mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-16 19:32:07 +00:00
612 lines
16 KiB
C++
612 lines
16 KiB
C++
#pragma once
|
|
|
|
#include <IO/WriteHelpers.h>
|
|
#include <IO/ReadHelpers.h>
|
|
#include <boost/math/distributions/students_t.hpp>
|
|
#include <boost/math/distributions/normal.hpp>
|
|
#include <boost/math/distributions/fisher_f.hpp>
|
|
#include <cfloat>
|
|
#include <numeric>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
struct Settings;
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int BAD_ARGUMENTS;
|
|
extern const int DECIMAL_OVERFLOW;
|
|
}
|
|
|
|
|
|
/**
|
|
Calculating univariate central moments
|
|
Levels:
|
|
level 2 (pop & samp): var, stddev
|
|
level 3: skewness
|
|
level 4: kurtosis
|
|
References:
|
|
https://en.wikipedia.org/wiki/Moment_(mathematics)
|
|
https://en.wikipedia.org/wiki/Skewness
|
|
https://en.wikipedia.org/wiki/Kurtosis
|
|
*/
|
|
template <typename T, size_t _level>
|
|
struct VarMoments
|
|
{
|
|
T m[_level + 1]{};
|
|
|
|
void add(T x)
|
|
{
|
|
++m[0];
|
|
m[1] += x;
|
|
m[2] += x * x;
|
|
if constexpr (_level >= 3) m[3] += x * x * x;
|
|
if constexpr (_level >= 4) m[4] += x * x * x * x;
|
|
}
|
|
|
|
void merge(const VarMoments & rhs)
|
|
{
|
|
m[0] += rhs.m[0];
|
|
m[1] += rhs.m[1];
|
|
m[2] += rhs.m[2];
|
|
if constexpr (_level >= 3) m[3] += rhs.m[3];
|
|
if constexpr (_level >= 4) m[4] += rhs.m[4];
|
|
}
|
|
|
|
void write(WriteBuffer & buf) const
|
|
{
|
|
writePODBinary(*this, buf);
|
|
}
|
|
|
|
void read(ReadBuffer & buf)
|
|
{
|
|
readPODBinary(*this, buf);
|
|
}
|
|
|
|
T getPopulation() const
|
|
{
|
|
if (m[0] == 0)
|
|
return std::numeric_limits<T>::quiet_NaN();
|
|
|
|
/// Due to numerical errors, the result can be slightly less than zero,
|
|
/// but it should be impossible. Trim to zero.
|
|
|
|
return std::max(T{}, (m[2] - m[1] * m[1] / m[0]) / m[0]);
|
|
}
|
|
|
|
T getSample() const
|
|
{
|
|
if (m[0] <= 1)
|
|
return std::numeric_limits<T>::quiet_NaN();
|
|
return std::max(T{}, (m[2] - m[1] * m[1] / m[0]) / (m[0] - 1));
|
|
}
|
|
|
|
T getMoment3() const
|
|
{
|
|
if (m[0] == 0)
|
|
return std::numeric_limits<T>::quiet_NaN();
|
|
// to avoid accuracy problem
|
|
if (m[0] == 1)
|
|
return 0;
|
|
/// \[ \frac{1}{m_0} (m_3 - (3 * m_2 - \frac{2 * {m_1}^2}{m_0}) * \frac{m_1}{m_0});\]
|
|
return (m[3]
|
|
- (3 * m[2]
|
|
- 2 * m[1] * m[1] / m[0]
|
|
) * m[1] / m[0]
|
|
) / m[0];
|
|
}
|
|
|
|
T getMoment4() const
|
|
{
|
|
if (m[0] == 0)
|
|
return std::numeric_limits<T>::quiet_NaN();
|
|
// to avoid accuracy problem
|
|
if (m[0] == 1)
|
|
return 0;
|
|
/// \[ \frac{1}{m_0}(m_4 - (4 * m_3 - (6 * m_2 - \frac{3 * m_1^2}{m_0} ) \frac{m_1}{m_0})\frac{m_1}{m_0})\]
|
|
return (m[4]
|
|
- (4 * m[3]
|
|
- (6 * m[2]
|
|
- 3 * m[1] * m[1] / m[0]
|
|
) * m[1] / m[0]
|
|
) * m[1] / m[0]
|
|
) / m[0];
|
|
}
|
|
};
|
|
|
|
template <typename T, size_t _level>
|
|
class VarMomentsDecimal
|
|
{
|
|
public:
|
|
using NativeType = typename T::NativeType;
|
|
|
|
void add(NativeType x)
|
|
{
|
|
++m0;
|
|
getM(1) += x;
|
|
|
|
NativeType tmp;
|
|
bool overflow = common::mulOverflow(x, x, tmp) || common::addOverflow(getM(2), tmp, getM(2));
|
|
if constexpr (_level >= 3)
|
|
overflow = overflow || common::mulOverflow(tmp, x, tmp) || common::addOverflow(getM(3), tmp, getM(3));
|
|
if constexpr (_level >= 4)
|
|
overflow = overflow || common::mulOverflow(tmp, x, tmp) || common::addOverflow(getM(4), tmp, getM(4));
|
|
|
|
if (overflow)
|
|
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
|
|
}
|
|
|
|
void merge(const VarMomentsDecimal & rhs)
|
|
{
|
|
m0 += rhs.m0;
|
|
getM(1) += rhs.getM(1);
|
|
|
|
bool overflow = common::addOverflow(getM(2), rhs.getM(2), getM(2));
|
|
if constexpr (_level >= 3)
|
|
overflow = overflow || common::addOverflow(getM(3), rhs.getM(3), getM(3));
|
|
if constexpr (_level >= 4)
|
|
overflow = overflow || common::addOverflow(getM(4), rhs.getM(4), getM(4));
|
|
|
|
if (overflow)
|
|
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
|
|
}
|
|
|
|
void write(WriteBuffer & buf) const { writePODBinary(*this, buf); }
|
|
void read(ReadBuffer & buf) { readPODBinary(*this, buf); }
|
|
|
|
Float64 getPopulation(UInt32 scale) const
|
|
{
|
|
if (m0 == 0)
|
|
return std::numeric_limits<Float64>::infinity();
|
|
|
|
NativeType tmp;
|
|
if (common::mulOverflow(getM(1), getM(1), tmp) ||
|
|
common::subOverflow(getM(2), NativeType(tmp / m0), tmp))
|
|
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
|
|
return std::max(Float64{}, DecimalUtils::convertTo<Float64>(T(tmp / m0), scale));
|
|
}
|
|
|
|
Float64 getSample(UInt32 scale) const
|
|
{
|
|
if (m0 == 0)
|
|
return std::numeric_limits<Float64>::quiet_NaN();
|
|
if (m0 == 1)
|
|
return std::numeric_limits<Float64>::infinity();
|
|
|
|
NativeType tmp;
|
|
if (common::mulOverflow(getM(1), getM(1), tmp) ||
|
|
common::subOverflow(getM(2), NativeType(tmp / m0), tmp))
|
|
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
|
|
return std::max(Float64{}, DecimalUtils::convertTo<Float64>(T(tmp / (m0 - 1)), scale));
|
|
}
|
|
|
|
Float64 getMoment3(UInt32 scale) const
|
|
{
|
|
if (m0 == 0)
|
|
return std::numeric_limits<Float64>::infinity();
|
|
|
|
NativeType tmp;
|
|
if (common::mulOverflow(2 * getM(1), getM(1), tmp) ||
|
|
common::subOverflow(3 * getM(2), NativeType(tmp / m0), tmp) ||
|
|
common::mulOverflow(tmp, getM(1), tmp) ||
|
|
common::subOverflow(getM(3), NativeType(tmp / m0), tmp))
|
|
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
|
|
return DecimalUtils::convertTo<Float64>(T(tmp / m0), scale);
|
|
}
|
|
|
|
Float64 getMoment4(UInt32 scale) const
|
|
{
|
|
if (m0 == 0)
|
|
return std::numeric_limits<Float64>::infinity();
|
|
|
|
NativeType tmp;
|
|
if (common::mulOverflow(3 * getM(1), getM(1), tmp) ||
|
|
common::subOverflow(6 * getM(2), NativeType(tmp / m0), tmp) ||
|
|
common::mulOverflow(tmp, getM(1), tmp) ||
|
|
common::subOverflow(4 * getM(3), NativeType(tmp / m0), tmp) ||
|
|
common::mulOverflow(tmp, getM(1), tmp) ||
|
|
common::subOverflow(getM(4), NativeType(tmp / m0), tmp))
|
|
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
|
|
return DecimalUtils::convertTo<Float64>(T(tmp / m0), scale);
|
|
}
|
|
|
|
private:
|
|
UInt64 m0{};
|
|
NativeType m[_level]{};
|
|
|
|
NativeType & getM(size_t i) { return m[i - 1]; }
|
|
const NativeType & getM(size_t i) const { return m[i - 1]; }
|
|
};
|
|
|
|
/**
|
|
Calculating multivariate central moments
|
|
Levels:
|
|
level 2 (pop & samp): covar
|
|
References:
|
|
https://en.wikipedia.org/wiki/Moment_(mathematics)
|
|
*/
|
|
template <typename T>
|
|
struct CovarMoments
|
|
{
|
|
T m0{};
|
|
T x1{};
|
|
T y1{};
|
|
T xy{};
|
|
|
|
void add(T x, T y)
|
|
{
|
|
++m0;
|
|
x1 += x;
|
|
y1 += y;
|
|
xy += x * y;
|
|
}
|
|
|
|
void merge(const CovarMoments & rhs)
|
|
{
|
|
m0 += rhs.m0;
|
|
x1 += rhs.x1;
|
|
y1 += rhs.y1;
|
|
xy += rhs.xy;
|
|
}
|
|
|
|
void write(WriteBuffer & buf) const
|
|
{
|
|
writePODBinary(*this, buf);
|
|
}
|
|
|
|
void read(ReadBuffer & buf)
|
|
{
|
|
readPODBinary(*this, buf);
|
|
}
|
|
|
|
T NO_SANITIZE_UNDEFINED getPopulation() const
|
|
{
|
|
return (xy - x1 * y1 / m0) / m0;
|
|
}
|
|
|
|
T NO_SANITIZE_UNDEFINED getSample() const
|
|
{
|
|
if (m0 == 0)
|
|
return std::numeric_limits<T>::quiet_NaN();
|
|
return (xy - x1 * y1 / m0) / (m0 - 1);
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct CorrMoments
|
|
{
|
|
T m0{};
|
|
T x1{};
|
|
T y1{};
|
|
T xy{};
|
|
T x2{};
|
|
T y2{};
|
|
|
|
void add(T x, T y)
|
|
{
|
|
++m0;
|
|
x1 += x;
|
|
y1 += y;
|
|
xy += x * y;
|
|
x2 += x * x;
|
|
y2 += y * y;
|
|
}
|
|
|
|
void merge(const CorrMoments & rhs)
|
|
{
|
|
m0 += rhs.m0;
|
|
x1 += rhs.x1;
|
|
y1 += rhs.y1;
|
|
xy += rhs.xy;
|
|
x2 += rhs.x2;
|
|
y2 += rhs.y2;
|
|
}
|
|
|
|
void write(WriteBuffer & buf) const
|
|
{
|
|
writePODBinary(*this, buf);
|
|
}
|
|
|
|
void read(ReadBuffer & buf)
|
|
{
|
|
readPODBinary(*this, buf);
|
|
}
|
|
|
|
T NO_SANITIZE_UNDEFINED get() const
|
|
{
|
|
return (m0 * xy - x1 * y1) / sqrt((m0 * x2 - x1 * x1) * (m0 * y2 - y1 * y1));
|
|
}
|
|
};
|
|
|
|
/// Data for calculation of Student and Welch T-Tests.
|
|
template <typename T>
|
|
struct TTestMoments
|
|
{
|
|
T nx{};
|
|
T ny{};
|
|
T x1{};
|
|
T y1{};
|
|
T x2{};
|
|
T y2{};
|
|
|
|
void addX(T value)
|
|
{
|
|
++nx;
|
|
x1 += value;
|
|
x2 += value * value;
|
|
}
|
|
|
|
void addY(T value)
|
|
{
|
|
++ny;
|
|
y1 += value;
|
|
y2 += value * value;
|
|
}
|
|
|
|
void merge(const TTestMoments & rhs)
|
|
{
|
|
nx += rhs.nx;
|
|
ny += rhs.ny;
|
|
x1 += rhs.x1;
|
|
y1 += rhs.y1;
|
|
x2 += rhs.x2;
|
|
y2 += rhs.y2;
|
|
}
|
|
|
|
void write(WriteBuffer & buf) const
|
|
{
|
|
writePODBinary(*this, buf);
|
|
}
|
|
|
|
void read(ReadBuffer & buf)
|
|
{
|
|
readPODBinary(*this, buf);
|
|
}
|
|
|
|
Float64 getMeanX() const
|
|
{
|
|
return x1 / nx;
|
|
}
|
|
|
|
Float64 getMeanY() const
|
|
{
|
|
return y1 / ny;
|
|
}
|
|
|
|
Float64 getStandardError() const
|
|
{
|
|
/// The original formulae looks like \frac{1}{size_x - 1} \sum_{i = 1}^{size_x}{(x_i - \bar{x}) ^ 2}
|
|
/// But we made some mathematical transformations not to store original sequences.
|
|
/// Also we dropped sqrt, because later it will be squared later.
|
|
Float64 mean_x = getMeanX();
|
|
Float64 mean_y = getMeanY();
|
|
|
|
Float64 sx2 = (x2 + nx * mean_x * mean_x - 2 * mean_x * x1) / (nx - 1);
|
|
Float64 sy2 = (y2 + ny * mean_y * mean_y - 2 * mean_y * y1) / (ny - 1);
|
|
|
|
return sqrt(sx2 / nx + sy2 / ny);
|
|
}
|
|
|
|
std::pair<Float64, Float64> getConfidenceIntervals(Float64 confidence_level, Float64 degrees_of_freedom) const
|
|
{
|
|
Float64 mean_x = getMeanX();
|
|
Float64 mean_y = getMeanY();
|
|
Float64 se = getStandardError();
|
|
|
|
boost::math::students_t dist(degrees_of_freedom);
|
|
Float64 t = boost::math::quantile(boost::math::complement(dist, (1.0 - confidence_level) / 2.0));
|
|
Float64 mean_diff = mean_x - mean_y;
|
|
Float64 ci_low = mean_diff - t * se;
|
|
Float64 ci_high = mean_diff + t * se;
|
|
|
|
return {ci_low, ci_high};
|
|
}
|
|
|
|
bool isEssentiallyConstant() const
|
|
{
|
|
return getStandardError() < 10 * DBL_EPSILON * std::max(std::abs(getMeanX()), std::abs(getMeanY()));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct ZTestMoments
|
|
{
|
|
T nx{};
|
|
T ny{};
|
|
T x1{};
|
|
T y1{};
|
|
|
|
void addX(T value)
|
|
{
|
|
++nx;
|
|
x1 += value;
|
|
}
|
|
|
|
void addY(T value)
|
|
{
|
|
++ny;
|
|
y1 += value;
|
|
}
|
|
|
|
void merge(const ZTestMoments & rhs)
|
|
{
|
|
nx += rhs.nx;
|
|
ny += rhs.ny;
|
|
x1 += rhs.x1;
|
|
y1 += rhs.y1;
|
|
}
|
|
|
|
void write(WriteBuffer & buf) const
|
|
{
|
|
writePODBinary(*this, buf);
|
|
}
|
|
|
|
void read(ReadBuffer & buf)
|
|
{
|
|
readPODBinary(*this, buf);
|
|
}
|
|
|
|
Float64 getMeanX() const
|
|
{
|
|
return x1 / nx;
|
|
}
|
|
|
|
Float64 getMeanY() const
|
|
{
|
|
return y1 / ny;
|
|
}
|
|
|
|
Float64 getStandardError(Float64 pop_var_x, Float64 pop_var_y) const
|
|
{
|
|
/// \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}
|
|
return std::sqrt(pop_var_x / nx + pop_var_y / ny);
|
|
}
|
|
|
|
std::pair<Float64, Float64> getConfidenceIntervals(Float64 pop_var_x, Float64 pop_var_y, Float64 confidence_level) const
|
|
{
|
|
/// (\bar{x_{1}} - \bar{x_{2}}) \pm zscore \times \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}
|
|
Float64 mean_x = getMeanX();
|
|
Float64 mean_y = getMeanY();
|
|
|
|
Float64 z = boost::math::quantile(boost::math::complement(
|
|
boost::math::normal(0.0f, 1.0f), (1.0f - confidence_level) / 2.0f));
|
|
Float64 se = getStandardError(pop_var_x, pop_var_y);
|
|
Float64 ci_low = (mean_x - mean_y) - z * se;
|
|
Float64 ci_high = (mean_x - mean_y) + z * se;
|
|
|
|
return {ci_low, ci_high};
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct AnalysisOfVarianceMoments
|
|
{
|
|
constexpr static size_t MAX_GROUPS_NUMBER = 1024 * 1024;
|
|
|
|
/// Sums of values within a group
|
|
std::vector<T> xs1{};
|
|
/// Sums of squared values within a group
|
|
std::vector<T> xs2{};
|
|
/// Sizes of each group. Total number of observations is just a sum of all these values
|
|
std::vector<size_t> ns{};
|
|
|
|
void resizeIfNeeded(size_t possible_size)
|
|
{
|
|
if (xs1.size() >= possible_size)
|
|
return;
|
|
|
|
if (possible_size > MAX_GROUPS_NUMBER)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Too many groups for analysis of variance (should be no more than {}, got {})",
|
|
MAX_GROUPS_NUMBER, possible_size);
|
|
|
|
xs1.resize(possible_size, 0.0);
|
|
xs2.resize(possible_size, 0.0);
|
|
ns.resize(possible_size, 0);
|
|
}
|
|
|
|
void add(T value, size_t group)
|
|
{
|
|
resizeIfNeeded(group + 1);
|
|
xs1[group] += value;
|
|
xs2[group] += value * value;
|
|
ns[group] += 1;
|
|
}
|
|
|
|
void merge(const AnalysisOfVarianceMoments & rhs)
|
|
{
|
|
resizeIfNeeded(rhs.xs1.size());
|
|
for (size_t i = 0; i < rhs.xs1.size(); ++i)
|
|
{
|
|
xs1[i] += rhs.xs1[i];
|
|
xs2[i] += rhs.xs2[i];
|
|
ns[i] += rhs.ns[i];
|
|
}
|
|
}
|
|
|
|
void write(WriteBuffer & buf) const
|
|
{
|
|
writeVectorBinary(xs1, buf);
|
|
writeVectorBinary(xs2, buf);
|
|
writeVectorBinary(ns, buf);
|
|
}
|
|
|
|
void read(ReadBuffer & buf)
|
|
{
|
|
readVectorBinary(xs1, buf);
|
|
readVectorBinary(xs2, buf);
|
|
readVectorBinary(ns, buf);
|
|
}
|
|
|
|
Float64 getMeanAll() const
|
|
{
|
|
const auto n = std::accumulate(ns.begin(), ns.end(), 0UL);
|
|
if (n == 0)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There are no observations to calculate mean value");
|
|
|
|
return std::accumulate(xs1.begin(), xs1.end(), 0.0) / n;
|
|
}
|
|
|
|
Float64 getMeanGroup(size_t group) const
|
|
{
|
|
if (ns[group] == 0)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There is no observations for group {}", group);
|
|
|
|
return xs1[group] / ns[group];
|
|
}
|
|
|
|
Float64 getBetweenGroupsVariation() const
|
|
{
|
|
Float64 res = 0;
|
|
auto mean = getMeanAll();
|
|
|
|
for (size_t i = 0; i < xs1.size(); ++i)
|
|
{
|
|
auto group_mean = getMeanGroup(i);
|
|
res += ns[i] * (group_mean - mean) * (group_mean - mean);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
Float64 getWithinGroupsVariation() const
|
|
{
|
|
Float64 res = 0;
|
|
for (size_t i = 0; i < xs1.size(); ++i)
|
|
{
|
|
auto group_mean = getMeanGroup(i);
|
|
res += xs2[i] + ns[i] * group_mean * group_mean - 2 * group_mean * xs1[i];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
Float64 getFStatistic() const
|
|
{
|
|
const auto k = xs1.size();
|
|
const auto n = std::accumulate(ns.begin(), ns.end(), 0UL);
|
|
|
|
if (k == 1)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There should be more than one group to calculate f-statistics");
|
|
|
|
if (k == n)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There is only one observation in each group");
|
|
|
|
return (getBetweenGroupsVariation() * (n - k)) / (getWithinGroupsVariation() * (k - 1));
|
|
}
|
|
|
|
Float64 getPValue(Float64 f_statistic) const
|
|
{
|
|
const auto k = xs1.size();
|
|
const auto n = std::accumulate(ns.begin(), ns.end(), 0UL);
|
|
|
|
if (k == 1)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There should be more than one group to calculate f-statistics");
|
|
|
|
if (k == n)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There is only one observation in each group");
|
|
|
|
return 1.0f - boost::math::cdf(boost::math::fisher_f(k - 1, n - k), f_statistic);
|
|
}
|
|
};
|
|
|
|
}
|