mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-28 18:42:26 +00:00
064f901ea8
preallocation can be used only when we know number of rows, and for this we need: - source clickhouse - no filtering (i.e. lack of <where>), since filtering can filter too much rows and eventually it may allocate memory that will never be used. For sparse_hash the difference is quite significant, preallocated sparse_hash hashtable allocates ~33% faster (7.5 seconds vs 5 seconds for insert, and the difference is more significant for higher number of elements): $ ninja bench-sparse_hash-run [1/1] cd /src/ch/hashtable-bench/.cmake && ...ch/hashtable-bench/.cmake/bench-sparse_hash sparse_hash/insert: 7.574 <!-- sparse_hash/find : 2.14426 sparse_hash/maxrss: 174MiB sparse_hash/time: 9710.51 msec (user+sys) $ time ninja bench-sparse_hash-preallocate-run [1/1] cd /src/ch/hashtable-bench/.cmake && ...-bench/.cmake/bench-sparse_hash-preallocate sparse_hash/insert: 5.0522 <!-- sparse_hash/find : 2.14024 sparse_hash/maxrss: 174MiB sparse_hash/time: 7192.06 msec (user+sys) P.S. the difference for sparse_hashed dictionary with 4e9 elements (uint64, uint16) is ~18% (4975.905 vs 4103.569 sec) v2: do not reallocate the dictionary from the progress callback Since this will access hashtable in parallel. v3: drop PREALLOCATE() and do this only for source=clickhouse and empty <where> |
||
---|---|---|
.. | ||
0_stateless | ||
1_stateful | ||
bugs | ||
__init__.py | ||
.gitignore | ||
conftest.py | ||
query_test.py | ||
server.py | ||
shell_config.sh | ||
skip_list.json |