ClickHouse/dbms/Common/PODArray.h
Ivan 97f2a2213e
Move all folders inside /dbms one level up (#9974)
* Move some code outside dbms/src folder
* Fix paths
2020-04-02 02:51:21 +03:00

624 lines
22 KiB
C++

#pragma once
#include <string.h>
#include <cstddef>
#include <cassert>
#include <algorithm>
#include <memory>
#include <boost/noncopyable.hpp>
#include <common/strong_typedef.h>
#include <Common/Allocator.h>
#include <Common/Exception.h>
#include <Common/BitHelpers.h>
#include <Common/memcpySmall.h>
#ifndef NDEBUG
#include <sys/mman.h>
#endif
#include <Common/PODArray_fwd.h>
namespace DB
{
namespace ErrorCodes
{
extern const int CANNOT_MPROTECT;
}
/** A dynamic array for POD types.
* Designed for a small number of large arrays (rather than a lot of small ones).
* To be more precise - for use in ColumnVector.
* It differs from std::vector in that it does not initialize the elements.
*
* Made noncopyable so that there are no accidential copies. You can copy the data using `assign` method.
*
* Only part of the std::vector interface is supported.
*
* The default constructor creates an empty object that does not allocate memory.
* Then the memory is allocated at least initial_bytes bytes.
*
* If you insert elements with push_back, without making a `reserve`, then PODArray is about 2.5 times faster than std::vector.
*
* The template parameter `pad_right` - always allocate at the end of the array as many unused bytes.
* Can be used to make optimistic reading, writing, copying with unaligned SIMD instructions.
*
* The template parameter `pad_left` - always allocate memory before 0th element of the array (rounded up to the whole number of elements)
* and zero initialize -1th element. It allows to use -1th element that will have value 0.
* This gives performance benefits when converting an array of offsets to array of sizes.
*
* Some methods using allocator have TAllocatorParams variadic arguments.
* These arguments will be passed to corresponding methods of TAllocator.
* Example: pointer to Arena, that is used for allocations.
*
* Why Allocator is not passed through constructor, as it is done in C++ standard library?
* Because sometimes we have many small objects, that share same allocator with same parameters,
* and we must avoid larger object size due to storing the same parameters in each object.
* This is required for states of aggregate functions.
*
* TODO Pass alignment to Allocator.
* TODO Allow greater alignment than alignof(T). Example: array of char aligned to page size.
*/
static constexpr size_t EmptyPODArraySize = 1024;
extern const char EmptyPODArray[EmptyPODArraySize];
/** Base class that depend only on size of element, not on element itself.
* You can static_cast to this class if you want to insert some data regardless to the actual type T.
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnull-dereference"
template <size_t ELEMENT_SIZE, size_t initial_bytes, typename TAllocator, size_t pad_right_, size_t pad_left_>
class PODArrayBase : private boost::noncopyable, private TAllocator /// empty base optimization
{
protected:
/// Round padding up to an whole number of elements to simplify arithmetic.
static constexpr size_t pad_right = integerRoundUp(pad_right_, ELEMENT_SIZE);
/// pad_left is also rounded up to 16 bytes to maintain alignment of allocated memory.
static constexpr size_t pad_left = integerRoundUp(integerRoundUp(pad_left_, ELEMENT_SIZE), 16);
/// Empty array will point to this static memory as padding.
static constexpr char * null = pad_left ? const_cast<char *>(EmptyPODArray) + EmptyPODArraySize : nullptr;
static_assert(pad_left <= EmptyPODArraySize && "Left Padding exceeds EmptyPODArraySize. Is the element size too large?");
char * c_start = null; /// Does not include pad_left.
char * c_end = null;
char * c_end_of_storage = null; /// Does not include pad_right.
/// The amount of memory occupied by the num_elements of the elements.
static size_t byte_size(size_t num_elements) { return num_elements * ELEMENT_SIZE; }
/// Minimum amount of memory to allocate for num_elements, including padding.
static size_t minimum_memory_for_elements(size_t num_elements) { return byte_size(num_elements) + pad_right + pad_left; }
void alloc_for_num_elements(size_t num_elements)
{
alloc(roundUpToPowerOfTwoOrZero(minimum_memory_for_elements(num_elements)));
}
template <typename ... TAllocatorParams>
void alloc(size_t bytes, TAllocatorParams &&... allocator_params)
{
c_start = c_end = reinterpret_cast<char *>(TAllocator::alloc(bytes, std::forward<TAllocatorParams>(allocator_params)...)) + pad_left;
c_end_of_storage = c_start + bytes - pad_right - pad_left;
if (pad_left)
memset(c_start - ELEMENT_SIZE, 0, ELEMENT_SIZE);
}
void dealloc()
{
if (c_start == null)
return;
unprotect();
TAllocator::free(c_start - pad_left, allocated_bytes());
}
template <typename ... TAllocatorParams>
void realloc(size_t bytes, TAllocatorParams &&... allocator_params)
{
if (c_start == null)
{
alloc(bytes, std::forward<TAllocatorParams>(allocator_params)...);
return;
}
unprotect();
ptrdiff_t end_diff = c_end - c_start;
c_start = reinterpret_cast<char *>(
TAllocator::realloc(c_start - pad_left, allocated_bytes(), bytes, std::forward<TAllocatorParams>(allocator_params)...))
+ pad_left;
c_end = c_start + end_diff;
c_end_of_storage = c_start + bytes - pad_right - pad_left;
}
bool isInitialized() const
{
return (c_start != null) && (c_end != null) && (c_end_of_storage != null);
}
bool isAllocatedFromStack() const
{
static constexpr size_t stack_threshold = TAllocator::getStackThreshold();
return (stack_threshold > 0) && (allocated_bytes() <= stack_threshold);
}
template <typename ... TAllocatorParams>
void reserveForNextSize(TAllocatorParams &&... allocator_params)
{
if (empty())
{
// The allocated memory should be multiplication of ELEMENT_SIZE to hold the element, otherwise,
// memory issue such as corruption could appear in edge case.
realloc(std::max(integerRoundUp(initial_bytes, ELEMENT_SIZE),
minimum_memory_for_elements(1)),
std::forward<TAllocatorParams>(allocator_params)...);
}
else
realloc(allocated_bytes() * 2, std::forward<TAllocatorParams>(allocator_params)...);
}
#ifndef NDEBUG
/// Make memory region readonly with mprotect if it is large enough.
/// The operation is slow and performed only for debug builds.
void protectImpl(int prot)
{
static constexpr size_t PROTECT_PAGE_SIZE = 4096;
char * left_rounded_up = reinterpret_cast<char *>((reinterpret_cast<intptr_t>(c_start) - pad_left + PROTECT_PAGE_SIZE - 1) / PROTECT_PAGE_SIZE * PROTECT_PAGE_SIZE);
char * right_rounded_down = reinterpret_cast<char *>((reinterpret_cast<intptr_t>(c_end_of_storage) + pad_right) / PROTECT_PAGE_SIZE * PROTECT_PAGE_SIZE);
if (right_rounded_down > left_rounded_up)
{
size_t length = right_rounded_down - left_rounded_up;
if (0 != mprotect(left_rounded_up, length, prot))
throwFromErrno("Cannot mprotect memory region", ErrorCodes::CANNOT_MPROTECT);
}
}
/// Restore memory protection in destructor or realloc for further reuse by allocator.
bool mprotected = false;
#endif
public:
bool empty() const { return c_end == c_start; }
size_t size() const { return (c_end - c_start) / ELEMENT_SIZE; }
size_t capacity() const { return (c_end_of_storage - c_start) / ELEMENT_SIZE; }
/// This method is safe to use only for information about memory usage.
size_t allocated_bytes() const { return c_end_of_storage - c_start + pad_right + pad_left; }
void clear() { c_end = c_start; }
template <typename ... TAllocatorParams>
void reserve(size_t n, TAllocatorParams &&... allocator_params)
{
if (n > capacity())
realloc(roundUpToPowerOfTwoOrZero(minimum_memory_for_elements(n)), std::forward<TAllocatorParams>(allocator_params)...);
}
template <typename ... TAllocatorParams>
void resize(size_t n, TAllocatorParams &&... allocator_params)
{
reserve(n, std::forward<TAllocatorParams>(allocator_params)...);
resize_assume_reserved(n);
}
void resize_assume_reserved(const size_t n)
{
c_end = c_start + byte_size(n);
}
const char * raw_data() const
{
return c_start;
}
template <typename ... TAllocatorParams>
void push_back_raw(const char * ptr, TAllocatorParams &&... allocator_params)
{
if (unlikely(c_end == c_end_of_storage))
reserveForNextSize(std::forward<TAllocatorParams>(allocator_params)...);
memcpy(c_end, ptr, ELEMENT_SIZE);
c_end += byte_size(1);
}
void protect()
{
#ifndef NDEBUG
protectImpl(PROT_READ);
mprotected = true;
#endif
}
void unprotect()
{
#ifndef NDEBUG
if (mprotected)
protectImpl(PROT_WRITE);
mprotected = false;
#endif
}
~PODArrayBase()
{
dealloc();
}
};
template <typename T, size_t initial_bytes, typename TAllocator, size_t pad_right_, size_t pad_left_>
class PODArray : public PODArrayBase<sizeof(T), initial_bytes, TAllocator, pad_right_, pad_left_>
{
protected:
using Base = PODArrayBase<sizeof(T), initial_bytes, TAllocator, pad_right_, pad_left_>;
T * t_start() { return reinterpret_cast<T *>(this->c_start); }
T * t_end() { return reinterpret_cast<T *>(this->c_end); }
T * t_end_of_storage() { return reinterpret_cast<T *>(this->c_end_of_storage); }
const T * t_start() const { return reinterpret_cast<const T *>(this->c_start); }
const T * t_end() const { return reinterpret_cast<const T *>(this->c_end); }
const T * t_end_of_storage() const { return reinterpret_cast<const T *>(this->c_end_of_storage); }
public:
using value_type = T;
/// We cannot use boost::iterator_adaptor, because it defeats loop vectorization,
/// see https://github.com/ClickHouse/ClickHouse/pull/9442
using iterator = T *;
using const_iterator = const T *;
PODArray() {}
PODArray(size_t n)
{
this->alloc_for_num_elements(n);
this->c_end += this->byte_size(n);
}
PODArray(size_t n, const T & x)
{
this->alloc_for_num_elements(n);
assign(n, x);
}
PODArray(const_iterator from_begin, const_iterator from_end)
{
this->alloc_for_num_elements(from_end - from_begin);
insert(from_begin, from_end);
}
PODArray(std::initializer_list<T> il) : PODArray(std::begin(il), std::end(il)) {}
PODArray(PODArray && other)
{
this->swap(other);
}
PODArray & operator=(PODArray && other)
{
this->swap(other);
return *this;
}
T * data() { return t_start(); }
const T * data() const { return t_start(); }
/// The index is signed to access -1th element without pointer overflow.
T & operator[] (ssize_t n)
{
/// <= size, because taking address of one element past memory range is Ok in C++ (expression like &arr[arr.size()] is perfectly valid).
assert((n >= (static_cast<ssize_t>(pad_left_) ? -1 : 0)) && (n <= static_cast<ssize_t>(this->size())));
return t_start()[n];
}
const T & operator[] (ssize_t n) const
{
assert((n >= (static_cast<ssize_t>(pad_left_) ? -1 : 0)) && (n <= static_cast<ssize_t>(this->size())));
return t_start()[n];
}
T & front() { return t_start()[0]; }
T & back() { return t_end()[-1]; }
const T & front() const { return t_start()[0]; }
const T & back() const { return t_end()[-1]; }
iterator begin() { return t_start(); }
iterator end() { return t_end(); }
const_iterator begin() const { return t_start(); }
const_iterator end() const { return t_end(); }
const_iterator cbegin() const { return t_start(); }
const_iterator cend() const { return t_end(); }
/// Same as resize, but zeroes new elements.
void resize_fill(size_t n)
{
size_t old_size = this->size();
if (n > old_size)
{
this->reserve(n);
memset(this->c_end, 0, this->byte_size(n - old_size));
}
this->c_end = this->c_start + this->byte_size(n);
}
void resize_fill(size_t n, const T & value)
{
size_t old_size = this->size();
if (n > old_size)
{
this->reserve(n);
std::fill(t_end(), t_end() + n - old_size, value);
}
this->c_end = this->c_start + this->byte_size(n);
}
template <typename U, typename ... TAllocatorParams>
void push_back(U && x, TAllocatorParams &&... allocator_params)
{
if (unlikely(this->c_end == this->c_end_of_storage))
this->reserveForNextSize(std::forward<TAllocatorParams>(allocator_params)...);
new (t_end()) T(std::forward<U>(x));
this->c_end += this->byte_size(1);
}
/** This method doesn't allow to pass parameters for Allocator,
* and it couldn't be used if Allocator requires custom parameters.
*/
template <typename... Args>
void emplace_back(Args &&... args)
{
if (unlikely(this->c_end == this->c_end_of_storage))
this->reserveForNextSize();
new (t_end()) T(std::forward<Args>(args)...);
this->c_end += this->byte_size(1);
}
void pop_back()
{
this->c_end -= this->byte_size(1);
}
/// Do not insert into the array a piece of itself. Because with the resize, the iterators on themselves can be invalidated.
template <typename It1, typename It2, typename ... TAllocatorParams>
void insertPrepare(It1 from_begin, It2 from_end, TAllocatorParams &&... allocator_params)
{
size_t required_capacity = this->size() + (from_end - from_begin);
if (required_capacity > this->capacity())
this->reserve(roundUpToPowerOfTwoOrZero(required_capacity), std::forward<TAllocatorParams>(allocator_params)...);
}
/// Do not insert into the array a piece of itself. Because with the resize, the iterators on themselves can be invalidated.
template <typename It1, typename It2, typename ... TAllocatorParams>
void insert(It1 from_begin, It2 from_end, TAllocatorParams &&... allocator_params)
{
insertPrepare(from_begin, from_end, std::forward<TAllocatorParams>(allocator_params)...);
insert_assume_reserved(from_begin, from_end);
}
/// Works under assumption, that it's possible to read up to 15 excessive bytes after `from_end` and this PODArray is padded.
template <typename It1, typename It2, typename ... TAllocatorParams>
void insertSmallAllowReadWriteOverflow15(It1 from_begin, It2 from_end, TAllocatorParams &&... allocator_params)
{
static_assert(pad_right_ >= 15);
insertPrepare(from_begin, from_end, std::forward<TAllocatorParams>(allocator_params)...);
size_t bytes_to_copy = this->byte_size(from_end - from_begin);
memcpySmallAllowReadWriteOverflow15(this->c_end, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy);
this->c_end += bytes_to_copy;
}
template <typename It1, typename It2>
void insert(iterator it, It1 from_begin, It2 from_end)
{
size_t bytes_to_copy = this->byte_size(from_end - from_begin);
size_t bytes_to_move = (end() - it) * sizeof(T);
insertPrepare(from_begin, from_end);
if (unlikely(bytes_to_move))
memcpy(this->c_end + bytes_to_copy - bytes_to_move, this->c_end - bytes_to_move, bytes_to_move);
memcpy(this->c_end - bytes_to_move, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy);
this->c_end += bytes_to_copy;
}
template <typename It1, typename It2>
void insert_assume_reserved(It1 from_begin, It2 from_end)
{
size_t bytes_to_copy = this->byte_size(from_end - from_begin);
memcpy(this->c_end, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy);
this->c_end += bytes_to_copy;
}
template <typename... TAllocatorParams>
void swap(PODArray & rhs, TAllocatorParams &&... allocator_params)
{
#ifndef NDEBUG
this->unprotect();
rhs.unprotect();
#endif
/// Swap two PODArray objects, arr1 and arr2, that satisfy the following conditions:
/// - The elements of arr1 are stored on stack.
/// - The elements of arr2 are stored on heap.
auto swap_stack_heap = [&](PODArray & arr1, PODArray & arr2)
{
size_t stack_size = arr1.size();
size_t stack_allocated = arr1.allocated_bytes();
size_t heap_size = arr2.size();
size_t heap_allocated = arr2.allocated_bytes();
/// Keep track of the stack content we have to copy.
char * stack_c_start = arr1.c_start;
/// arr1 takes ownership of the heap memory of arr2.
arr1.c_start = arr2.c_start;
arr1.c_end_of_storage = arr1.c_start + heap_allocated - arr1.pad_right;
arr1.c_end = arr1.c_start + this->byte_size(heap_size);
/// Allocate stack space for arr2.
arr2.alloc(stack_allocated, std::forward<TAllocatorParams>(allocator_params)...);
/// Copy the stack content.
memcpy(arr2.c_start, stack_c_start, this->byte_size(stack_size));
arr2.c_end = arr2.c_start + this->byte_size(stack_size);
};
auto do_move = [&](PODArray & src, PODArray & dest)
{
if (src.isAllocatedFromStack())
{
dest.dealloc();
dest.alloc(src.allocated_bytes(), std::forward<TAllocatorParams>(allocator_params)...);
memcpy(dest.c_start, src.c_start, this->byte_size(src.size()));
dest.c_end = dest.c_start + (src.c_end - src.c_start);
src.c_start = Base::null;
src.c_end = Base::null;
src.c_end_of_storage = Base::null;
}
else
{
std::swap(dest.c_start, src.c_start);
std::swap(dest.c_end, src.c_end);
std::swap(dest.c_end_of_storage, src.c_end_of_storage);
}
};
if (!this->isInitialized() && !rhs.isInitialized())
{
return;
}
else if (!this->isInitialized() && rhs.isInitialized())
{
do_move(rhs, *this);
return;
}
else if (this->isInitialized() && !rhs.isInitialized())
{
do_move(*this, rhs);
return;
}
if (this->isAllocatedFromStack() && rhs.isAllocatedFromStack())
{
size_t min_size = std::min(this->size(), rhs.size());
size_t max_size = std::max(this->size(), rhs.size());
for (size_t i = 0; i < min_size; ++i)
std::swap(this->operator[](i), rhs[i]);
if (this->size() == max_size)
{
for (size_t i = min_size; i < max_size; ++i)
rhs[i] = this->operator[](i);
}
else
{
for (size_t i = min_size; i < max_size; ++i)
this->operator[](i) = rhs[i];
}
size_t lhs_size = this->size();
size_t lhs_allocated = this->allocated_bytes();
size_t rhs_size = rhs.size();
size_t rhs_allocated = rhs.allocated_bytes();
this->c_end_of_storage = this->c_start + rhs_allocated - Base::pad_right;
rhs.c_end_of_storage = rhs.c_start + lhs_allocated - Base::pad_right;
this->c_end = this->c_start + this->byte_size(rhs_size);
rhs.c_end = rhs.c_start + this->byte_size(lhs_size);
}
else if (this->isAllocatedFromStack() && !rhs.isAllocatedFromStack())
{
swap_stack_heap(*this, rhs);
}
else if (!this->isAllocatedFromStack() && rhs.isAllocatedFromStack())
{
swap_stack_heap(rhs, *this);
}
else
{
std::swap(this->c_start, rhs.c_start);
std::swap(this->c_end, rhs.c_end);
std::swap(this->c_end_of_storage, rhs.c_end_of_storage);
}
}
template <typename... TAllocatorParams>
void assign(size_t n, const T & x, TAllocatorParams &&... allocator_params)
{
this->resize(n, std::forward<TAllocatorParams>(allocator_params)...);
std::fill(begin(), end(), x);
}
template <typename It1, typename It2, typename... TAllocatorParams>
void assign(It1 from_begin, It2 from_end, TAllocatorParams &&... allocator_params)
{
size_t required_capacity = from_end - from_begin;
if (required_capacity > this->capacity())
this->reserve(roundUpToPowerOfTwoOrZero(required_capacity), std::forward<TAllocatorParams>(allocator_params)...);
size_t bytes_to_copy = this->byte_size(required_capacity);
memcpy(this->c_start, reinterpret_cast<const void *>(&*from_begin), bytes_to_copy);
this->c_end = this->c_start + bytes_to_copy;
}
// ISO C++ has strict ambiguity rules, thus we cannot apply TAllocatorParams here.
void assign(const PODArray & from)
{
assign(from.begin(), from.end());
}
bool operator== (const PODArray & other) const
{
if (this->size() != other.size())
return false;
const_iterator this_it = begin();
const_iterator that_it = other.begin();
while (this_it != end())
{
if (*this_it != *that_it)
return false;
++this_it;
++that_it;
}
return true;
}
bool operator!= (const PODArray & other) const
{
return !operator==(other);
}
};
template <typename T, size_t initial_bytes, typename TAllocator, size_t pad_right_>
void swap(PODArray<T, initial_bytes, TAllocator, pad_right_> & lhs, PODArray<T, initial_bytes, TAllocator, pad_right_> & rhs)
{
lhs.swap(rhs);
}
#pragma GCC diagnostic pop
}