ClickHouse/dbms/src/Interpreters/SyntaxAnalyzer.cpp
2019-09-04 13:15:34 +03:00

909 lines
34 KiB
C++

#include <Core/Settings.h>
#include <Core/NamesAndTypes.h>
#include <Interpreters/SyntaxAnalyzer.h>
#include <Interpreters/InJoinSubqueriesPreprocessor.h>
#include <Interpreters/LogicalExpressionsOptimizer.h>
#include <Interpreters/QueryAliasesVisitor.h>
#include <Interpreters/InterpreterSelectWithUnionQuery.h>
#include <Interpreters/ArrayJoinedColumnsVisitor.h>
#include <Interpreters/TranslateQualifiedNamesVisitor.h>
#include <Interpreters/Context.h>
#include <Interpreters/QueryNormalizer.h>
#include <Interpreters/ExecuteScalarSubqueriesVisitor.h>
#include <Interpreters/PredicateExpressionsOptimizer.h>
#include <Interpreters/CollectJoinOnKeysVisitor.h>
#include <Interpreters/ExternalDictionaries.h>
#include <Interpreters/OptimizeIfWithConstantConditionVisitor.h>
#include <Interpreters/RequiredSourceColumnsVisitor.h>
#include <Interpreters/GetAggregatesVisitor.h>
#include <Interpreters/AnalyzedJoin.h>
#include <Interpreters/ExpressionActions.h> /// getSmallestColumn()
#include <Parsers/ASTExpressionList.h>
#include <Parsers/ASTFunction.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTOrderByElement.h>
#include <Parsers/ASTSelectQuery.h>
#include <Parsers/ASTTablesInSelectQuery.h>
#include <Parsers/ParserTablesInSelectQuery.h>
#include <Parsers/parseQuery.h>
#include <Parsers/queryToString.h>
#include <DataTypes/NestedUtils.h>
#include <DataTypes/DataTypeNullable.h>
#include <IO/WriteHelpers.h>
#include <Storages/IStorage.h>
#include <functional>
namespace DB
{
namespace ErrorCodes
{
extern const int EMPTY_NESTED_TABLE;
extern const int LOGICAL_ERROR;
extern const int INVALID_JOIN_ON_EXPRESSION;
extern const int EMPTY_LIST_OF_COLUMNS_QUERIED;
extern const int NOT_IMPLEMENTED;
extern const int UNKNOWN_IDENTIFIER;
extern const int EXPECTED_ALL_OR_ANY;
extern const int ALIAS_REQUIRED;
}
NameSet removeDuplicateColumns(NamesAndTypesList & columns)
{
NameSet names;
for (auto it = columns.begin(); it != columns.end();)
{
if (names.emplace(it->name).second)
++it;
else
columns.erase(it++);
}
return names;
}
namespace
{
using LogAST = DebugASTLog<false>; /// set to true to enable logs
/// Add columns from storage to source_columns list.
void collectSourceColumns(const ASTSelectQuery * select_query, StoragePtr storage, NamesAndTypesList & source_columns)
{
if (storage)
{
auto physical_columns = storage->getColumns().getAllPhysical();
if (source_columns.empty())
source_columns.swap(physical_columns);
else
source_columns.insert(source_columns.end(), physical_columns.begin(), physical_columns.end());
if (select_query)
{
const auto & storage_aliases = storage->getColumns().getAliases();
const auto & storage_virtuals = storage->getColumns().getVirtuals();
source_columns.insert(source_columns.end(), storage_aliases.begin(), storage_aliases.end());
source_columns.insert(source_columns.end(), storage_virtuals.begin(), storage_virtuals.end());
}
}
}
/// Translate qualified names such as db.table.column, table.column, table_alias.column to names' normal form.
/// Expand asterisks and qualified asterisks with column names.
/// There would be columns in normal form & column aliases after translation. Column & column alias would be normalized in QueryNormalizer.
void translateQualifiedNames(ASTPtr & query, const ASTSelectQuery & select_query, const Context & context,
const Names & source_columns_list, const NameSet & source_columns_set,
const NameSet & columns_from_joined_table)
{
auto & settings = context.getSettingsRef();
std::vector<TableWithColumnNames> tables_with_columns = getDatabaseAndTablesWithColumnNames(select_query, context);
if (settings.joined_subquery_requires_alias && tables_with_columns.size() > 1)
{
for (auto & pr : tables_with_columns)
if (pr.first.table.empty() && pr.first.alias.empty())
throw Exception("Not unique subquery in FROM requires an alias (or joined_subquery_requires_alias=0 to disable restriction).",
ErrorCodes::ALIAS_REQUIRED);
}
if (tables_with_columns.empty())
{
Names all_columns_name = source_columns_list;
if (!settings.asterisk_left_columns_only)
{
for (auto & column : columns_from_joined_table)
all_columns_name.emplace_back(column);
}
tables_with_columns.emplace_back(DatabaseAndTableWithAlias{}, std::move(all_columns_name));
}
LogAST log;
TranslateQualifiedNamesVisitor::Data visitor_data(source_columns_set, tables_with_columns);
TranslateQualifiedNamesVisitor visitor(visitor_data, log.stream());
visitor.visit(query);
/// This may happen after expansion of COLUMNS('regexp').
if (select_query.select()->children.empty())
throw Exception("Empty list of columns in SELECT query", ErrorCodes::EMPTY_LIST_OF_COLUMNS_QUERIED);
}
bool hasArrayJoin(const ASTPtr & ast)
{
if (const ASTFunction * function = ast->as<ASTFunction>())
if (function->name == "arrayJoin")
return true;
for (const auto & child : ast->children)
if (!child->as<ASTSelectQuery>() && hasArrayJoin(child))
return true;
return false;
}
/// Keep number of columns for 'GLOBAL IN (SELECT 1 AS a, a)'
void renameDuplicatedColumns(const ASTSelectQuery * select_query)
{
ASTs & elements = select_query->select()->children;
std::set<String> all_column_names;
std::set<String> assigned_column_names;
for (auto & expr : elements)
all_column_names.insert(expr->getAliasOrColumnName());
for (auto & expr : elements)
{
auto name = expr->getAliasOrColumnName();
if (!assigned_column_names.insert(name).second)
{
size_t i = 1;
while (all_column_names.end() != all_column_names.find(name + "_" + toString(i)))
++i;
name = name + "_" + toString(i);
expr = expr->clone(); /// Cancels fuse of the same expressions in the tree.
expr->setAlias(name);
all_column_names.insert(name);
assigned_column_names.insert(name);
}
}
}
/// Sometimes we have to calculate more columns in SELECT clause than will be returned from query.
/// This is the case when we have DISTINCT or arrayJoin: we require more columns in SELECT even if we need less columns in result.
/// Also we have to remove duplicates in case of GLOBAL subqueries. Their results are placed into tables so duplicates are inpossible.
void removeUnneededColumnsFromSelectClause(const ASTSelectQuery * select_query, const Names & required_result_columns, bool remove_dups)
{
ASTs & elements = select_query->select()->children;
std::map<String, size_t> required_columns_with_duplicate_count;
if (!required_result_columns.empty())
{
/// Some columns may be queried multiple times, like SELECT x, y, y FROM table.
for (const auto & name : required_result_columns)
{
if (remove_dups)
required_columns_with_duplicate_count[name] = 1;
else
++required_columns_with_duplicate_count[name];
}
}
else if (remove_dups)
{
/// Even if we have no requirements there could be duplicates cause of asterisks. SELECT *, t.*
for (const auto & elem : elements)
required_columns_with_duplicate_count.emplace(elem->getAliasOrColumnName(), 1);
}
else
return;
ASTs new_elements;
new_elements.reserve(elements.size());
for (const auto & elem : elements)
{
String name = elem->getAliasOrColumnName();
auto it = required_columns_with_duplicate_count.find(name);
if (required_columns_with_duplicate_count.end() != it && it->second)
{
new_elements.push_back(elem);
--it->second;
}
else if (select_query->distinct || hasArrayJoin(elem))
{
new_elements.push_back(elem);
}
}
elements = std::move(new_elements);
}
/// Replacing scalar subqueries with constant values.
void executeScalarSubqueries(ASTPtr & query, const Context & context, size_t subquery_depth)
{
LogAST log;
ExecuteScalarSubqueriesVisitor::Data visitor_data{context, subquery_depth};
ExecuteScalarSubqueriesVisitor(visitor_data, log.stream()).visit(query);
}
/** Calls to these functions in the GROUP BY statement would be
* replaced by their immediate argument.
*/
const std::unordered_set<String> injective_function_names
{
"negate",
"bitNot",
"reverse",
"reverseUTF8",
"toString",
"toFixedString",
"IPv4NumToString",
"IPv4StringToNum",
"hex",
"unhex",
"bitmaskToList",
"bitmaskToArray",
"tuple",
"regionToName",
"concatAssumeInjective",
};
const std::unordered_set<String> possibly_injective_function_names
{
"dictGetString",
"dictGetUInt8",
"dictGetUInt16",
"dictGetUInt32",
"dictGetUInt64",
"dictGetInt8",
"dictGetInt16",
"dictGetInt32",
"dictGetInt64",
"dictGetFloat32",
"dictGetFloat64",
"dictGetDate",
"dictGetDateTime"
};
/// Eliminates injective function calls and constant expressions from group by statement.
void optimizeGroupBy(ASTSelectQuery * select_query, const NameSet & source_columns, const Context & context)
{
if (!select_query->groupBy())
return;
const auto is_literal = [] (const ASTPtr & ast) -> bool
{
return ast->as<ASTLiteral>();
};
auto & group_exprs = select_query->groupBy()->children;
/// removes expression at index idx by making it last one and calling .pop_back()
const auto remove_expr_at_index = [&group_exprs] (const size_t idx)
{
if (idx < group_exprs.size() - 1)
std::swap(group_exprs[idx], group_exprs.back());
group_exprs.pop_back();
};
/// iterate over each GROUP BY expression, eliminate injective function calls and literals
for (size_t i = 0; i < group_exprs.size();)
{
if (const auto * function = group_exprs[i]->as<ASTFunction>())
{
/// assert function is injective
if (possibly_injective_function_names.count(function->name))
{
/// do not handle semantic errors here
if (function->arguments->children.size() < 2)
{
++i;
continue;
}
const auto & dict_name = function->arguments->children[0]->as<ASTLiteral &>().value.safeGet<String>();
const auto & dict_ptr = context.getExternalDictionaries().getDictionary(dict_name);
const auto & attr_name = function->arguments->children[1]->as<ASTLiteral &>().value.safeGet<String>();
if (!dict_ptr->isInjective(attr_name))
{
++i;
continue;
}
}
else if (!injective_function_names.count(function->name))
{
++i;
continue;
}
/// copy shared pointer to args in order to ensure lifetime
auto args_ast = function->arguments;
/** remove function call and take a step back to ensure
* next iteration does not skip not yet processed data
*/
remove_expr_at_index(i);
/// copy non-literal arguments
std::remove_copy_if(
std::begin(args_ast->children), std::end(args_ast->children),
std::back_inserter(group_exprs), is_literal
);
}
else if (is_literal(group_exprs[i]))
{
remove_expr_at_index(i);
}
else
{
/// if neither a function nor literal - advance to next expression
++i;
}
}
if (group_exprs.empty())
{
/** You can not completely remove GROUP BY. Because if there were no aggregate functions, then it turns out that there will be no aggregation.
* Instead, leave `GROUP BY const`.
* Next, see deleting the constants in the analyzeAggregation method.
*/
/// You must insert a constant that is not the name of the column in the table. Such a case is rare, but it happens.
UInt64 unused_column = 0;
String unused_column_name = toString(unused_column);
while (source_columns.count(unused_column_name))
{
++unused_column;
unused_column_name = toString(unused_column);
}
select_query->setExpression(ASTSelectQuery::Expression::GROUP_BY, std::make_shared<ASTExpressionList>());
select_query->groupBy()->children.emplace_back(std::make_shared<ASTLiteral>(UInt64(unused_column)));
}
}
/// Remove duplicate items from ORDER BY.
void optimizeOrderBy(const ASTSelectQuery * select_query)
{
if (!select_query->orderBy())
return;
/// Make unique sorting conditions.
using NameAndLocale = std::pair<String, String>;
std::set<NameAndLocale> elems_set;
ASTs & elems = select_query->orderBy()->children;
ASTs unique_elems;
unique_elems.reserve(elems.size());
for (const auto & elem : elems)
{
String name = elem->children.front()->getColumnName();
const auto & order_by_elem = elem->as<ASTOrderByElement &>();
if (elems_set.emplace(name, order_by_elem.collation ? order_by_elem.collation->getColumnName() : "").second)
unique_elems.emplace_back(elem);
}
if (unique_elems.size() < elems.size())
elems = std::move(unique_elems);
}
/// Remove duplicate items from LIMIT BY.
void optimizeLimitBy(const ASTSelectQuery * select_query)
{
if (!select_query->limitBy())
return;
std::set<String> elems_set;
ASTs & elems = select_query->limitBy()->children;
ASTs unique_elems;
unique_elems.reserve(elems.size());
for (const auto & elem : elems)
{
if (elems_set.emplace(elem->getColumnName()).second)
unique_elems.emplace_back(elem);
}
if (unique_elems.size() < elems.size())
elems = std::move(unique_elems);
}
/// Remove duplicated columns from USING(...).
void optimizeUsing(const ASTSelectQuery * select_query)
{
if (!select_query->join())
return;
const auto * table_join = select_query->join()->table_join->as<ASTTableJoin>();
if (!(table_join && table_join->using_expression_list))
return;
ASTs & expression_list = table_join->using_expression_list->children;
ASTs uniq_expressions_list;
std::set<String> expressions_names;
for (const auto & expression : expression_list)
{
auto expression_name = expression->getAliasOrColumnName();
if (expressions_names.find(expression_name) == expressions_names.end())
{
uniq_expressions_list.push_back(expression);
expressions_names.insert(expression_name);
}
}
if (uniq_expressions_list.size() < expression_list.size())
expression_list = uniq_expressions_list;
}
void getArrayJoinedColumns(ASTPtr & query, SyntaxAnalyzerResult & result, const ASTSelectQuery * select_query,
const Names & source_columns, const NameSet & source_columns_set)
{
if (ASTPtr array_join_expression_list = select_query->array_join_expression_list())
{
ArrayJoinedColumnsVisitor::Data visitor_data{result.aliases,
result.array_join_name_to_alias,
result.array_join_alias_to_name,
result.array_join_result_to_source};
ArrayJoinedColumnsVisitor(visitor_data).visit(query);
/// If the result of ARRAY JOIN is not used, it is necessary to ARRAY-JOIN any column,
/// to get the correct number of rows.
if (result.array_join_result_to_source.empty())
{
ASTPtr expr = select_query->array_join_expression_list()->children.at(0);
String source_name = expr->getColumnName();
String result_name = expr->getAliasOrColumnName();
/// This is an array.
if (!expr->as<ASTIdentifier>() || source_columns_set.count(source_name))
{
result.array_join_result_to_source[result_name] = source_name;
}
else /// This is a nested table.
{
bool found = false;
for (const auto & column_name : source_columns)
{
auto splitted = Nested::splitName(column_name);
if (splitted.first == source_name && !splitted.second.empty())
{
result.array_join_result_to_source[Nested::concatenateName(result_name, splitted.second)] = column_name;
found = true;
break;
}
}
if (!found)
throw Exception("No columns in nested table " + source_name, ErrorCodes::EMPTY_NESTED_TABLE);
}
}
}
}
void setJoinStrictness(ASTSelectQuery & select_query, JoinStrictness join_default_strictness, ASTTableJoin & out_table_join)
{
const ASTTablesInSelectQueryElement * node = select_query.join();
if (!node)
return;
auto & table_join = const_cast<ASTTablesInSelectQueryElement *>(node)->table_join->as<ASTTableJoin &>();
if (table_join.strictness == ASTTableJoin::Strictness::Unspecified &&
table_join.kind != ASTTableJoin::Kind::Cross)
{
if (join_default_strictness == JoinStrictness::ANY)
table_join.strictness = ASTTableJoin::Strictness::Any;
else if (join_default_strictness == JoinStrictness::ALL)
table_join.strictness = ASTTableJoin::Strictness::All;
else
throw Exception("Expected ANY or ALL in JOIN section, because setting (join_default_strictness) is empty",
DB::ErrorCodes::EXPECTED_ALL_OR_ANY);
}
out_table_join = table_join;
}
/// Find the columns that are obtained by JOIN.
void collectJoinedColumns(AnalyzedJoin & analyzed_join, const ASTSelectQuery & select_query, const NameSet & source_columns,
const Aliases & aliases)
{
const ASTTablesInSelectQueryElement * node = select_query.join();
if (!node)
return;
const auto & table_join = node->table_join->as<ASTTableJoin &>();
if (table_join.using_expression_list)
{
const auto & keys = table_join.using_expression_list->as<ASTExpressionList &>();
for (const auto & key : keys.children)
analyzed_join.addUsingKey(key);
}
else if (table_join.on_expression)
{
bool is_asof = (table_join.strictness == ASTTableJoin::Strictness::Asof);
CollectJoinOnKeysVisitor::Data data{analyzed_join, source_columns, analyzed_join.getOriginalColumnsSet(), aliases, is_asof};
CollectJoinOnKeysVisitor(data).visit(table_join.on_expression);
if (!data.has_some)
throw Exception("Cannot get JOIN keys from JOIN ON section: " + queryToString(table_join.on_expression),
ErrorCodes::INVALID_JOIN_ON_EXPRESSION);
if (is_asof)
data.asofToJoinKeys();
}
}
void replaceJoinedTable(const ASTTablesInSelectQueryElement* join)
{
if (!join || !join->table_expression)
return;
auto & table_expr = join->table_expression->as<ASTTableExpression &>();
if (table_expr.database_and_table_name)
{
const auto & table_id = table_expr.database_and_table_name->as<ASTIdentifier &>();
String expr = "(select * from " + table_id.name + ") as " + table_id.shortName();
// FIXME: since the expression "a as b" exposes both "a" and "b" names, which is not equivalent to "(select * from a) as b",
// we can't replace aliased tables.
// FIXME: long table names include database name, which we can't save within alias.
if (table_id.alias.empty() && table_id.isShort())
{
ParserTableExpression parser;
table_expr = parseQuery(parser, expr, 0)->as<ASTTableExpression &>();
}
}
}
void checkJoin(const ASTTablesInSelectQueryElement * join)
{
if (!join->table_join)
return;
const auto & table_join = join->table_join->as<ASTTableJoin &>();
if (table_join.strictness == ASTTableJoin::Strictness::Any)
if (table_join.kind != ASTTableJoin::Kind::Left)
throw Exception("Old ANY INNER|RIGHT|FULL JOINs are disabled by default. Their logic would be changed. "
"Old logic is many-to-one for all kinds of ANY JOINs. It's equil to apply distinct for right table keys. "
"Default bahaviour is reserved for many-to-one LEFT JOIN, one-to-many RIGHT JOIN and one-to-one INNER JOIN. "
"It would be equal to apply distinct for keys to right, left and both tables respectively. "
"Set any_join_distinct_right_table_keys=1 to enable old bahaviour.",
ErrorCodes::NOT_IMPLEMENTED);
}
std::vector<const ASTFunction *> getAggregates(const ASTPtr & query)
{
if (const auto * select_query = query->as<ASTSelectQuery>())
{
/// There can not be aggregate functions inside the WHERE and PREWHERE.
if (select_query->where())
assertNoAggregates(select_query->where(), "in WHERE");
if (select_query->prewhere())
assertNoAggregates(select_query->prewhere(), "in PREWHERE");
GetAggregatesVisitor::Data data;
GetAggregatesVisitor(data).visit(query);
/// There can not be other aggregate functions within the aggregate functions.
for (const ASTFunction * node : data.aggregates)
for (auto & arg : node->arguments->children)
assertNoAggregates(arg, "inside another aggregate function");
return data.aggregates;
}
else
assertNoAggregates(query, "in wrong place");
return {};
}
}
/// Calculate which columns are required to execute the expression.
/// Then, delete all other columns from the list of available columns.
/// After execution, columns will only contain the list of columns needed to read from the table.
void SyntaxAnalyzerResult::collectUsedColumns(const ASTPtr & query, const NamesAndTypesList & additional_source_columns)
{
/// We caclulate required_source_columns with source_columns modifications and swap them on exit
required_source_columns = source_columns;
if (!additional_source_columns.empty())
{
source_columns.insert(source_columns.end(), additional_source_columns.begin(), additional_source_columns.end());
removeDuplicateColumns(source_columns);
}
RequiredSourceColumnsVisitor::Data columns_context;
RequiredSourceColumnsVisitor(columns_context).visit(query);
NameSet source_column_names;
for (const auto & column : source_columns)
source_column_names.insert(column.name);
NameSet required = columns_context.requiredColumns();
if (columns_context.has_table_join)
{
NameSet avaliable_columns;
for (const auto & name : source_columns)
avaliable_columns.insert(name.name);
/// Add columns obtained by JOIN (if needed).
for (const auto & joined_column : analyzed_join->columnsFromJoinedTable())
{
auto & name = joined_column.name;
if (avaliable_columns.count(name))
continue;
if (required.count(name))
{
/// Optimisation: do not add columns needed only in JOIN ON section.
if (columns_context.nameInclusion(name) > analyzed_join->rightKeyInclusion(name))
analyzed_join->addJoinedColumn(joined_column);
required.erase(name);
}
}
}
NameSet array_join_sources;
if (columns_context.has_array_join)
{
/// Insert the columns required for the ARRAY JOIN calculation into the required columns list.
for (const auto & result_source : array_join_result_to_source)
array_join_sources.insert(result_source.second);
for (const auto & column_name_type : source_columns)
if (array_join_sources.count(column_name_type.name))
required.insert(column_name_type.name);
}
const auto * select_query = query->as<ASTSelectQuery>();
/// You need to read at least one column to find the number of rows.
if (select_query && required.empty())
{
/// We will find a column with minimum <compressed_size, type_size, uncompressed_size>.
/// Because it is the column that is cheapest to read.
struct ColumnSizeTuple
{
size_t compressed_size;
size_t type_size;
size_t uncompressed_size;
String name;
bool operator<(const ColumnSizeTuple & that) const
{
return std::tie(compressed_size, type_size, uncompressed_size)
< std::tie(that.compressed_size, that.type_size, that.uncompressed_size);
}
};
std::vector<ColumnSizeTuple> columns;
if (storage)
{
auto column_sizes = storage->getColumnSizes();
for (auto & source_column : source_columns)
{
auto c = column_sizes.find(source_column.name);
if (c == column_sizes.end())
continue;
size_t type_size = source_column.type->haveMaximumSizeOfValue() ? source_column.type->getMaximumSizeOfValueInMemory() : 100;
columns.emplace_back(ColumnSizeTuple{c->second.data_compressed, type_size, c->second.data_uncompressed, source_column.name});
}
}
if (columns.size())
required.insert(std::min_element(columns.begin(), columns.end())->name);
else
/// If we have no information about columns sizes, choose a column of minimum size of its data type.
required.insert(ExpressionActions::getSmallestColumn(source_columns));
}
NameSet unknown_required_source_columns = required;
for (NamesAndTypesList::iterator it = source_columns.begin(); it != source_columns.end();)
{
const String & column_name = it->name;
unknown_required_source_columns.erase(column_name);
if (!required.count(column_name))
source_columns.erase(it++);
else
++it;
}
/// If there are virtual columns among the unknown columns. Remove them from the list of unknown and add
/// in columns list, so that when further processing they are also considered.
if (storage)
{
for (auto it = unknown_required_source_columns.begin(); it != unknown_required_source_columns.end();)
{
if (storage->hasColumn(*it))
{
source_columns.push_back(storage->getColumn(*it));
unknown_required_source_columns.erase(it++);
}
else
++it;
}
}
if (!unknown_required_source_columns.empty())
{
std::stringstream ss;
ss << "Missing columns:";
for (const auto & name : unknown_required_source_columns)
ss << " '" << name << "'";
ss << " while processing query: '" << queryToString(query) << "'";
ss << ", required columns:";
for (const auto & name : columns_context.requiredColumns())
ss << " '" << name << "'";
if (!source_column_names.empty())
{
ss << ", source columns:";
for (const auto & name : source_column_names)
ss << " '" << name << "'";
}
else
ss << ", no source columns";
if (columns_context.has_table_join)
{
ss << ", joined columns:";
for (const auto & column : analyzed_join->columnsFromJoinedTable())
ss << " '" << column.name << "'";
}
if (!array_join_sources.empty())
{
ss << ", arrayJoin columns:";
for (const auto & name : array_join_sources)
ss << " '" << name << "'";
}
throw Exception(ss.str(), ErrorCodes::UNKNOWN_IDENTIFIER);
}
required_source_columns.swap(source_columns);
}
SyntaxAnalyzerResultPtr SyntaxAnalyzer::analyze(
ASTPtr & query,
const NamesAndTypesList & source_columns_,
const Names & required_result_columns,
StoragePtr storage,
const NamesAndTypesList & additional_source_columns) const
{
auto * select_query = query->as<ASTSelectQuery>();
if (!storage && select_query)
{
if (auto db_and_table = getDatabaseAndTable(*select_query, 0))
storage = context.tryGetTable(db_and_table->database, db_and_table->table);
}
const auto & settings = context.getSettingsRef();
SyntaxAnalyzerResult result;
result.storage = storage;
result.source_columns = source_columns_;
result.analyzed_join = std::make_shared<AnalyzedJoin>(); /// TODO: move to select_query logic
result.analyzed_join->join_use_nulls = settings.join_use_nulls;
collectSourceColumns(select_query, result.storage, result.source_columns);
NameSet source_columns_set = removeDuplicateColumns(result.source_columns);
Names source_columns_list;
source_columns_list.reserve(result.source_columns.size());
for (const auto & type_name : result.source_columns)
source_columns_list.emplace_back(type_name.name);
if (source_columns_set.size() != source_columns_list.size())
throw Exception("Unexpected duplicates in source columns list.", ErrorCodes::LOGICAL_ERROR);
if (select_query)
{
if (remove_duplicates)
renameDuplicatedColumns(select_query);
if (const ASTTablesInSelectQueryElement * node = select_query->join())
{
if (!settings.any_join_distinct_right_table_keys)
checkJoin(node);
if (settings.enable_optimize_predicate_expression)
replaceJoinedTable(node);
const auto & joined_expression = node->table_expression->as<ASTTableExpression &>();
DatabaseAndTableWithAlias table(joined_expression, context.getCurrentDatabase());
result.analyzed_join->columns_from_joined_table = getNamesAndTypeListFromTableExpression(joined_expression, context);
result.analyzed_join->deduplicateAndQualifyColumnNames(source_columns_set, table.getQualifiedNamePrefix());
}
translateQualifiedNames(query, *select_query, context,
(storage ? storage->getColumns().getOrdinary().getNames() : source_columns_list), source_columns_set,
result.analyzed_join->getQualifiedColumnsSet());
/// Rewrite IN and/or JOIN for distributed tables according to distributed_product_mode setting.
InJoinSubqueriesPreprocessor(context).visit(query);
/// Optimizes logical expressions.
LogicalExpressionsOptimizer(select_query, settings.optimize_min_equality_disjunction_chain_length.value).perform();
}
/// Creates a dictionary `aliases`: alias -> ASTPtr
{
LogAST log;
QueryAliasesVisitor::Data query_aliases_data{result.aliases};
QueryAliasesVisitor(query_aliases_data, log.stream()).visit(query);
}
/// Common subexpression elimination. Rewrite rules.
{
QueryNormalizer::Data normalizer_data(result.aliases, context.getSettingsRef());
QueryNormalizer(normalizer_data).visit(query);
}
/// Remove unneeded columns according to 'required_result_columns'.
/// Leave all selected columns in case of DISTINCT; columns that contain arrayJoin function inside.
/// Must be after 'normalizeTree' (after expanding aliases, for aliases not get lost)
/// and before 'executeScalarSubqueries', 'analyzeAggregation', etc. to avoid excessive calculations.
if (select_query)
removeUnneededColumnsFromSelectClause(select_query, required_result_columns, remove_duplicates);
/// Executing scalar subqueries - replacing them with constant values.
executeScalarSubqueries(query, context, subquery_depth);
/// Optimize if with constant condition after constants was substituted instead of scalar subqueries.
OptimizeIfWithConstantConditionVisitor(result.aliases).visit(query);
if (select_query)
{
/// GROUP BY injective function elimination.
optimizeGroupBy(select_query, source_columns_set, context);
/// Remove duplicate items from ORDER BY.
optimizeOrderBy(select_query);
/// Remove duplicated elements from LIMIT BY clause.
optimizeLimitBy(select_query);
/// Remove duplicated columns from USING(...).
optimizeUsing(select_query);
/// array_join_alias_to_name, array_join_result_to_source.
getArrayJoinedColumns(query, result, select_query, source_columns_list, source_columns_set);
/// Push the predicate expression down to the subqueries.
result.rewrite_subqueries = PredicateExpressionsOptimizer(select_query, settings, context).optimize();
setJoinStrictness(*select_query, settings.join_default_strictness, result.analyzed_join->table_join);
collectJoinedColumns(*result.analyzed_join, *select_query, source_columns_set, result.aliases);
}
result.aggregates = getAggregates(query);
result.collectUsedColumns(query, additional_source_columns);
return std::make_shared<const SyntaxAnalyzerResult>(result);
}
}