ClickHouse/src/AggregateFunctions/Moments.h

612 lines
16 KiB
C++

#pragma once
#include <IO/WriteHelpers.h>
#include <IO/ReadHelpers.h>
#include <boost/math/distributions/students_t.hpp>
#include <boost/math/distributions/normal.hpp>
#include <boost/math/distributions/fisher_f.hpp>
#include <cfloat>
#include <numeric>
namespace DB
{
struct Settings;
namespace ErrorCodes
{
extern const int BAD_ARGUMENTS;
extern const int DECIMAL_OVERFLOW;
}
/**
Calculating univariate central moments
Levels:
level 2 (pop & samp): var, stddev
level 3: skewness
level 4: kurtosis
References:
https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Skewness
https://en.wikipedia.org/wiki/Kurtosis
*/
template <typename T, size_t _level>
struct VarMoments
{
T m[_level + 1]{};
void add(T x)
{
++m[0];
m[1] += x;
m[2] += x * x;
if constexpr (_level >= 3) m[3] += x * x * x;
if constexpr (_level >= 4) m[4] += x * x * x * x;
}
void merge(const VarMoments & rhs)
{
m[0] += rhs.m[0];
m[1] += rhs.m[1];
m[2] += rhs.m[2];
if constexpr (_level >= 3) m[3] += rhs.m[3];
if constexpr (_level >= 4) m[4] += rhs.m[4];
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
T getPopulation() const
{
if (m[0] == 0)
return std::numeric_limits<T>::quiet_NaN();
/// Due to numerical errors, the result can be slightly less than zero,
/// but it should be impossible. Trim to zero.
return std::max(T{}, (m[2] - m[1] * m[1] / m[0]) / m[0]);
}
T getSample() const
{
if (m[0] <= 1)
return std::numeric_limits<T>::quiet_NaN();
return std::max(T{}, (m[2] - m[1] * m[1] / m[0]) / (m[0] - 1));
}
T getMoment3() const
{
if (m[0] == 0)
return std::numeric_limits<T>::quiet_NaN();
// to avoid accuracy problem
if (m[0] == 1)
return 0;
/// \[ \frac{1}{m_0} (m_3 - (3 * m_2 - \frac{2 * {m_1}^2}{m_0}) * \frac{m_1}{m_0});\]
return (m[3]
- (3 * m[2]
- 2 * m[1] * m[1] / m[0]
) * m[1] / m[0]
) / m[0];
}
T getMoment4() const
{
if (m[0] == 0)
return std::numeric_limits<T>::quiet_NaN();
// to avoid accuracy problem
if (m[0] == 1)
return 0;
/// \[ \frac{1}{m_0}(m_4 - (4 * m_3 - (6 * m_2 - \frac{3 * m_1^2}{m_0} ) \frac{m_1}{m_0})\frac{m_1}{m_0})\]
return (m[4]
- (4 * m[3]
- (6 * m[2]
- 3 * m[1] * m[1] / m[0]
) * m[1] / m[0]
) * m[1] / m[0]
) / m[0];
}
};
template <typename T, size_t _level>
class VarMomentsDecimal
{
public:
using NativeType = typename T::NativeType;
void add(NativeType x)
{
++m0;
getM(1) += x;
NativeType tmp;
bool overflow = common::mulOverflow(x, x, tmp) || common::addOverflow(getM(2), tmp, getM(2));
if constexpr (_level >= 3)
overflow = overflow || common::mulOverflow(tmp, x, tmp) || common::addOverflow(getM(3), tmp, getM(3));
if constexpr (_level >= 4)
overflow = overflow || common::mulOverflow(tmp, x, tmp) || common::addOverflow(getM(4), tmp, getM(4));
if (overflow)
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
void merge(const VarMomentsDecimal & rhs)
{
m0 += rhs.m0;
getM(1) += rhs.getM(1);
bool overflow = common::addOverflow(getM(2), rhs.getM(2), getM(2));
if constexpr (_level >= 3)
overflow = overflow || common::addOverflow(getM(3), rhs.getM(3), getM(3));
if constexpr (_level >= 4)
overflow = overflow || common::addOverflow(getM(4), rhs.getM(4), getM(4));
if (overflow)
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
void write(WriteBuffer & buf) const { writePODBinary(*this, buf); }
void read(ReadBuffer & buf) { readPODBinary(*this, buf); }
Float64 getPopulation(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(getM(1), getM(1), tmp) ||
common::subOverflow(getM(2), NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return std::max(Float64{}, DecimalUtils::convertTo<Float64>(T(tmp / m0), scale));
}
Float64 getSample(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::quiet_NaN();
if (m0 == 1)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(getM(1), getM(1), tmp) ||
common::subOverflow(getM(2), NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return std::max(Float64{}, DecimalUtils::convertTo<Float64>(T(tmp / (m0 - 1)), scale));
}
Float64 getMoment3(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(2 * getM(1), getM(1), tmp) ||
common::subOverflow(3 * getM(2), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(getM(3), NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return DecimalUtils::convertTo<Float64>(T(tmp / m0), scale);
}
Float64 getMoment4(UInt32 scale) const
{
if (m0 == 0)
return std::numeric_limits<Float64>::infinity();
NativeType tmp;
if (common::mulOverflow(3 * getM(1), getM(1), tmp) ||
common::subOverflow(6 * getM(2), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(4 * getM(3), NativeType(tmp / m0), tmp) ||
common::mulOverflow(tmp, getM(1), tmp) ||
common::subOverflow(getM(4), NativeType(tmp / m0), tmp))
throw Exception("Decimal math overflow", ErrorCodes::DECIMAL_OVERFLOW);
return DecimalUtils::convertTo<Float64>(T(tmp / m0), scale);
}
private:
UInt64 m0{};
NativeType m[_level]{};
NativeType & getM(size_t i) { return m[i - 1]; }
const NativeType & getM(size_t i) const { return m[i - 1]; }
};
/**
Calculating multivariate central moments
Levels:
level 2 (pop & samp): covar
References:
https://en.wikipedia.org/wiki/Moment_(mathematics)
*/
template <typename T>
struct CovarMoments
{
T m0{};
T x1{};
T y1{};
T xy{};
void add(T x, T y)
{
++m0;
x1 += x;
y1 += y;
xy += x * y;
}
void merge(const CovarMoments & rhs)
{
m0 += rhs.m0;
x1 += rhs.x1;
y1 += rhs.y1;
xy += rhs.xy;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
T NO_SANITIZE_UNDEFINED getPopulation() const
{
return (xy - x1 * y1 / m0) / m0;
}
T NO_SANITIZE_UNDEFINED getSample() const
{
if (m0 == 0)
return std::numeric_limits<T>::quiet_NaN();
return (xy - x1 * y1 / m0) / (m0 - 1);
}
};
template <typename T>
struct CorrMoments
{
T m0{};
T x1{};
T y1{};
T xy{};
T x2{};
T y2{};
void add(T x, T y)
{
++m0;
x1 += x;
y1 += y;
xy += x * y;
x2 += x * x;
y2 += y * y;
}
void merge(const CorrMoments & rhs)
{
m0 += rhs.m0;
x1 += rhs.x1;
y1 += rhs.y1;
xy += rhs.xy;
x2 += rhs.x2;
y2 += rhs.y2;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
T NO_SANITIZE_UNDEFINED get() const
{
return (m0 * xy - x1 * y1) / sqrt((m0 * x2 - x1 * x1) * (m0 * y2 - y1 * y1));
}
};
/// Data for calculation of Student and Welch T-Tests.
template <typename T>
struct TTestMoments
{
T nx{};
T ny{};
T x1{};
T y1{};
T x2{};
T y2{};
void addX(T value)
{
++nx;
x1 += value;
x2 += value * value;
}
void addY(T value)
{
++ny;
y1 += value;
y2 += value * value;
}
void merge(const TTestMoments & rhs)
{
nx += rhs.nx;
ny += rhs.ny;
x1 += rhs.x1;
y1 += rhs.y1;
x2 += rhs.x2;
y2 += rhs.y2;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
Float64 getMeanX() const
{
return x1 / nx;
}
Float64 getMeanY() const
{
return y1 / ny;
}
Float64 getStandardError() const
{
/// The original formulae looks like \frac{1}{size_x - 1} \sum_{i = 1}^{size_x}{(x_i - \bar{x}) ^ 2}
/// But we made some mathematical transformations not to store original sequences.
/// Also we dropped sqrt, because later it will be squared later.
Float64 mean_x = getMeanX();
Float64 mean_y = getMeanY();
Float64 sx2 = (x2 + nx * mean_x * mean_x - 2 * mean_x * x1) / (nx - 1);
Float64 sy2 = (y2 + ny * mean_y * mean_y - 2 * mean_y * y1) / (ny - 1);
return sqrt(sx2 / nx + sy2 / ny);
}
std::pair<Float64, Float64> getConfidenceIntervals(Float64 confidence_level, Float64 degrees_of_freedom) const
{
Float64 mean_x = getMeanX();
Float64 mean_y = getMeanY();
Float64 se = getStandardError();
boost::math::students_t dist(degrees_of_freedom);
Float64 t = boost::math::quantile(boost::math::complement(dist, (1.0 - confidence_level) / 2.0));
Float64 mean_diff = mean_x - mean_y;
Float64 ci_low = mean_diff - t * se;
Float64 ci_high = mean_diff + t * se;
return {ci_low, ci_high};
}
bool isEssentiallyConstant() const
{
return getStandardError() < 10 * DBL_EPSILON * std::max(std::abs(getMeanX()), std::abs(getMeanY()));
}
};
template <typename T>
struct ZTestMoments
{
T nx{};
T ny{};
T x1{};
T y1{};
void addX(T value)
{
++nx;
x1 += value;
}
void addY(T value)
{
++ny;
y1 += value;
}
void merge(const ZTestMoments & rhs)
{
nx += rhs.nx;
ny += rhs.ny;
x1 += rhs.x1;
y1 += rhs.y1;
}
void write(WriteBuffer & buf) const
{
writePODBinary(*this, buf);
}
void read(ReadBuffer & buf)
{
readPODBinary(*this, buf);
}
Float64 getMeanX() const
{
return x1 / nx;
}
Float64 getMeanY() const
{
return y1 / ny;
}
Float64 getStandardError(Float64 pop_var_x, Float64 pop_var_y) const
{
/// \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}
return std::sqrt(pop_var_x / nx + pop_var_y / ny);
}
std::pair<Float64, Float64> getConfidenceIntervals(Float64 pop_var_x, Float64 pop_var_y, Float64 confidence_level) const
{
/// (\bar{x_{1}} - \bar{x_{2}}) \pm zscore \times \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}
Float64 mean_x = getMeanX();
Float64 mean_y = getMeanY();
Float64 z = boost::math::quantile(boost::math::complement(
boost::math::normal(0.0f, 1.0f), (1.0f - confidence_level) / 2.0f));
Float64 se = getStandardError(pop_var_x, pop_var_y);
Float64 ci_low = (mean_x - mean_y) - z * se;
Float64 ci_high = (mean_x - mean_y) + z * se;
return {ci_low, ci_high};
}
};
template <typename T>
struct AnalysisOfVarianceMoments
{
constexpr static size_t MAX_GROUPS_NUMBER = 1024 * 1024;
/// Sums of values within a group
std::vector<T> xs1{};
/// Sums of squared values within a group
std::vector<T> xs2{};
/// Sizes of each group. Total number of observations is just a sum of all these values
std::vector<size_t> ns{};
void resizeIfNeeded(size_t possible_size)
{
if (xs1.size() >= possible_size)
return;
if (possible_size > MAX_GROUPS_NUMBER)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Too many groups for analysis of variance (should be no more than {}, got {})",
MAX_GROUPS_NUMBER, possible_size);
xs1.resize(possible_size, 0.0);
xs2.resize(possible_size, 0.0);
ns.resize(possible_size, 0);
}
void add(T value, size_t group)
{
resizeIfNeeded(group + 1);
xs1[group] += value;
xs2[group] += value * value;
ns[group] += 1;
}
void merge(const AnalysisOfVarianceMoments & rhs)
{
resizeIfNeeded(rhs.xs1.size());
for (size_t i = 0; i < rhs.xs1.size(); ++i)
{
xs1[i] += rhs.xs1[i];
xs2[i] += rhs.xs2[i];
ns[i] += rhs.ns[i];
}
}
void write(WriteBuffer & buf) const
{
writeVectorBinary(xs1, buf);
writeVectorBinary(xs2, buf);
writeVectorBinary(ns, buf);
}
void read(ReadBuffer & buf)
{
readVectorBinary(xs1, buf);
readVectorBinary(xs2, buf);
readVectorBinary(ns, buf);
}
Float64 getMeanAll() const
{
const auto n = std::accumulate(ns.begin(), ns.end(), 0UL);
if (n == 0)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There are no observations to calculate mean value");
return std::accumulate(xs1.begin(), xs1.end(), 0.0) / n;
}
Float64 getMeanGroup(size_t group) const
{
if (ns[group] == 0)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There is no observations for group {}", group);
return xs1[group] / ns[group];
}
Float64 getBetweenGroupsVariation() const
{
Float64 res = 0;
auto mean = getMeanAll();
for (size_t i = 0; i < xs1.size(); ++i)
{
auto group_mean = getMeanGroup(i);
res += ns[i] * (group_mean - mean) * (group_mean - mean);
}
return res;
}
Float64 getWithinGroupsVariation() const
{
Float64 res = 0;
for (size_t i = 0; i < xs1.size(); ++i)
{
auto group_mean = getMeanGroup(i);
res += xs2[i] + ns[i] * group_mean * group_mean - 2 * group_mean * xs1[i];
}
return res;
}
Float64 getFStatistic() const
{
const auto k = xs1.size();
const auto n = std::accumulate(ns.begin(), ns.end(), 0UL);
if (k == 1)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There should be more than one group to calculate f-statistics");
if (k == n)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There is only one observation in each group");
return (getBetweenGroupsVariation() * (n - k)) / (getWithinGroupsVariation() * (k - 1));
}
Float64 getPValue(Float64 f_statistic) const
{
const auto k = xs1.size();
const auto n = std::accumulate(ns.begin(), ns.end(), 0UL);
if (k == 1)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There should be more than one group to calculate f-statistics");
if (k == n)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "There is only one observation in each group");
return 1.0f - boost::math::cdf(boost::math::fisher_f(k - 1, n - k), f_statistic);
}
};
}