");
std::terminate();
}
ProcessListForUser & user_process_list = user_process_list_it->second;
bool found = false;
if (auto running_query = user_process_list.queries.find(query_id); running_query != user_process_list.queries.end())
{
if (running_query->second == process_list_element_ptr)
{
user_process_list.queries.erase(running_query->first);
found = true;
}
}
/// Wait for the query if it is in the cancellation right now.
parent.cancelled_cv.wait(lock.lock, [&]() { return process_list_element_ptr->is_cancelling == false; });
if (auto query_user = parent.queries_to_user.find(query_id); query_user != parent.queries_to_user.end())
parent.queries_to_user.erase(query_user);
/// This removes the memory_tracker of one request.
parent.processes.erase(it);
if (!found)
{
LOG_ERROR(getLogger("ProcessList"), "Cannot find query by query_id and pointer to ProcessListElement in ProcessListForUser");
std::terminate();
}
parent.decreaseQueryKindAmount(query_kind);
parent.have_space.notify_all();
/// If there are no more queries for the user, then we will reset memory tracker and network throttler.
if (user_process_list.queries.empty())
user_process_list.resetTrackers();
/// Reset throttler, similarly (see above).
if (parent.processes.empty())
parent.total_network_throttler.reset();
}
QueryStatus::QueryStatus(
ContextPtr context_,
const String & query_,
const ClientInfo & client_info_,
QueryPriorities::Handle && priority_handle_,
ThreadGroupPtr && thread_group_,
IAST::QueryKind query_kind_,
const Settings & query_settings_,
UInt64 watch_start_nanoseconds)
: WithContext(context_)
, query(query_)
, client_info(client_info_)
, thread_group(std::move(thread_group_))
, watch(CLOCK_MONOTONIC, watch_start_nanoseconds, true)
, priority_handle(std::move(priority_handle_))
, global_overcommit_tracker(context_->getGlobalOvercommitTracker())
, query_kind(query_kind_)
, num_queries_increment(CurrentMetrics::Query)
{
/// We have to pass `query_settings_` to this constructor because we can't use `context_->getSettings().max_execution_time` here:
/// a QueryStatus is created with `ProcessList::mutex` locked (see ProcessList::insert) and calling `context_->getSettings()`
/// would lock the context's lock too, whereas holding two those locks simultaneously is not good.
limits.max_execution_time = query_settings_.max_execution_time;
overflow_mode = query_settings_.timeout_overflow_mode;
}
QueryStatus::~QueryStatus()
{
#if !defined(NDEBUG)
/// Check that all executors were invalidated.
for (const auto & [_, e] : executors)
assert(!e->executor);
#endif
if (auto * memory_tracker = getMemoryTracker())
{
if (user_process_list)
user_process_list->user_overcommit_tracker.onQueryStop(memory_tracker);
if (global_overcommit_tracker)
global_overcommit_tracker->onQueryStop(memory_tracker);
}
}
void QueryStatus::ExecutorHolder::cancel()
{
std::lock_guard lock(mutex);
if (executor)
executor->cancel();
}
void QueryStatus::ExecutorHolder::remove()
{
std::lock_guard lock(mutex);
executor = nullptr;
}
CancellationCode QueryStatus::cancelQuery(bool)
{
if (is_killed.load())
return CancellationCode::CancelSent;
is_killed.store(true);
std::vector<ExecutorHolderPtr> executors_snapshot;
{
/// Create a snapshot of executors under a mutex.
std::lock_guard lock(executors_mutex);
executors_snapshot.reserve(executors.size());
for (const auto & [_, e] : executors)
executors_snapshot.push_back(e);
}
/// We should call cancel() for each executor with unlocked executors_mutex, because
/// cancel() can try to lock some internal mutex that is already locked by query executing
/// thread, and query executing thread can call removePipelineExecutor and lock executors_mutex,
/// which will lead to deadlock.
/// Note that the size and the content of executors cannot be changed while
/// executors_mutex is unlocked, because:
/// 1) We don't allow adding new executors while cancelling query in addPipelineExecutor
/// 2) We don't actually remove executor holder from executors in removePipelineExecutor,
/// just mark that executor is invalid.
/// So, it's ok to use a snapshot created above under a mutex, it won't be any differ from actual executors.
for (const auto & e : executors_snapshot)
e->cancel();
return CancellationCode::CancelSent;
}
void QueryStatus::addPipelineExecutor(PipelineExecutor * e)
{
/// In case of asynchronous distributed queries it is possible to call
/// addPipelineExecutor() from the cancelQuery() context, and this will
/// lead to deadlock.
if (is_killed.load())
throw Exception(ErrorCodes::QUERY_WAS_CANCELLED, "Query was cancelled");
std::lock_guard lock(executors_mutex);
assert(!executors.contains(e));
executors[e] = std::make_shared<ExecutorHolder>(e);
}
void QueryStatus::removePipelineExecutor(PipelineExecutor * e)
{
ExecutorHolderPtr executor_holder;
{
std::lock_guard lock(executors_mutex);
assert(executors.contains(e));
executor_holder = executors[e];
executors.erase(e);
}
/// Invalidate executor pointer inside holder.
/// We should do it with released executors_mutex to avoid possible lock order inversion.
executor_holder->remove();
}
bool QueryStatus::checkTimeLimit()
{
if (is_killed.load())
throw Exception(ErrorCodes::QUERY_WAS_CANCELLED, "Query was cancelled");
return limits.checkTimeLimit(watch, overflow_mode);
}
bool QueryStatus::checkTimeLimitSoft()
{
if (is_killed.load())
return false;
return limits.checkTimeLimit(watch, OverflowMode::BREAK);
}
void QueryStatus::setUserProcessList(ProcessListForUser * user_process_list_)
{
user_process_list = user_process_list_;
}
void QueryStatus::setProcessListEntry(std::weak_ptr<ProcessListEntry> process_list_entry_)
{
/// Synchronization is not required here because this function is only called from ProcessList::insert()
/// when `ProcessList::mutex` is locked.
if (!process_list_entry.expired() && !process_list_entry_.expired())
throw Exception(ErrorCodes::LOGICAL_ERROR, "Two entries in the process list cannot both use the same query status");
process_list_entry = process_list_entry_;
}
std::shared_ptr<ProcessListEntry> QueryStatus::getProcessListEntry() const
{
return process_list_entry.lock();
}
ThrottlerPtr QueryStatus::getUserNetworkThrottler()
{
if (!user_process_list)
return {};
return user_process_list->user_throttler;
}
QueryStatusPtr ProcessList::tryGetProcessListElement(const String & current_query_id, const String & current_user)
{
auto user_it = user_to_queries.find(current_user);
if (user_it != user_to_queries.end())
{
const auto & user_queries = user_it->second.queries;
auto query_it = user_queries.find(current_query_id);
if (query_it != user_queries.end())
return query_it->second;
}
return {};
}
CancellationCode ProcessList::sendCancelToQuery(const String & current_query_id, const String & current_user, bool kill)
{
QueryStatusPtr elem;
/// Cancelling the query should be done without the lock.
///
/// Since it may be not that trivial, for example in case of distributed
/// queries it tries to cancel the query gracefully on shards and this can
/// take a while, so acquiring a lock during this time will lead to wait
/// all new queries for this cancellation.
///
/// Another problem is that it can lead to a deadlock, because of
/// OvercommitTracker.
///
/// So here we first set is_cancelling, and later reset it.
/// The ProcessListEntry cannot be destroy if is_cancelling is true.
{
auto lock = safeLock();
elem = tryGetProcessListElement(current_query_id, current_user);
if (!elem)
return CancellationCode::NotFound;
elem->is_cancelling = true;
}
SCOPE_EXIT({
DENY_ALLOCATIONS_IN_SCOPE;
auto lock = unsafeLock();
elem->is_cancelling = false;
cancelled_cv.notify_all();
});
return elem->cancelQuery(kill);
}
CancellationCode ProcessList::sendCancelToQuery(QueryStatusPtr elem, bool kill)
{
/// Cancelling the query should be done without the lock.
/// So here we first set is_cancelling, and later reset it.
/// The ProcessListEntry cannot be destroy if is_cancelling is true.
{
auto lock = safeLock();
elem->is_cancelling = true;
}
SCOPE_EXIT({
DENY_ALLOCATIONS_IN_SCOPE;
auto lock = unsafeLock();
elem->is_cancelling = false;
cancelled_cv.notify_all();
});
return elem->cancelQuery(kill);
}
void ProcessList::killAllQueries()
{
std::vector<QueryStatusPtr> cancelled_processes;
SCOPE_EXIT({
auto lock = safeLock();
for (auto & cancelled_process : cancelled_processes)
cancelled_process->is_cancelling = false;
cancelled_cv.notify_all();
});
{
auto lock = safeLock();
cancelled_processes.reserve(processes.size());
for (auto & process : processes)
{
cancelled_processes.push_back(process);
process->is_cancelling = true;
}
}
for (auto & cancelled_process : cancelled_processes)
cancelled_process->cancelQuery(true);
}
QueryStatusInfo QueryStatus::getInfo(bool get_thread_list, bool get_profile_events, bool get_settings) const
{
QueryStatusInfo res{};
res.query = query;
res.query_kind = query_kind;
res.client_info = client_info;
res.elapsed_microseconds = watch.elapsedMicroseconds();
res.is_cancelled = is_killed.load(std::memory_order_relaxed);
res.is_all_data_sent = is_all_data_sent.load(std::memory_order_relaxed);
res.read_rows = progress_in.read_rows;
res.read_bytes = progress_in.read_bytes;
res.total_rows = progress_in.total_rows_to_read;
res.written_rows = progress_out.written_rows;
res.written_bytes = progress_out.written_bytes;
if (thread_group)
{
res.memory_usage = thread_group->memory_tracker.get();
res.peak_memory_usage = thread_group->memory_tracker.getPeak();
if (get_thread_list)
{
res.thread_ids = thread_group->getInvolvedThreadIds();
res.peak_threads_usage = thread_group->getPeakThreadsUsage();
}
if (get_profile_events)
res.profile_counters = std::make_shared<ProfileEvents::Counters::Snapshot>(thread_group->performance_counters.getPartiallyAtomicSnapshot());
}
if (get_settings)
{
if (auto ctx = context.lock())
{
res.query_settings = std::make_shared<Settings>(ctx->getSettings());
res.current_database = ctx->getCurrentDatabase();
}
}
return res;
}
ProcessList::Info ProcessList::getInfo(bool get_thread_list, bool get_profile_events, bool get_settings) const
{
/// We have to copy `processes` first because `process->getInfo()` below can access the context to get the query settings,
/// and it's better not to keep the process list's lock while doing that.
std::vector<QueryStatusPtr> processes_copy;
{
auto lock = safeLock();
processes_copy.assign(processes.begin(), processes.end());
}
Info per_query_infos;
per_query_infos.reserve(processes_copy.size());
for (const auto & process : processes_copy)
per_query_infos.emplace_back(process->getInfo(get_thread_list, get_profile_events, get_settings));
return per_query_infos;
}
ProcessListForUser::ProcessListForUser(ProcessList * global_process_list)
: ProcessListForUser(nullptr, global_process_list)
{}
ProcessListForUser::ProcessListForUser(ContextPtr global_context, ProcessList * global_process_list)
: user_overcommit_tracker(global_process_list, this)
{
user_memory_tracker.setOvercommitTracker(&user_overcommit_tracker);
if (global_context)
{
size_t size_limit = global_context->getSettingsRef().max_temporary_data_on_disk_size_for_user;
user_temp_data_on_disk = std::make_shared<TemporaryDataOnDiskScope>(global_context->getSharedTempDataOnDisk(), size_limit);
}
}
ProcessListForUserInfo ProcessListForUser::getInfo(bool get_profile_events) const
{
ProcessListForUserInfo res;
res.memory_usage = user_memory_tracker.get();
res.peak_memory_usage = user_memory_tracker.getPeak();
if (get_profile_events)
res.profile_counters = std::make_shared<ProfileEvents::Counters::Snapshot>(user_performance_counters.getPartiallyAtomicSnapshot());
return res;
}
ProcessList::UserInfo ProcessList::getUserInfo(bool get_profile_events) const
{
UserInfo per_user_infos;
auto lock = safeLock();
per_user_infos.reserve(user_to_queries.size());
for (const auto & [user, user_queries] : user_to_queries)
per_user_infos.emplace(user, user_queries.getInfo(get_profile_events));
return per_user_infos;
}
void ProcessList::increaseQueryKindAmount(const IAST::QueryKind & query_kind)
{
auto found = query_kind_amounts.find(query_kind);
if (found == query_kind_amounts.end())
query_kind_amounts[query_kind] = 1;
else
found->second += 1;
}
void ProcessList::decreaseQueryKindAmount(const IAST::QueryKind & query_kind)
{
auto found = query_kind_amounts.find(query_kind);
/// TODO: we could just rebuild the map, as we have saved all query_kind.
if (found == query_kind_amounts.end())
throw Exception(ErrorCodes::LOGICAL_ERROR, "Wrong query kind amount: decrease before increase on '{}'", query_kind);
else if (found->second == 0)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Wrong query kind amount: decrease to negative on '{}', {}", query_kind, found->second);
else
found->second -= 1;
}
ProcessList::QueryAmount ProcessList::getQueryKindAmount(const IAST::QueryKind & query_kind) const
{
auto found = query_kind_amounts.find(query_kind);
if (found == query_kind_amounts.end())
return 0;
return found->second;
}
}