ClickHouse/tests/integration/test_storage_delta/test.py
Kseniia Sumarokova 6e584dd541
Fix test
2024-08-26 11:33:08 +02:00

827 lines
26 KiB
Python

import helpers.client
from helpers.cluster import ClickHouseCluster
from helpers.test_tools import TSV
import pytest
import logging
import os
import json
import time
import glob
import random
import string
import pyspark
import delta
from delta import *
from pyspark.sql.types import (
StructType,
StructField,
StringType,
IntegerType,
DateType,
TimestampType,
BooleanType,
ArrayType,
)
from pyspark.sql.functions import current_timestamp
from datetime import datetime
from pyspark.sql.functions import monotonically_increasing_id, row_number
from pyspark.sql.window import Window
from minio.deleteobjects import DeleteObject
import pyarrow as pa
import pyarrow.parquet as pq
from deltalake.writer import write_deltalake
from helpers.s3_tools import (
prepare_s3_bucket,
upload_directory,
get_file_contents,
list_s3_objects,
)
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__))
def get_spark():
builder = (
pyspark.sql.SparkSession.builder.appName("spark_test")
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension")
.config(
"spark.sql.catalog.spark_catalog",
"org.apache.spark.sql.delta.catalog.DeltaCatalog",
)
.master("local")
)
return builder.master("local").getOrCreate()
def randomize_table_name(table_name, random_suffix_length=10):
letters = string.ascii_letters + string.digits
return f"{table_name}{''.join(random.choice(letters) for _ in range(random_suffix_length))}"
@pytest.fixture(scope="module")
def started_cluster():
try:
cluster = ClickHouseCluster(__file__, with_spark=True)
cluster.add_instance(
"node1",
main_configs=["configs/config.d/named_collections.xml"],
user_configs=["configs/users.d/users.xml"],
with_minio=True,
stay_alive=True,
)
logging.info("Starting cluster...")
cluster.start()
prepare_s3_bucket(cluster)
cluster.spark_session = get_spark()
yield cluster
finally:
cluster.shutdown()
def write_delta_from_file(spark, path, result_path, mode="overwrite"):
spark.read.load(path).write.mode(mode).option("compression", "none").format(
"delta"
).option("delta.columnMapping.mode", "name").save(result_path)
def write_delta_from_df(spark, df, result_path, mode="overwrite", partition_by=None):
if partition_by is None:
df.write.mode(mode).option("compression", "none").format("delta").option(
"delta.columnMapping.mode", "name"
).save(result_path)
else:
df.write.mode(mode).option("compression", "none").format("delta").option(
"delta.columnMapping.mode", "name"
).partitionBy("a").save(result_path)
def generate_data(spark, start, end):
a = spark.range(start, end, 1).toDF("a")
b = spark.range(start + 1, end + 1, 1).toDF("b")
b = b.withColumn("b", b["b"].cast(StringType()))
a = a.withColumn(
"row_index", row_number().over(Window.orderBy(monotonically_increasing_id()))
)
b = b.withColumn(
"row_index", row_number().over(Window.orderBy(monotonically_increasing_id()))
)
df = a.join(b, on=["row_index"]).drop("row_index")
return df
def get_delta_metadata(delta_metadata_file):
jsons = [json.loads(x) for x in delta_metadata_file.splitlines()]
combined_json = {}
for d in jsons:
combined_json.update(d)
return combined_json
def create_delta_table(node, table_name, bucket="root"):
node.query(
f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=DeltaLake(s3, filename = '{table_name}/', url = 'http://minio1:9001/{bucket}/')"""
)
def create_initial_data_file(
cluster, node, query, table_name, compression_method="none"
):
node.query(
f"""
INSERT INTO TABLE FUNCTION
file('{table_name}.parquet')
SETTINGS
output_format_parquet_compression_method='{compression_method}',
s3_truncate_on_insert=1 {query}
FORMAT Parquet"""
)
user_files_path = os.path.join(
SCRIPT_DIR, f"{cluster.instances_dir_name}/node1/database/user_files"
)
result_path = f"{user_files_path}/{table_name}.parquet"
return result_path
def test_single_log_file(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_single_log_file")
inserted_data = "SELECT number as a, toString(number + 1) as b FROM numbers(100)"
parquet_data_path = create_initial_data_file(
started_cluster, instance, inserted_data, TABLE_NAME
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 2 # 1 metadata files + 1 data file
create_delta_table(instance, TABLE_NAME)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
assert instance.query(f"SELECT * FROM {TABLE_NAME}") == instance.query(
inserted_data
)
def test_partition_by(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_partition_by")
write_delta_from_df(
spark,
generate_data(spark, 0, 10),
f"/{TABLE_NAME}",
mode="overwrite",
partition_by="a",
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 11 # 10 partitions and 1 metadata file
create_delta_table(instance, TABLE_NAME)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 10
def test_checkpoint(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_checkpoint")
write_delta_from_df(
spark,
generate_data(spark, 0, 1),
f"/{TABLE_NAME}",
mode="overwrite",
)
for i in range(1, 25):
write_delta_from_df(
spark,
generate_data(spark, i, i + 1),
f"/{TABLE_NAME}",
mode="append",
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
# 25 data files
# 25 metadata files
# 1 last_metadata file
# 2 checkpoints
assert len(files) == 25 * 2 + 3
ok = False
for file in files:
if file.endswith("last_checkpoint"):
ok = True
assert ok
create_delta_table(instance, TABLE_NAME)
assert (
int(
instance.query(
f"SELECT count() FROM {TABLE_NAME} SETTINGS input_format_parquet_allow_missing_columns=1"
)
)
== 25
)
table = DeltaTable.forPath(spark, f"/{TABLE_NAME}")
table.delete("a < 10")
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 15
for i in range(0, 5):
write_delta_from_df(
spark,
generate_data(spark, i, i + 1),
f"/{TABLE_NAME}",
mode="append",
)
# + 1 metadata files (for delete)
# + 5 data files
# + 5 metadata files
# + 1 checkpoint file
# + 1 ?
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 53 + 1 + 5 * 2 + 1 + 1
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 20
assert (
instance.query(f"SELECT * FROM {TABLE_NAME} ORDER BY 1").strip()
== instance.query(
"SELECT * FROM ("
"SELECT number, toString(number + 1) FROM numbers(5) "
"UNION ALL SELECT number, toString(number + 1) FROM numbers(10, 15) "
") ORDER BY 1"
).strip()
)
def test_multiple_log_files(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_multiple_log_files")
write_delta_from_df(
spark, generate_data(spark, 0, 100), f"/{TABLE_NAME}", mode="overwrite"
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 2 # 1 metadata files + 1 data file
s3_objects = list(
minio_client.list_objects(bucket, f"{TABLE_NAME}/_delta_log/", recursive=True)
)
assert len(s3_objects) == 1
create_delta_table(instance, TABLE_NAME)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
write_delta_from_df(
spark, generate_data(spark, 100, 200), f"/{TABLE_NAME}", mode="append"
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 4 # 2 metadata files + 2 data files
s3_objects = list(
minio_client.list_objects(bucket, f"{TABLE_NAME}/_delta_log/", recursive=True)
)
assert len(s3_objects) == 2
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 200
assert instance.query(f"SELECT * FROM {TABLE_NAME} ORDER BY 1") == instance.query(
"SELECT number, toString(number + 1) FROM numbers(200)"
)
def test_metadata(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_metadata")
parquet_data_path = create_initial_data_file(
started_cluster,
instance,
"SELECT number, toString(number) FROM numbers(100)",
TABLE_NAME,
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
data = get_file_contents(
minio_client,
bucket,
f"/{TABLE_NAME}/_delta_log/00000000000000000000.json",
)
delta_metadata = get_delta_metadata(data)
stats = json.loads(delta_metadata["add"]["stats"])
assert stats["numRecords"] == 100
assert next(iter(stats["minValues"].values())) == 0
assert next(iter(stats["maxValues"].values())) == 99
create_delta_table(instance, TABLE_NAME)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
def test_types(started_cluster):
TABLE_NAME = randomize_table_name("test_types")
spark = started_cluster.spark_session
result_file = randomize_table_name(f"{TABLE_NAME}_result_2")
delta_table = (
DeltaTable.create(spark)
.tableName(TABLE_NAME)
.location(f"/{result_file}")
.addColumn("a", "INT")
.addColumn("b", "STRING")
.addColumn("c", "DATE")
.addColumn("d", "ARRAY<STRING>")
.addColumn("e", "BOOLEAN")
.execute()
)
data = [
(
123,
"string",
datetime.strptime("2000-01-01", "%Y-%m-%d"),
["str1", "str2"],
True,
)
]
schema = StructType(
[
StructField("a", IntegerType()),
StructField("b", StringType()),
StructField("c", DateType()),
StructField("d", ArrayType(StringType())),
StructField("e", BooleanType()),
]
)
df = spark.createDataFrame(data=data, schema=schema)
df.printSchema()
df.write.mode("append").format("delta").saveAsTable(TABLE_NAME)
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
upload_directory(minio_client, bucket, f"/{result_file}", "")
instance = started_cluster.instances["node1"]
instance.query(
f"""
DROP TABLE IF EXISTS {TABLE_NAME};
CREATE TABLE {TABLE_NAME} ENGINE=DeltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"""
)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 1
assert (
instance.query(f"SELECT * FROM {TABLE_NAME}").strip()
== "123\tstring\t2000-01-01\t['str1','str2']\ttrue"
)
table_function = f"deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"
assert (
instance.query(f"SELECT * FROM {table_function}").strip()
== "123\tstring\t2000-01-01\t['str1','str2']\ttrue"
)
assert instance.query(f"DESCRIBE {table_function} FORMAT TSV") == TSV(
[
["a", "Nullable(Int32)"],
["b", "Nullable(String)"],
["c", "Nullable(Date32)"],
["d", "Array(Nullable(String))"],
["e", "Nullable(Bool)"],
]
)
def test_restart_broken(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = "broken"
TABLE_NAME = randomize_table_name("test_restart_broken")
if not minio_client.bucket_exists(bucket):
minio_client.make_bucket(bucket)
parquet_data_path = create_initial_data_file(
started_cluster,
instance,
"SELECT number, toString(number) FROM numbers(100)",
TABLE_NAME,
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
create_delta_table(instance, TABLE_NAME, bucket=bucket)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
s3_objects = list_s3_objects(minio_client, bucket, prefix="")
assert (
len(
list(
minio_client.remove_objects(
bucket,
[DeleteObject(obj) for obj in s3_objects],
)
)
)
== 0
)
minio_client.remove_bucket(bucket)
instance.restart_clickhouse()
assert "NoSuchBucket" in instance.query_and_get_error(
f"SELECT count() FROM {TABLE_NAME}"
)
s3_disk_no_key_errors_metric_value = int(
instance.query(
"""
SELECT value
FROM system.metrics
WHERE metric = 'DiskS3NoSuchKeyErrors'
"""
).strip()
)
assert s3_disk_no_key_errors_metric_value == 0
minio_client.make_bucket(bucket)
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
def test_restart_broken_table_function(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = "broken2"
TABLE_NAME = randomize_table_name("test_restart_broken_table_function")
if not minio_client.bucket_exists(bucket):
minio_client.make_bucket(bucket)
parquet_data_path = create_initial_data_file(
started_cluster,
instance,
"SELECT number, toString(number) FROM numbers(100)",
TABLE_NAME,
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
instance.query(
f"""
DROP TABLE IF EXISTS {TABLE_NAME};
CREATE TABLE {TABLE_NAME}
AS deltaLake(s3, filename = '{TABLE_NAME}/', url = 'http://minio1:9001/{bucket}/')"""
)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
s3_objects = list_s3_objects(minio_client, bucket, prefix="")
assert (
len(
list(
minio_client.remove_objects(
bucket,
[DeleteObject(obj) for obj in s3_objects],
)
)
)
== 0
)
minio_client.remove_bucket(bucket)
instance.restart_clickhouse()
assert "NoSuchBucket" in instance.query_and_get_error(
f"SELECT count() FROM {TABLE_NAME}"
)
minio_client.make_bucket(bucket)
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
def test_partition_columns(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_partition_columns")
result_file = f"{TABLE_NAME}"
partition_columns = ["b", "c", "d", "e"]
delta_table = (
DeltaTable.create(spark)
.tableName(TABLE_NAME)
.location(f"/{result_file}")
.addColumn("a", "INT")
.addColumn("b", "STRING")
.addColumn("c", "DATE")
.addColumn("d", "INT")
.addColumn("e", "BOOLEAN")
.partitionedBy(partition_columns)
.execute()
)
num_rows = 9
schema = StructType(
[
StructField("a", IntegerType()),
StructField("b", StringType()),
StructField("c", DateType()),
StructField("d", IntegerType()),
StructField("e", BooleanType()),
]
)
for i in range(1, num_rows + 1):
data = [
(
i,
"test" + str(i),
datetime.strptime(f"2000-01-0{i}", "%Y-%m-%d"),
i,
False if i % 2 == 0 else True,
)
]
df = spark.createDataFrame(data=data, schema=schema)
df.printSchema()
df.write.mode("append").format("delta").partitionBy(partition_columns).save(
f"/{TABLE_NAME}"
)
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) > 0
print(f"Uploaded files: {files}")
result = instance.query(
f"describe table deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"
).strip()
assert (
result
== "a\tNullable(Int32)\t\t\t\t\t\nb\tNullable(String)\t\t\t\t\t\nc\tNullable(Date32)\t\t\t\t\t\nd\tNullable(Int32)\t\t\t\t\t\ne\tNullable(Bool)"
)
result = int(
instance.query(
f"""SELECT count()
FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')
"""
)
)
assert result == num_rows
result = int(
instance.query(
f"""SELECT count()
FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')
WHERE c == toDateTime('2000/01/05')
"""
)
)
assert result == 1
instance.query(
f"""
DROP TABLE IF EXISTS {TABLE_NAME};
CREATE TABLE {TABLE_NAME} (a Nullable(Int32), b Nullable(String), c Nullable(Date32), d Nullable(Int32), e Nullable(Bool))
ENGINE=DeltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"""
)
assert (
"""1 test1 2000-01-01 1 true
2 test2 2000-01-02 2 false
3 test3 2000-01-03 3 true
4 test4 2000-01-04 4 false
5 test5 2000-01-05 5 true
6 test6 2000-01-06 6 false
7 test7 2000-01-07 7 true
8 test8 2000-01-08 8 false
9 test9 2000-01-09 9 true"""
== instance.query(f"SELECT * FROM {TABLE_NAME} ORDER BY b").strip()
)
assert (
int(
instance.query(
f"SELECT count() FROM {TABLE_NAME} WHERE c == toDateTime('2000/01/05')"
)
)
== 1
)
# Subset of columns should work.
instance.query(
f"""
DROP TABLE IF EXISTS {TABLE_NAME};
CREATE TABLE {TABLE_NAME} (b Nullable(String), c Nullable(Date32), d Nullable(Int32))
ENGINE=DeltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"""
)
assert (
"""test1 2000-01-01 1
test2 2000-01-02 2
test3 2000-01-03 3
test4 2000-01-04 4
test5 2000-01-05 5
test6 2000-01-06 6
test7 2000-01-07 7
test8 2000-01-08 8
test9 2000-01-09 9"""
== instance.query(f"SELECT * FROM {TABLE_NAME} ORDER BY b").strip()
)
for i in range(num_rows + 1, 2 * num_rows + 1):
data = [
(
i,
"test" + str(i),
datetime.strptime(f"2000-01-{i}", "%Y-%m-%d"),
i,
False if i % 2 == 0 else True,
)
]
df = spark.createDataFrame(data=data, schema=schema)
df.printSchema()
df.write.mode("append").format("delta").partitionBy(partition_columns).save(
f"/{TABLE_NAME}"
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
ok = False
for file in files:
if file.endswith("last_checkpoint"):
ok = True
assert ok
result = int(
instance.query(
f"""SELECT count()
FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')
"""
)
)
assert result == num_rows * 2
assert (
"""1 test1 2000-01-01 1 true
2 test2 2000-01-02 2 false
3 test3 2000-01-03 3 true
4 test4 2000-01-04 4 false
5 test5 2000-01-05 5 true
6 test6 2000-01-06 6 false
7 test7 2000-01-07 7 true
8 test8 2000-01-08 8 false
9 test9 2000-01-09 9 true
10 test10 2000-01-10 10 false
11 test11 2000-01-11 11 true
12 test12 2000-01-12 12 false
13 test13 2000-01-13 13 true
14 test14 2000-01-14 14 false
15 test15 2000-01-15 15 true
16 test16 2000-01-16 16 false
17 test17 2000-01-17 17 true
18 test18 2000-01-18 18 false"""
== instance.query(
f"""
SELECT * FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123') ORDER BY c
"""
).strip()
)
assert (
int(
instance.query(
f"SELECT count() FROM {TABLE_NAME} WHERE c == toDateTime('2000/01/15')"
)
)
== 1
)
def test_complex_types(started_cluster):
node = started_cluster.instances["node1"]
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
schema = pa.schema(
[
("id", pa.int32()),
("name", pa.string()),
(
"address",
pa.struct(
[
("street", pa.string()),
("city", pa.string()),
("state", pa.string()),
]
),
),
("interests", pa.list_(pa.string())),
(
"metadata",
pa.map_(
pa.string(), pa.string()
), # Map with string keys and string values
),
]
)
# Create sample data
data = [
pa.array([1, 2, 3], type=pa.int32()),
pa.array(["John Doe", "Jane Smith", "Jake Johnson"], type=pa.string()),
pa.array(
[
{"street": "123 Elm St", "city": "Springfield", "state": "IL"},
{"street": "456 Maple St", "city": "Shelbyville", "state": "IL"},
{"street": "789 Oak St", "city": "Ogdenville", "state": "IL"},
],
type=schema.field("address").type,
),
pa.array(
[
pa.array(["dancing", "coding", "hiking"]),
pa.array(["dancing", "coding", "hiking"]),
pa.array(["dancing", "coding", "hiking"]),
],
type=schema.field("interests").type,
),
pa.array(
[
{"key1": "value1", "key2": "value2"},
{"key1": "value3", "key2": "value4"},
{"key1": "value5", "key2": "value6"},
],
type=schema.field("metadata").type,
),
]
endpoint_url = f"http://{started_cluster.minio_ip}:{started_cluster.minio_port}"
aws_access_key_id = "minio"
aws_secret_access_key = "minio123"
table_name = randomize_table_name("test_complex_types")
storage_options = {
"AWS_ENDPOINT_URL": endpoint_url,
"AWS_ACCESS_KEY_ID": aws_access_key_id,
"AWS_SECRET_ACCESS_KEY": aws_secret_access_key,
"AWS_ALLOW_HTTP": "true",
"AWS_S3_ALLOW_UNSAFE_RENAME": "true",
}
path = f"s3://root/{table_name}"
table = pa.Table.from_arrays(data, schema=schema)
write_deltalake(path, table, storage_options=storage_options)
assert "1\n2\n3\n" in node.query(
f"SELECT id FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/root/{table_name}' , 'minio', 'minio123')"
)
assert (
"('123 Elm St','Springfield','IL')\n('456 Maple St','Shelbyville','IL')\n('789 Oak St','Ogdenville','IL')"
in node.query(
f"SELECT address FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/root/{table_name}' , 'minio', 'minio123')"
)
)
assert (
"{'key1':'value1','key2':'value2'}\n{'key1':'value3','key2':'value4'}\n{'key1':'value5','key2':'value6'}"
in node.query(
f"SELECT metadata FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/root/{table_name}' , 'minio', 'minio123')"
)
)