mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-16 20:53:27 +00:00
643 lines
15 KiB
C++
643 lines
15 KiB
C++
#pragma once
|
||
|
||
#include <limits>
|
||
|
||
#include <DB/Common/MemoryTracker.h>
|
||
|
||
#include <DB/IO/WriteHelpers.h>
|
||
#include <DB/IO/ReadHelpers.h>
|
||
|
||
#include <DB/DataTypes/DataTypesNumberFixed.h>
|
||
#include <DB/DataTypes/DataTypeArray.h>
|
||
|
||
#include <DB/AggregateFunctions/IUnaryAggregateFunction.h>
|
||
|
||
#include <DB/Columns/ColumnArray.h>
|
||
|
||
#include <stats/IntHash.h>
|
||
|
||
|
||
namespace DB
|
||
{
|
||
|
||
/** Вычисляет квантиль для времени в миллисекундах, меньшего 30 сек.
|
||
* Если значение больше 30 сек, то значение приравнивается к 30 сек.
|
||
*
|
||
* Если всего значений не больше 32, то вычисление точное.
|
||
*
|
||
* Иначе:
|
||
* Если время меньше 1024 мс., то вычисление точное.
|
||
* Иначе вычисление идёт с округлением до числа, кратного 16 мс.
|
||
*/
|
||
|
||
#define TINY_MAX_ELEMS 31
|
||
#define BIG_THRESHOLD 30000
|
||
|
||
namespace detail
|
||
{
|
||
/** Вспомогательная структура для оптимизации в случае маленького количества значений.
|
||
* Размер - 64 байта. Должна быть POD-типом (используется в union).
|
||
*/
|
||
struct QuantileTimingTiny
|
||
{
|
||
mutable UInt16 elems[TINY_MAX_ELEMS]; /// mutable потому что сортировка массива не считается изменением состояния.
|
||
UInt16 count; /// Важно, чтобы count был не в первых 8 байтах структуры. Вы должны сами инициализировать его нулём.
|
||
|
||
/// Можно использовать только пока count < TINY_MAX_ELEMS.
|
||
void insert(UInt64 x)
|
||
{
|
||
if (unlikely(x > BIG_THRESHOLD))
|
||
x = BIG_THRESHOLD;
|
||
|
||
elems[count] = x;
|
||
++count;
|
||
}
|
||
|
||
/// Можно использовать только пока count + rhs.count <= TINY_MAX_ELEMS.
|
||
void merge(const QuantileTimingTiny & rhs)
|
||
{
|
||
for (size_t i = 0; i < rhs.count; ++i)
|
||
{
|
||
elems[count] = rhs.elems[i];
|
||
++count;
|
||
}
|
||
}
|
||
|
||
void serialize(WriteBuffer & buf) const
|
||
{
|
||
writeBinary(count, buf);
|
||
buf.write(reinterpret_cast<const char *>(elems), count * sizeof(elems[0]));
|
||
}
|
||
|
||
void deserialize(ReadBuffer & buf)
|
||
{
|
||
readBinary(count, buf);
|
||
buf.readStrict(reinterpret_cast<char *>(elems), count * sizeof(elems[0]));
|
||
}
|
||
|
||
/** Эту функцию обязательно нужно позвать перед get-функциями. */
|
||
void prepare() const
|
||
{
|
||
std::sort(elems, elems + count);
|
||
}
|
||
|
||
UInt16 get(double level) const
|
||
{
|
||
return level != 1
|
||
? elems[static_cast<size_t>(count * level)]
|
||
: elems[count - 1];
|
||
}
|
||
|
||
template <typename ResultType>
|
||
void getMany(const double * levels, size_t size, ResultType * result) const
|
||
{
|
||
const double * levels_end = levels + size;
|
||
|
||
while (levels != levels_end)
|
||
{
|
||
*result = get(*levels);
|
||
++levels;
|
||
++result;
|
||
}
|
||
}
|
||
|
||
/// То же самое, но в случае пустого состояния возвращается NaN.
|
||
float getFloat(double level) const
|
||
{
|
||
return count
|
||
? get(level)
|
||
: std::numeric_limits<float>::quiet_NaN();
|
||
}
|
||
|
||
void getManyFloat(const double * levels, size_t size, float * result) const
|
||
{
|
||
if (count)
|
||
getMany(levels, size, result);
|
||
else
|
||
for (size_t i = 0; i < size; ++i)
|
||
result[i] = std::numeric_limits<float>::quiet_NaN();
|
||
}
|
||
};
|
||
|
||
|
||
#define SMALL_THRESHOLD 1024
|
||
#define BIG_SIZE ((BIG_THRESHOLD - SMALL_THRESHOLD) / BIG_PRECISION)
|
||
#define BIG_PRECISION 16
|
||
|
||
|
||
/** Для большого количества значений. Размер около 20 КБ.
|
||
* TODO: Есть off-by-one ошибки - может возвращаться значение на 1 больше нужного.
|
||
*/
|
||
class QuantileTimingLarge
|
||
{
|
||
private:
|
||
/// Общее число значений.
|
||
UInt64 count;
|
||
|
||
/// Число значений для каждого значения меньше small_threshold.
|
||
UInt64 count_small[SMALL_THRESHOLD];
|
||
|
||
/// Число значений для каждого значения от small_threshold до big_threshold, округлённого до big_precision.
|
||
UInt64 count_big[BIG_SIZE];
|
||
|
||
/// Получить значение квантиля по индексу в массиве count_big.
|
||
static inline UInt16 indexInBigToValue(size_t i)
|
||
{
|
||
return (i * BIG_PRECISION) + SMALL_THRESHOLD
|
||
+ (intHash32<0>(i) % BIG_PRECISION - (BIG_PRECISION / 2)); /// Небольшая рандомизация, чтобы не было заметно, что все значения чётные.
|
||
}
|
||
|
||
public:
|
||
QuantileTimingLarge()
|
||
{
|
||
memset(this, 0, sizeof(*this));
|
||
}
|
||
|
||
QuantileTimingLarge(ReadBuffer & buf)
|
||
{
|
||
deserialize(buf);
|
||
}
|
||
|
||
void insert(UInt64 x)
|
||
{
|
||
++count;
|
||
|
||
if (x < SMALL_THRESHOLD)
|
||
++count_small[x];
|
||
else if (x < BIG_THRESHOLD)
|
||
++count_big[(x - SMALL_THRESHOLD) / BIG_PRECISION];
|
||
}
|
||
|
||
void merge(const QuantileTimingLarge & rhs)
|
||
{
|
||
count += rhs.count;
|
||
|
||
for (size_t i = 0; i < SMALL_THRESHOLD; ++i)
|
||
count_small[i] += rhs.count_small[i];
|
||
|
||
for (size_t i = 0; i < BIG_SIZE; ++i)
|
||
count_big[i] += rhs.count_big[i];
|
||
}
|
||
|
||
void serialize(WriteBuffer & buf) const
|
||
{
|
||
buf.write(reinterpret_cast<const char *>(this), sizeof(*this));
|
||
}
|
||
|
||
void deserialize(ReadBuffer & buf)
|
||
{
|
||
buf.readStrict(reinterpret_cast<char *>(this), sizeof(*this));
|
||
}
|
||
|
||
void deserializeMerge(ReadBuffer & buf)
|
||
{
|
||
merge(QuantileTimingLarge(buf));
|
||
}
|
||
|
||
|
||
/// Получить значение квантиля уровня level. Уровень должен быть от 0 до 1.
|
||
UInt16 get(double level) const
|
||
{
|
||
UInt64 pos = count * level;
|
||
|
||
UInt64 accumulated = 0;
|
||
|
||
size_t i = 0;
|
||
while (i < SMALL_THRESHOLD && accumulated < pos)
|
||
{
|
||
accumulated += count_small[i];
|
||
++i;
|
||
}
|
||
|
||
if (i < SMALL_THRESHOLD)
|
||
return i;
|
||
|
||
i = 0;
|
||
while (i < BIG_SIZE && accumulated < pos)
|
||
{
|
||
accumulated += count_big[i];
|
||
++i;
|
||
}
|
||
|
||
if (i < BIG_SIZE)
|
||
return indexInBigToValue(i);
|
||
|
||
return BIG_THRESHOLD;
|
||
}
|
||
|
||
/// Получить значения size квантилей уровней levels. Записать size результатов начиная с адреса result.
|
||
template <typename ResultType>
|
||
void getMany(const double * levels, size_t size, ResultType * result) const
|
||
{
|
||
const double * levels_end = levels + size;
|
||
const double * level = levels;
|
||
UInt64 pos = count * *level;
|
||
|
||
UInt64 accumulated = 0;
|
||
|
||
size_t i = 0;
|
||
while (i < SMALL_THRESHOLD)
|
||
{
|
||
while (i < SMALL_THRESHOLD && accumulated < pos)
|
||
{
|
||
accumulated += count_small[i];
|
||
++i;
|
||
}
|
||
|
||
if (i < SMALL_THRESHOLD)
|
||
{
|
||
*result = i;
|
||
|
||
++level;
|
||
++result;
|
||
|
||
if (level == levels_end)
|
||
return;
|
||
|
||
pos = count * *level;
|
||
}
|
||
}
|
||
|
||
i = 0;
|
||
while (i < BIG_SIZE)
|
||
{
|
||
while (i < BIG_SIZE && accumulated < pos)
|
||
{
|
||
accumulated += count_big[i];
|
||
++i;
|
||
}
|
||
|
||
if (i < BIG_SIZE)
|
||
{
|
||
*result = indexInBigToValue(i);
|
||
|
||
++level;
|
||
++result;
|
||
|
||
if (level == levels_end)
|
||
return;
|
||
|
||
pos = count * *level;
|
||
}
|
||
}
|
||
|
||
while (level < levels_end)
|
||
{
|
||
*result = BIG_THRESHOLD;
|
||
|
||
++level;
|
||
++result;
|
||
}
|
||
}
|
||
|
||
/// То же самое, но в случае пустого состояния возвращается NaN.
|
||
float getFloat(double level) const
|
||
{
|
||
return count
|
||
? get(level)
|
||
: std::numeric_limits<float>::quiet_NaN();
|
||
}
|
||
|
||
void getManyFloat(const double * levels, size_t size, float * result) const
|
||
{
|
||
if (count)
|
||
getMany(levels, size, result);
|
||
else
|
||
for (size_t i = 0; i < size; ++i)
|
||
result[i] = std::numeric_limits<float>::quiet_NaN();
|
||
}
|
||
};
|
||
}
|
||
|
||
|
||
/** sizeof - 64 байта.
|
||
* Если их не хватает - выделяет дополнительно около 20 КБ памяти.
|
||
*/
|
||
class QuantileTiming : private boost::noncopyable
|
||
{
|
||
private:
|
||
union
|
||
{
|
||
detail::QuantileTimingTiny tiny;
|
||
detail::QuantileTimingLarge * large;
|
||
};
|
||
|
||
bool isLarge() const { return tiny.count == TINY_MAX_ELEMS + 1; }
|
||
|
||
void toLarge()
|
||
{
|
||
if (current_memory_tracker)
|
||
current_memory_tracker->alloc(sizeof(detail::QuantileTimingLarge));
|
||
|
||
/// На время копирования данных из tiny, устанавливать значение large ещё нельзя (иначе оно перезатрёт часть данных).
|
||
detail::QuantileTimingLarge * tmp_large = new detail::QuantileTimingLarge;
|
||
|
||
for (size_t i = 0; i < tiny.count; ++i)
|
||
tmp_large->insert(tiny.elems[i]);
|
||
|
||
large = tmp_large;
|
||
tiny.count = TINY_MAX_ELEMS + 1;
|
||
}
|
||
|
||
public:
|
||
QuantileTiming()
|
||
{
|
||
tiny.count = 0;
|
||
}
|
||
|
||
~QuantileTiming()
|
||
{
|
||
if (isLarge())
|
||
{
|
||
delete large;
|
||
|
||
if (current_memory_tracker)
|
||
current_memory_tracker->free(sizeof(detail::QuantileTimingLarge));
|
||
}
|
||
}
|
||
|
||
void insert(UInt64 x)
|
||
{
|
||
if (tiny.count < TINY_MAX_ELEMS)
|
||
{
|
||
tiny.insert(x);
|
||
}
|
||
else
|
||
{
|
||
if (unlikely(tiny.count == TINY_MAX_ELEMS))
|
||
toLarge();
|
||
|
||
large->insert(x);
|
||
}
|
||
}
|
||
|
||
void merge(const QuantileTiming & rhs)
|
||
{
|
||
if (tiny.count + rhs.tiny.count <= TINY_MAX_ELEMS)
|
||
{
|
||
tiny.merge(rhs.tiny);
|
||
}
|
||
else
|
||
{
|
||
if (!isLarge())
|
||
toLarge();
|
||
|
||
if (rhs.isLarge())
|
||
{
|
||
large->merge(*rhs.large);
|
||
}
|
||
else
|
||
{
|
||
for (size_t i = 0; i < rhs.tiny.count; ++i)
|
||
large->insert(rhs.tiny.elems[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
void serialize(WriteBuffer & buf) const
|
||
{
|
||
bool is_large = isLarge();
|
||
DB::writeBinary(is_large, buf);
|
||
|
||
if (is_large)
|
||
large->serialize(buf);
|
||
else
|
||
tiny.serialize(buf);
|
||
}
|
||
|
||
void deserialize(ReadBuffer & buf)
|
||
{
|
||
bool is_rhs_large;
|
||
DB::readBinary(is_rhs_large, buf);
|
||
|
||
if (is_rhs_large)
|
||
{
|
||
if (!isLarge())
|
||
{
|
||
tiny.count = TINY_MAX_ELEMS + 1;
|
||
|
||
if (current_memory_tracker)
|
||
current_memory_tracker->alloc(sizeof(detail::QuantileTimingLarge));
|
||
|
||
large = new detail::QuantileTimingLarge;
|
||
}
|
||
|
||
large->deserialize(buf);
|
||
}
|
||
else
|
||
tiny.deserialize(buf);
|
||
}
|
||
|
||
void deserializeMerge(ReadBuffer & buf)
|
||
{
|
||
bool is_rhs_large;
|
||
DB::readBinary(is_rhs_large, buf);
|
||
|
||
if (is_rhs_large)
|
||
{
|
||
if (!isLarge())
|
||
{
|
||
tiny.count = TINY_MAX_ELEMS + 1;
|
||
|
||
if (current_memory_tracker)
|
||
current_memory_tracker->alloc(sizeof(detail::QuantileTimingLarge));
|
||
|
||
large = new detail::QuantileTimingLarge;
|
||
}
|
||
|
||
large->merge(detail::QuantileTimingLarge(buf));
|
||
}
|
||
else
|
||
{
|
||
QuantileTiming rhs;
|
||
rhs.tiny.deserialize(buf);
|
||
|
||
merge(rhs);
|
||
}
|
||
}
|
||
|
||
|
||
/// Получить значение квантиля уровня level. Уровень должен быть от 0 до 1.
|
||
UInt16 get(double level) const
|
||
{
|
||
if (isLarge())
|
||
{
|
||
return large->get(level);
|
||
}
|
||
else
|
||
{
|
||
tiny.prepare();
|
||
return tiny.get(level);
|
||
}
|
||
}
|
||
|
||
/// Получить значения size квантилей уровней levels. Записать size результатов начиная с адреса result.
|
||
template <typename ResultType>
|
||
void getMany(const double * levels, size_t size, ResultType * result) const
|
||
{
|
||
if (isLarge())
|
||
{
|
||
return large->getMany(levels, size, result);
|
||
}
|
||
else
|
||
{
|
||
tiny.prepare();
|
||
return tiny.getMany(levels, size, result);
|
||
}
|
||
}
|
||
|
||
/// То же самое, но в случае пустого состояния возвращается NaN.
|
||
float getFloat(double level) const
|
||
{
|
||
return tiny.count
|
||
? get(level)
|
||
: std::numeric_limits<float>::quiet_NaN();
|
||
}
|
||
|
||
void getManyFloat(const double * levels, size_t size, float * result) const
|
||
{
|
||
if (tiny.count)
|
||
getMany(levels, size, result);
|
||
else
|
||
for (size_t i = 0; i < size; ++i)
|
||
result[i] = std::numeric_limits<float>::quiet_NaN();
|
||
}
|
||
};
|
||
|
||
#undef SMALL_THRESHOLD
|
||
#undef BIG_THRESHOLD
|
||
#undef BIG_SIZE
|
||
#undef BIG_PRECISION
|
||
#undef TINY_MAX_ELEMS
|
||
|
||
|
||
template <typename ArgumentFieldType>
|
||
class AggregateFunctionQuantileTiming final : public IUnaryAggregateFunction<QuantileTiming, AggregateFunctionQuantileTiming<ArgumentFieldType> >
|
||
{
|
||
private:
|
||
double level;
|
||
|
||
public:
|
||
AggregateFunctionQuantileTiming(double level_ = 0.5) : level(level_) {}
|
||
|
||
String getName() const { return "quantileTiming"; }
|
||
|
||
DataTypePtr getReturnType() const
|
||
{
|
||
return new DataTypeFloat32;
|
||
}
|
||
|
||
void setArgument(const DataTypePtr & argument)
|
||
{
|
||
}
|
||
|
||
void setParameters(const Array & params)
|
||
{
|
||
if (params.size() != 1)
|
||
throw Exception("Aggregate function " + getName() + " requires exactly one parameter.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
||
|
||
level = apply_visitor(FieldVisitorConvertToNumber<Float64>(), params[0]);
|
||
}
|
||
|
||
|
||
void addOne(AggregateDataPtr place, const IColumn & column, size_t row_num) const
|
||
{
|
||
this->data(place).insert(static_cast<const ColumnVector<ArgumentFieldType> &>(column).getData()[row_num]);
|
||
}
|
||
|
||
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const
|
||
{
|
||
this->data(place).merge(this->data(rhs));
|
||
}
|
||
|
||
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const
|
||
{
|
||
this->data(place).serialize(buf);
|
||
}
|
||
|
||
void deserializeMerge(AggregateDataPtr place, ReadBuffer & buf) const
|
||
{
|
||
this->data(place).deserializeMerge(buf);
|
||
}
|
||
|
||
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const
|
||
{
|
||
static_cast<ColumnFloat32 &>(to).getData().push_back(this->data(place).getFloat(level));
|
||
}
|
||
};
|
||
|
||
|
||
/** То же самое, но позволяет вычислить сразу несколько квантилей.
|
||
* Для этого, принимает в качестве параметров несколько уровней. Пример: quantilesTiming(0.5, 0.8, 0.9, 0.95)(ConnectTiming).
|
||
* Возвращает массив результатов.
|
||
*/
|
||
template <typename ArgumentFieldType>
|
||
class AggregateFunctionQuantilesTiming final : public IUnaryAggregateFunction<QuantileTiming, AggregateFunctionQuantilesTiming<ArgumentFieldType> >
|
||
{
|
||
private:
|
||
typedef std::vector<double> Levels;
|
||
Levels levels;
|
||
|
||
public:
|
||
String getName() const { return "quantilesTiming"; }
|
||
|
||
DataTypePtr getReturnType() const
|
||
{
|
||
return new DataTypeArray(new DataTypeFloat32);
|
||
}
|
||
|
||
void setArgument(const DataTypePtr & argument)
|
||
{
|
||
}
|
||
|
||
void setParameters(const Array & params)
|
||
{
|
||
if (params.empty())
|
||
throw Exception("Aggregate function " + getName() + " requires at least one parameter.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
||
|
||
size_t size = params.size();
|
||
levels.resize(size);
|
||
|
||
for (size_t i = 0; i < size; ++i)
|
||
levels[i] = apply_visitor(FieldVisitorConvertToNumber<Float64>(), params[i]);
|
||
}
|
||
|
||
|
||
void addOne(AggregateDataPtr place, const IColumn & column, size_t row_num) const
|
||
{
|
||
this->data(place).insert(static_cast<const ColumnVector<ArgumentFieldType> &>(column).getData()[row_num]);
|
||
}
|
||
|
||
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs) const
|
||
{
|
||
this->data(place).merge(this->data(rhs));
|
||
}
|
||
|
||
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const
|
||
{
|
||
this->data(place).serialize(buf);
|
||
}
|
||
|
||
void deserializeMerge(AggregateDataPtr place, ReadBuffer & buf) const
|
||
{
|
||
this->data(place).deserializeMerge(buf);
|
||
}
|
||
|
||
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const
|
||
{
|
||
ColumnArray & arr_to = static_cast<ColumnArray &>(to);
|
||
ColumnArray::Offsets_t & offsets_to = arr_to.getOffsets();
|
||
|
||
size_t size = levels.size();
|
||
offsets_to.push_back((offsets_to.size() == 0 ? 0 : offsets_to.back()) + size);
|
||
|
||
typename ColumnFloat32::Container_t & data_to = static_cast<ColumnFloat32 &>(arr_to.getData()).getData();
|
||
size_t old_size = data_to.size();
|
||
data_to.resize(data_to.size() + size);
|
||
|
||
this->data(place).getManyFloat(&levels[0], size, &data_to[old_size]);
|
||
}
|
||
};
|
||
|
||
}
|