mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-30 19:42:00 +00:00
1106 lines
45 KiB
C++
1106 lines
45 KiB
C++
#pragma once
|
||
|
||
#include <mutex>
|
||
#include <memory>
|
||
#include <functional>
|
||
|
||
#include <common/logger_useful.h>
|
||
#include <common/threadpool.hpp>
|
||
|
||
#include <DB/Core/StringRef.h>
|
||
#include <DB/Common/Arena.h>
|
||
#include <DB/Common/HashTable/HashMap.h>
|
||
#include <DB/Common/HashTable/TwoLevelHashMap.h>
|
||
|
||
#include <DB/DataStreams/IBlockInputStream.h>
|
||
|
||
#include <DB/Interpreters/AggregateDescription.h>
|
||
#include <DB/Interpreters/AggregationCommon.h>
|
||
#include <DB/Interpreters/Limits.h>
|
||
#include <DB/Interpreters/Compiler.h>
|
||
|
||
#include <DB/Columns/ColumnString.h>
|
||
#include <DB/Columns/ColumnFixedString.h>
|
||
#include <DB/Columns/ColumnAggregateFunction.h>
|
||
#include <DB/Columns/ColumnVector.h>
|
||
|
||
|
||
|
||
namespace DB
|
||
{
|
||
|
||
|
||
/** Разные структуры данных, которые могут использоваться для агрегации
|
||
* Для эффективности, сами данные для агрегации кладутся в пул.
|
||
* Владение данными (состояний агрегатных функций) и пулом
|
||
* захватывается позднее - в функции convertToBlocks, объектом ColumnAggregateFunction.
|
||
*
|
||
* Большинство структур данных существует в двух вариантах: обычном и двухуровневом (TwoLevel).
|
||
* Двухуровневая хэш-таблица работает чуть медленнее при маленьком количестве различных ключей,
|
||
* но при большом количестве различных ключей лучше масштабируется, так как позволяет
|
||
* распараллелить некоторые операции (слияние, пост-обработку) естественным образом.
|
||
*
|
||
* Чтобы обеспечить эффективную работу в большом диапазоне условий,
|
||
* сначала используются одноуровневые хэш-таблицы,
|
||
* а при достижении количеством различных ключей достаточно большого размера,
|
||
* они конвертируются в двухуровневые.
|
||
*
|
||
* PS. Существует много различных подходов к эффективной реализации параллельной и распределённой агрегации,
|
||
* лучшим образом подходящих для разных случаев, и этот подход - всего лишь один из них, выбранный по совокупности причин.
|
||
*/
|
||
typedef AggregateDataPtr AggregatedDataWithoutKey;
|
||
|
||
typedef HashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>> AggregatedDataWithUInt64Key;
|
||
typedef HashMapWithSavedHash<StringRef, AggregateDataPtr> AggregatedDataWithStringKey;
|
||
typedef HashMap<UInt128, AggregateDataPtr, UInt128HashCRC32> AggregatedDataWithKeys128;
|
||
typedef HashMap<UInt256, AggregateDataPtr, UInt256HashCRC32> AggregatedDataWithKeys256;
|
||
typedef HashMap<UInt128, std::pair<StringRef*, AggregateDataPtr>, UInt128TrivialHash> AggregatedDataHashed;
|
||
|
||
typedef TwoLevelHashMap<UInt64, AggregateDataPtr, HashCRC32<UInt64>> AggregatedDataWithUInt64KeyTwoLevel;
|
||
typedef TwoLevelHashMapWithSavedHash<StringRef, AggregateDataPtr> AggregatedDataWithStringKeyTwoLevel;
|
||
typedef TwoLevelHashMap<UInt128, AggregateDataPtr, UInt128HashCRC32> AggregatedDataWithKeys128TwoLevel;
|
||
typedef TwoLevelHashMap<UInt256, AggregateDataPtr, UInt256HashCRC32> AggregatedDataWithKeys256TwoLevel;
|
||
typedef TwoLevelHashMap<UInt128, std::pair<StringRef*, AggregateDataPtr>, UInt128TrivialHash> AggregatedDataHashedTwoLevel;
|
||
|
||
typedef HashMap<UInt64, AggregateDataPtr, TrivialHash, HashTableFixedGrower<8>> AggregatedDataWithUInt8Key;
|
||
typedef HashMap<UInt64, AggregateDataPtr, TrivialHash, HashTableFixedGrower<16>> AggregatedDataWithUInt16Key;
|
||
|
||
|
||
/// Для случая, когда есть один числовой ключ.
|
||
template <typename FieldType, typename TData> /// UInt8/16/32/64 для любых типов соответствующей битности.
|
||
struct AggregationMethodOneNumber
|
||
{
|
||
typedef TData Data;
|
||
typedef typename Data::key_type Key;
|
||
typedef typename Data::mapped_type Mapped;
|
||
typedef typename Data::iterator iterator;
|
||
typedef typename Data::const_iterator const_iterator;
|
||
|
||
Data data;
|
||
|
||
AggregationMethodOneNumber() {}
|
||
|
||
template <typename Other>
|
||
AggregationMethodOneNumber(const Other & other) : data(other.data) {}
|
||
|
||
/// Для использования одного Method в разных потоках, используйте разные State.
|
||
struct State
|
||
{
|
||
const FieldType * vec;
|
||
|
||
/** Вызывается в начале обработки каждого блока.
|
||
* Устанавливает переменные, необходимые для остальных методов, вызываемых во внутренних циклах.
|
||
*/
|
||
void init(ConstColumnPlainPtrs & key_columns)
|
||
{
|
||
vec = &static_cast<const ColumnVector<FieldType> *>(key_columns[0])->getData()[0];
|
||
}
|
||
|
||
/// Достать из ключевых столбцов ключ для вставки в хэш-таблицу.
|
||
Key getKey(
|
||
const ConstColumnPlainPtrs & key_columns, /// Ключевые столбцы.
|
||
size_t keys_size, /// Количество ключевых столбцов.
|
||
size_t i, /// Из какой строки блока достать ключ.
|
||
const Sizes & key_sizes, /// Если ключи фиксированной длины - их длины. Не используется в методах агрегации по ключам переменной длины.
|
||
StringRefs & keys, /// Сюда могут быть записаны ссылки на данные ключей в столбцах. Они могут быть использованы в дальнейшем.
|
||
Arena & pool) const
|
||
{
|
||
return unionCastToUInt64(vec[i]);
|
||
}
|
||
};
|
||
|
||
/// Из значения в хэш-таблице получить AggregateDataPtr.
|
||
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
|
||
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
|
||
|
||
/** Разместить дополнительные данные, если это необходимо, в случае, когда в хэш-таблицу был вставлен новый ключ.
|
||
*/
|
||
static void onNewKey(typename Data::value_type & value, size_t keys_size, size_t i, StringRefs & keys, Arena & pool)
|
||
{
|
||
}
|
||
|
||
/** Действие, которое нужно сделать, если ключ не новый. Например, откатить выделение памяти в пуле.
|
||
*/
|
||
static void onExistingKey(const Key & key, StringRefs & keys, Arena & pool) {}
|
||
|
||
/** Не использовать оптимизацию для идущих подряд ключей.
|
||
*/
|
||
static const bool no_consecutive_keys_optimization = false;
|
||
|
||
/** Вставить ключ из хэш-таблицы в столбцы.
|
||
*/
|
||
static void insertKeyIntoColumns(const typename Data::value_type & value, ColumnPlainPtrs & key_columns, size_t keys_size, const Sizes & key_sizes)
|
||
{
|
||
static_cast<ColumnVector<FieldType> *>(key_columns[0])->insertData(reinterpret_cast<const char *>(&value.first), sizeof(value.first));
|
||
}
|
||
};
|
||
|
||
|
||
/// Для случая, когда есть один строковый ключ.
|
||
template <typename TData>
|
||
struct AggregationMethodString
|
||
{
|
||
typedef TData Data;
|
||
typedef typename Data::key_type Key;
|
||
typedef typename Data::mapped_type Mapped;
|
||
typedef typename Data::iterator iterator;
|
||
typedef typename Data::const_iterator const_iterator;
|
||
|
||
Data data;
|
||
|
||
AggregationMethodString() {}
|
||
|
||
template <typename Other>
|
||
AggregationMethodString(const Other & other) : data(other.data) {}
|
||
|
||
struct State
|
||
{
|
||
const ColumnString::Offsets_t * offsets;
|
||
const ColumnString::Chars_t * chars;
|
||
|
||
void init(ConstColumnPlainPtrs & key_columns)
|
||
{
|
||
const IColumn & column = *key_columns[0];
|
||
const ColumnString & column_string = static_cast<const ColumnString &>(column);
|
||
offsets = &column_string.getOffsets();
|
||
chars = &column_string.getChars();
|
||
}
|
||
|
||
Key getKey(
|
||
const ConstColumnPlainPtrs & key_columns,
|
||
size_t keys_size,
|
||
size_t i,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
Arena & pool) const
|
||
{
|
||
return StringRef(
|
||
&(*chars)[i == 0 ? 0 : (*offsets)[i - 1]],
|
||
(i == 0 ? (*offsets)[i] : ((*offsets)[i] - (*offsets)[i - 1])) - 1);
|
||
}
|
||
};
|
||
|
||
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
|
||
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
|
||
|
||
static void onNewKey(typename Data::value_type & value, size_t keys_size, size_t i, StringRefs & keys, Arena & pool)
|
||
{
|
||
value.first.data = pool.insert(value.first.data, value.first.size);
|
||
}
|
||
|
||
static void onExistingKey(const Key & key, StringRefs & keys, Arena & pool) {}
|
||
|
||
static const bool no_consecutive_keys_optimization = false;
|
||
|
||
static void insertKeyIntoColumns(const typename Data::value_type & value, ColumnPlainPtrs & key_columns, size_t keys_size, const Sizes & key_sizes)
|
||
{
|
||
key_columns[0]->insertData(value.first.data, value.first.size);
|
||
}
|
||
};
|
||
|
||
|
||
/// Для случая, когда есть один строковый ключ фиксированной длины.
|
||
template <typename TData>
|
||
struct AggregationMethodFixedString
|
||
{
|
||
typedef TData Data;
|
||
typedef typename Data::key_type Key;
|
||
typedef typename Data::mapped_type Mapped;
|
||
typedef typename Data::iterator iterator;
|
||
typedef typename Data::const_iterator const_iterator;
|
||
|
||
Data data;
|
||
|
||
AggregationMethodFixedString() {}
|
||
|
||
template <typename Other>
|
||
AggregationMethodFixedString(const Other & other) : data(other.data) {}
|
||
|
||
struct State
|
||
{
|
||
size_t n;
|
||
const ColumnFixedString::Chars_t * chars;
|
||
|
||
void init(ConstColumnPlainPtrs & key_columns)
|
||
{
|
||
const IColumn & column = *key_columns[0];
|
||
const ColumnFixedString & column_string = static_cast<const ColumnFixedString &>(column);
|
||
n = column_string.getN();
|
||
chars = &column_string.getChars();
|
||
}
|
||
|
||
Key getKey(
|
||
const ConstColumnPlainPtrs & key_columns,
|
||
size_t keys_size,
|
||
size_t i,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
Arena & pool) const
|
||
{
|
||
return StringRef(&(*chars)[i * n], n);
|
||
}
|
||
};
|
||
|
||
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
|
||
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
|
||
|
||
static void onNewKey(typename Data::value_type & value, size_t keys_size, size_t i, StringRefs & keys, Arena & pool)
|
||
{
|
||
value.first.data = pool.insert(value.first.data, value.first.size);
|
||
}
|
||
|
||
static void onExistingKey(const Key & key, StringRefs & keys, Arena & pool) {}
|
||
|
||
static const bool no_consecutive_keys_optimization = false;
|
||
|
||
static void insertKeyIntoColumns(const typename Data::value_type & value, ColumnPlainPtrs & key_columns, size_t keys_size, const Sizes & key_sizes)
|
||
{
|
||
key_columns[0]->insertData(value.first.data, value.first.size);
|
||
}
|
||
};
|
||
|
||
|
||
/// Для случая, когда все ключи фиксированной длины, и они помещаются в N (например, 128) бит.
|
||
template <typename TData>
|
||
struct AggregationMethodKeysFixed
|
||
{
|
||
typedef TData Data;
|
||
typedef typename Data::key_type Key;
|
||
typedef typename Data::mapped_type Mapped;
|
||
typedef typename Data::iterator iterator;
|
||
typedef typename Data::const_iterator const_iterator;
|
||
|
||
Data data;
|
||
|
||
AggregationMethodKeysFixed() {}
|
||
|
||
template <typename Other>
|
||
AggregationMethodKeysFixed(const Other & other) : data(other.data) {}
|
||
|
||
struct State
|
||
{
|
||
void init(ConstColumnPlainPtrs & key_columns)
|
||
{
|
||
}
|
||
|
||
Key getKey(
|
||
const ConstColumnPlainPtrs & key_columns,
|
||
size_t keys_size,
|
||
size_t i,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
Arena & pool) const
|
||
{
|
||
return packFixed<Key>(i, keys_size, key_columns, key_sizes);
|
||
}
|
||
};
|
||
|
||
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
|
||
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
|
||
|
||
static void onNewKey(typename Data::value_type & value, size_t keys_size, size_t i, StringRefs & keys, Arena & pool)
|
||
{
|
||
}
|
||
|
||
static void onExistingKey(const Key & key, StringRefs & keys, Arena & pool) {}
|
||
|
||
static const bool no_consecutive_keys_optimization = false;
|
||
|
||
static void insertKeyIntoColumns(const typename Data::value_type & value, ColumnPlainPtrs & key_columns, size_t keys_size, const Sizes & key_sizes)
|
||
{
|
||
size_t offset = 0;
|
||
for (size_t i = 0; i < keys_size; ++i)
|
||
{
|
||
size_t size = key_sizes[i];
|
||
key_columns[i]->insertData(reinterpret_cast<const char *>(&value.first) + offset, size);
|
||
offset += size;
|
||
}
|
||
}
|
||
};
|
||
|
||
|
||
/// Агрегирует по конкатенации ключей. (При этом, строки, содержащие нули посередине, могут склеиться.)
|
||
template <typename TData>
|
||
struct AggregationMethodConcat
|
||
{
|
||
typedef TData Data;
|
||
typedef typename Data::key_type Key;
|
||
typedef typename Data::mapped_type Mapped;
|
||
typedef typename Data::iterator iterator;
|
||
typedef typename Data::const_iterator const_iterator;
|
||
|
||
Data data;
|
||
|
||
AggregationMethodConcat() {}
|
||
|
||
template <typename Other>
|
||
AggregationMethodConcat(const Other & other) : data(other.data) {}
|
||
|
||
struct State
|
||
{
|
||
void init(ConstColumnPlainPtrs & key_columns)
|
||
{
|
||
}
|
||
|
||
Key getKey(
|
||
const ConstColumnPlainPtrs & key_columns,
|
||
size_t keys_size,
|
||
size_t i,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
Arena & pool) const
|
||
{
|
||
return extractKeysAndPlaceInPoolContiguous(i, keys_size, key_columns, keys, pool);
|
||
}
|
||
};
|
||
|
||
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
|
||
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
|
||
|
||
static void onNewKey(typename Data::value_type & value, size_t keys_size, size_t i, StringRefs & keys, Arena & pool)
|
||
{
|
||
}
|
||
|
||
static void onExistingKey(const Key & key, StringRefs & keys, Arena & pool)
|
||
{
|
||
pool.rollback(key.size + keys.size() * sizeof(keys[0]));
|
||
}
|
||
|
||
/// Если ключ уже был, то он удаляется из пула (затирается), и сравнить с ним следующий ключ уже нельзя.
|
||
static const bool no_consecutive_keys_optimization = true;
|
||
|
||
static void insertKeyIntoColumns(const typename Data::value_type & value, ColumnPlainPtrs & key_columns, size_t keys_size, const Sizes & key_sizes)
|
||
{
|
||
/// См. функцию extractKeysAndPlaceInPoolContiguous.
|
||
const StringRef * key_refs = reinterpret_cast<const StringRef *>(value.first.data + value.first.size);
|
||
|
||
if (unlikely(0 == value.first.size))
|
||
{
|
||
/** Исправление, если все ключи - пустые массивы. Для них в хэш-таблицу записывается StringRef нулевой длины, но с ненулевым указателем.
|
||
* Но при вставке в хэш-таблицу, такой StringRef оказывается равен другому ключу нулевой длины,
|
||
* у которого указатель на данные может быть любым мусором и использовать его нельзя.
|
||
*/
|
||
for (size_t i = 0; i < keys_size; ++i)
|
||
key_columns[i]->insertDefault();
|
||
}
|
||
else
|
||
{
|
||
for (size_t i = 0; i < keys_size; ++i)
|
||
key_columns[i]->insertDataWithTerminatingZero(key_refs[i].data, key_refs[i].size);
|
||
}
|
||
}
|
||
};
|
||
|
||
|
||
/** Агрегирует по конкатенации сериализованных значений ключей.
|
||
* Похож на AggregationMethodConcat, но подходит, например, для массивов строк или нескольких массивов.
|
||
* Сериализованное значение отличается тем, что позволяет однозначно его десериализовать, имея только позицию, с которой оно начинается.
|
||
* То есть, например, для строк, оно содержит сначала сериализованную длину строки, а потом байты.
|
||
* Поэтому, при агрегации по нескольким строкам, неоднозначностей не возникает.
|
||
*/
|
||
template <typename TData>
|
||
struct AggregationMethodSerialized
|
||
{
|
||
typedef TData Data;
|
||
typedef typename Data::key_type Key;
|
||
typedef typename Data::mapped_type Mapped;
|
||
typedef typename Data::iterator iterator;
|
||
typedef typename Data::const_iterator const_iterator;
|
||
|
||
Data data;
|
||
|
||
AggregationMethodSerialized() {}
|
||
|
||
template <typename Other>
|
||
AggregationMethodSerialized(const Other & other) : data(other.data) {}
|
||
|
||
struct State
|
||
{
|
||
void init(ConstColumnPlainPtrs & key_columns)
|
||
{
|
||
}
|
||
|
||
Key getKey(
|
||
const ConstColumnPlainPtrs & key_columns,
|
||
size_t keys_size,
|
||
size_t i,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
Arena & pool) const
|
||
{
|
||
return serializeKeysToPoolContiguous(i, keys_size, key_columns, keys, pool);
|
||
}
|
||
};
|
||
|
||
static AggregateDataPtr & getAggregateData(Mapped & value) { return value; }
|
||
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value; }
|
||
|
||
static void onNewKey(typename Data::value_type & value, size_t keys_size, size_t i, StringRefs & keys, Arena & pool)
|
||
{
|
||
}
|
||
|
||
static void onExistingKey(const Key & key, StringRefs & keys, Arena & pool)
|
||
{
|
||
pool.rollback(key.size);
|
||
}
|
||
|
||
/// Если ключ уже был, то он удаляется из пула (затирается), и сравнить с ним следующий ключ уже нельзя.
|
||
static const bool no_consecutive_keys_optimization = true;
|
||
|
||
static void insertKeyIntoColumns(const typename Data::value_type & value, ColumnPlainPtrs & key_columns, size_t keys_size, const Sizes & key_sizes)
|
||
{
|
||
auto pos = value.first.data;
|
||
for (size_t i = 0; i < keys_size; ++i)
|
||
pos = key_columns[i]->deserializeAndInsertFromArena(pos);
|
||
}
|
||
};
|
||
|
||
|
||
/// Для остальных случаев. Агрегирует по 128 битному хэшу от ключа. (При этом, строки, содержащие нули посередине, могут склеиться.)
|
||
template <typename TData>
|
||
struct AggregationMethodHashed
|
||
{
|
||
typedef TData Data;
|
||
typedef typename Data::key_type Key;
|
||
typedef typename Data::mapped_type Mapped;
|
||
typedef typename Data::iterator iterator;
|
||
typedef typename Data::const_iterator const_iterator;
|
||
|
||
Data data;
|
||
|
||
AggregationMethodHashed() {}
|
||
|
||
template <typename Other>
|
||
AggregationMethodHashed(const Other & other) : data(other.data) {}
|
||
|
||
struct State
|
||
{
|
||
void init(ConstColumnPlainPtrs & key_columns)
|
||
{
|
||
}
|
||
|
||
Key getKey(
|
||
const ConstColumnPlainPtrs & key_columns,
|
||
size_t keys_size,
|
||
size_t i,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
Arena & pool) const
|
||
{
|
||
return hash128(i, keys_size, key_columns, keys);
|
||
}
|
||
};
|
||
|
||
static AggregateDataPtr & getAggregateData(Mapped & value) { return value.second; }
|
||
static const AggregateDataPtr & getAggregateData(const Mapped & value) { return value.second; }
|
||
|
||
static void onNewKey(typename Data::value_type & value, size_t keys_size, size_t i, StringRefs & keys, Arena & pool)
|
||
{
|
||
value.second.first = placeKeysInPool(i, keys_size, keys, pool);
|
||
}
|
||
|
||
static void onExistingKey(const Key & key, StringRefs & keys, Arena & pool) {}
|
||
|
||
static const bool no_consecutive_keys_optimization = false;
|
||
|
||
static void insertKeyIntoColumns(const typename Data::value_type & value, ColumnPlainPtrs & key_columns, size_t keys_size, const Sizes & key_sizes)
|
||
{
|
||
for (size_t i = 0; i < keys_size; ++i)
|
||
key_columns[i]->insertDataWithTerminatingZero(value.second.first[i].data, value.second.first[i].size);
|
||
}
|
||
};
|
||
|
||
|
||
class Aggregator;
|
||
|
||
struct AggregatedDataVariants : private boost::noncopyable
|
||
{
|
||
/** Работа с состояниями агрегатных функций в пуле устроена следующим (неудобным) образом:
|
||
* - при агрегации, состояния создаются в пуле с помощью функции IAggregateFunction::create (внутри - placement new произвольной структуры);
|
||
* - они должны быть затем уничтожены с помощью IAggregateFunction::destroy (внутри - вызов деструктора произвольной структуры);
|
||
* - если агрегация завершена, то, в функции Aggregator::convertToBlocks, указатели на состояния агрегатных функций
|
||
* записываются в ColumnAggregateFunction; ColumnAggregateFunction "захватывает владение" ими, то есть - вызывает destroy в своём деструкторе.
|
||
* - если при агрегации, до вызова Aggregator::convertToBlocks вылетело исключение,
|
||
* то состояния агрегатных функций всё-равно должны быть уничтожены,
|
||
* иначе для сложных состояний (наприемер, AggregateFunctionUniq), будут утечки памяти;
|
||
* - чтобы, в этом случае, уничтожить состояния, в деструкторе вызывается метод Aggregator::destroyAggregateStates,
|
||
* но только если переменная aggregator (см. ниже) не nullptr;
|
||
* - то есть, пока вы не передали владение состояниями агрегатных функций в ColumnAggregateFunction, установите переменную aggregator,
|
||
* чтобы при возникновении исключения, состояния были корректно уничтожены.
|
||
*
|
||
* PS. Это можно исправить, сделав пул, который знает о том, какие состояния агрегатных функций и в каком порядке в него уложены, и умеет сам их уничтожать.
|
||
* Но это вряд ли можно просто сделать, так как в этот же пул планируется класть строки переменной длины.
|
||
* В этом случае, пул не сможет знать, по каким смещениям хранятся объекты.
|
||
*/
|
||
Aggregator * aggregator = nullptr;
|
||
|
||
size_t keys_size; /// Количество ключей NOTE нужно ли это поле?
|
||
Sizes key_sizes; /// Размеры ключей, если ключи фиксированной длины
|
||
|
||
/// Пулы для состояний агрегатных функций. Владение потом будет передано в ColumnAggregateFunction.
|
||
Arenas aggregates_pools;
|
||
Arena * aggregates_pool; /// Пул, который сейчас используется для аллокации.
|
||
|
||
/** Специализация для случая, когда ключи отсутствуют, и для ключей, не попавших в max_rows_to_group_by.
|
||
*/
|
||
AggregatedDataWithoutKey without_key = nullptr;
|
||
|
||
std::unique_ptr<AggregationMethodOneNumber<UInt8, AggregatedDataWithUInt8Key>> key8;
|
||
std::unique_ptr<AggregationMethodOneNumber<UInt16, AggregatedDataWithUInt16Key>> key16;
|
||
|
||
std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithUInt64Key>> key32;
|
||
std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64Key>> key64;
|
||
std::unique_ptr<AggregationMethodString<AggregatedDataWithStringKey>> key_string;
|
||
std::unique_ptr<AggregationMethodFixedString<AggregatedDataWithStringKey>> key_fixed_string;
|
||
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128>> keys128;
|
||
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256>> keys256;
|
||
std::unique_ptr<AggregationMethodHashed<AggregatedDataHashed>> hashed;
|
||
std::unique_ptr<AggregationMethodConcat<AggregatedDataWithStringKey>> concat;
|
||
std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKey>> serialized;
|
||
|
||
std::unique_ptr<AggregationMethodOneNumber<UInt32, AggregatedDataWithUInt64KeyTwoLevel>> key32_two_level;
|
||
std::unique_ptr<AggregationMethodOneNumber<UInt64, AggregatedDataWithUInt64KeyTwoLevel>> key64_two_level;
|
||
std::unique_ptr<AggregationMethodString<AggregatedDataWithStringKeyTwoLevel>> key_string_two_level;
|
||
std::unique_ptr<AggregationMethodFixedString<AggregatedDataWithStringKeyTwoLevel>> key_fixed_string_two_level;
|
||
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys128TwoLevel>> keys128_two_level;
|
||
std::unique_ptr<AggregationMethodKeysFixed<AggregatedDataWithKeys256TwoLevel>> keys256_two_level;
|
||
std::unique_ptr<AggregationMethodHashed<AggregatedDataHashedTwoLevel>> hashed_two_level;
|
||
std::unique_ptr<AggregationMethodConcat<AggregatedDataWithStringKeyTwoLevel>> concat_two_level;
|
||
std::unique_ptr<AggregationMethodSerialized<AggregatedDataWithStringKeyTwoLevel>> serialized_two_level;
|
||
|
||
/// В этом и подобных макросах, вариант without_key не учитывается.
|
||
#define APPLY_FOR_AGGREGATED_VARIANTS(M) \
|
||
M(key8, false) \
|
||
M(key16, false) \
|
||
M(key32, false) \
|
||
M(key64, false) \
|
||
M(key_string, false) \
|
||
M(key_fixed_string, false) \
|
||
M(keys128, false) \
|
||
M(keys256, false) \
|
||
M(hashed, false) \
|
||
M(concat, false) \
|
||
M(serialized, false) \
|
||
M(key32_two_level, true) \
|
||
M(key64_two_level, true) \
|
||
M(key_string_two_level, true) \
|
||
M(key_fixed_string_two_level, true) \
|
||
M(keys128_two_level, true) \
|
||
M(keys256_two_level, true) \
|
||
M(hashed_two_level, true) \
|
||
M(concat_two_level, true) \
|
||
M(serialized_two_level, true) \
|
||
|
||
enum class Type
|
||
{
|
||
EMPTY = 0,
|
||
without_key,
|
||
|
||
#define M(NAME, IS_TWO_LEVEL) NAME,
|
||
APPLY_FOR_AGGREGATED_VARIANTS(M)
|
||
#undef M
|
||
};
|
||
Type type = Type::EMPTY;
|
||
|
||
AggregatedDataVariants() : aggregates_pools(1, new Arena), aggregates_pool(&*aggregates_pools.back()) {}
|
||
bool empty() const { return type == Type::EMPTY; }
|
||
void invalidate() { type = Type::EMPTY; }
|
||
|
||
~AggregatedDataVariants();
|
||
|
||
void init(Type type_)
|
||
{
|
||
switch (type_)
|
||
{
|
||
case Type::EMPTY: break;
|
||
case Type::without_key: break;
|
||
|
||
#define M(NAME, IS_TWO_LEVEL) \
|
||
case Type::NAME: NAME.reset(new decltype(NAME)::element_type); break;
|
||
APPLY_FOR_AGGREGATED_VARIANTS(M)
|
||
#undef M
|
||
|
||
default:
|
||
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
|
||
}
|
||
|
||
type = type_;
|
||
}
|
||
|
||
size_t size() const
|
||
{
|
||
switch (type)
|
||
{
|
||
case Type::EMPTY: return 0;
|
||
case Type::without_key: return 1;
|
||
|
||
#define M(NAME, IS_TWO_LEVEL) \
|
||
case Type::NAME: return NAME->data.size() + (without_key != nullptr);
|
||
APPLY_FOR_AGGREGATED_VARIANTS(M)
|
||
#undef M
|
||
|
||
default:
|
||
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
|
||
}
|
||
}
|
||
|
||
/// Размер без учёта строчки, в которую записываются данные для расчёта TOTALS.
|
||
size_t sizeWithoutOverflowRow() const
|
||
{
|
||
switch (type)
|
||
{
|
||
case Type::EMPTY: return 0;
|
||
case Type::without_key: return 1;
|
||
|
||
#define M(NAME, IS_TWO_LEVEL) \
|
||
case Type::NAME: return NAME->data.size();
|
||
APPLY_FOR_AGGREGATED_VARIANTS(M)
|
||
#undef M
|
||
|
||
default:
|
||
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
|
||
}
|
||
}
|
||
|
||
const char * getMethodName() const
|
||
{
|
||
switch (type)
|
||
{
|
||
case Type::EMPTY: return "EMPTY";
|
||
case Type::without_key: return "without_key";
|
||
|
||
#define M(NAME, IS_TWO_LEVEL) \
|
||
case Type::NAME: return #NAME;
|
||
APPLY_FOR_AGGREGATED_VARIANTS(M)
|
||
#undef M
|
||
|
||
default:
|
||
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
|
||
}
|
||
}
|
||
|
||
bool isTwoLevel() const
|
||
{
|
||
switch (type)
|
||
{
|
||
case Type::EMPTY: return false;
|
||
case Type::without_key: return false;
|
||
|
||
#define M(NAME, IS_TWO_LEVEL) \
|
||
case Type::NAME: return IS_TWO_LEVEL;
|
||
APPLY_FOR_AGGREGATED_VARIANTS(M)
|
||
#undef M
|
||
|
||
default:
|
||
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
|
||
}
|
||
}
|
||
|
||
#define APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M) \
|
||
M(key32) \
|
||
M(key64) \
|
||
M(key_string) \
|
||
M(key_fixed_string) \
|
||
M(keys128) \
|
||
M(keys256) \
|
||
M(hashed) \
|
||
M(concat) \
|
||
M(serialized) \
|
||
|
||
#define APPLY_FOR_VARIANTS_NOT_CONVERTIBLE_TO_TWO_LEVEL(M) \
|
||
M(key8) \
|
||
M(key16) \
|
||
|
||
bool isConvertibleToTwoLevel() const
|
||
{
|
||
switch (type)
|
||
{
|
||
#define M(NAME) \
|
||
case Type::NAME: return true;
|
||
|
||
APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M)
|
||
|
||
#undef M
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
void convertToTwoLevel();
|
||
|
||
#define APPLY_FOR_VARIANTS_TWO_LEVEL(M) \
|
||
M(key32_two_level) \
|
||
M(key64_two_level) \
|
||
M(key_string_two_level) \
|
||
M(key_fixed_string_two_level) \
|
||
M(keys128_two_level) \
|
||
M(keys256_two_level) \
|
||
M(hashed_two_level) \
|
||
M(concat_two_level) \
|
||
M(serialized_two_level)
|
||
};
|
||
|
||
typedef SharedPtr<AggregatedDataVariants> AggregatedDataVariantsPtr;
|
||
typedef std::vector<AggregatedDataVariantsPtr> ManyAggregatedDataVariants;
|
||
|
||
|
||
/** Агрегирует источник блоков.
|
||
*/
|
||
class Aggregator
|
||
{
|
||
public:
|
||
Aggregator(const Names & key_names_, const AggregateDescriptions & aggregates_, bool overflow_row_,
|
||
size_t max_rows_to_group_by_, OverflowMode group_by_overflow_mode_, Compiler * compiler_, UInt32 min_count_to_compile_,
|
||
size_t group_by_two_level_threshold_)
|
||
: key_names(key_names_), aggregates(aggregates_), aggregates_size(aggregates.size()),
|
||
overflow_row(overflow_row_),
|
||
max_rows_to_group_by(max_rows_to_group_by_), group_by_overflow_mode(group_by_overflow_mode_),
|
||
compiler(compiler_), min_count_to_compile(min_count_to_compile_), group_by_two_level_threshold(group_by_two_level_threshold_),
|
||
isCancelled([]() { return false; })
|
||
{
|
||
std::sort(key_names.begin(), key_names.end());
|
||
key_names.erase(std::unique(key_names.begin(), key_names.end()), key_names.end());
|
||
keys_size = key_names.size();
|
||
}
|
||
|
||
/// Агрегировать источник. Получить результат в виде одной из структур данных.
|
||
void execute(BlockInputStreamPtr stream, AggregatedDataVariants & result);
|
||
|
||
using AggregateColumns = std::vector<ConstColumnPlainPtrs>;
|
||
using AggregateColumnsData = std::vector<ColumnAggregateFunction::Container_t *>;
|
||
using AggregateFunctionsPlainPtrs = std::vector<IAggregateFunction *>;
|
||
|
||
/// Обработать один блок. Вернуть false, если обработку следует прервать (при group_by_overflow_mode = 'break').
|
||
bool executeOnBlock(Block & block, AggregatedDataVariants & result,
|
||
ConstColumnPlainPtrs & key_columns, AggregateColumns & aggregate_columns, /// Передаются, чтобы не создавать их заново на каждый блок
|
||
Sizes & key_sizes, StringRefs & keys, /// - передайте соответствующие объекты, которые изначально пустые.
|
||
bool & no_more_keys);
|
||
|
||
/** Преобразовать структуру данных агрегации в блок.
|
||
* Если overflow_row = true, то агрегаты для строк, не попавших в max_rows_to_group_by, кладутся в первый блок.
|
||
*
|
||
* Если final = false, то в качестве столбцов-агрегатов создаются ColumnAggregateFunction с состоянием вычислений,
|
||
* которые могут быть затем объединены с другими состояниями (для распределённой обработки запроса).
|
||
* Если final = true, то в качестве столбцов-агрегатов создаются столбцы с готовыми значениями.
|
||
*/
|
||
BlocksList convertToBlocks(AggregatedDataVariants & data_variants, bool final, size_t max_threads);
|
||
|
||
/** Объединить несколько структур данных агрегации в одну. (В первый непустой элемент массива.)
|
||
* После объединения, все стркутуры агрегации (а не только те, в которую они будут слиты) должны жить,
|
||
* пока не будет вызвана функция convertToBlocks.
|
||
* Это нужно, так как в слитом результате могут остаться указатели на память в пуле, которым владеют другие структуры агрегации.
|
||
*/
|
||
AggregatedDataVariantsPtr merge(ManyAggregatedDataVariants & data_variants, size_t max_threads);
|
||
|
||
/** Объединить поток частично агрегированных блоков в одну структуру данных.
|
||
* (Доагрегировать несколько блоков, которые представляют собой результат независимых агрегаций с удалённых серверов.)
|
||
*/
|
||
void mergeStream(BlockInputStreamPtr stream, AggregatedDataVariants & result, size_t max_threads);
|
||
|
||
/** Объединить несколько частично агрегированных блоков в один.
|
||
*/
|
||
Block mergeBlocks(BlocksList & blocks, bool final);
|
||
|
||
/** Преобразовать (разрезать) блок частично-агрегированных данных на много блоков, как если бы использовался двухуровневый метод агрегации.
|
||
* Это нужно, чтобы потом было проще объединить результат с другими результатами, уже являющимися двухуровневыми.
|
||
*/
|
||
std::vector<Block> convertBlockToTwoLevel(const Block & block);
|
||
|
||
using CancellationHook = std::function<bool()>;
|
||
|
||
/** Установить функцию, которая проверяет, можно ли прервать текущую задачу.
|
||
*/
|
||
void setCancellationHook(const CancellationHook cancellation_hook);
|
||
|
||
/// Для IBlockInputStream.
|
||
String getID() const;
|
||
|
||
size_t getNumberOfKeys() const { return keys_size; }
|
||
size_t getNumberOfAggregates() const { return aggregates_size; }
|
||
|
||
protected:
|
||
friend struct AggregatedDataVariants;
|
||
|
||
ColumnNumbers keys;
|
||
Names key_names;
|
||
AggregateDescriptions aggregates;
|
||
AggregateFunctionsPlainPtrs aggregate_functions;
|
||
size_t keys_size;
|
||
size_t aggregates_size;
|
||
/// Нужно ли класть в AggregatedDataVariants::without_key агрегаты для ключей, не попавших в max_rows_to_group_by.
|
||
bool overflow_row;
|
||
|
||
Sizes offsets_of_aggregate_states; /// Смещение до n-ой агрегатной функции в строке из агрегатных функций.
|
||
size_t total_size_of_aggregate_states = 0; /// Суммарный размер строки из агрегатных функций.
|
||
bool all_aggregates_has_trivial_destructor = false;
|
||
|
||
/// Для инициализации от первого блока при конкуррентном использовании.
|
||
bool initialized = false;
|
||
std::mutex mutex;
|
||
|
||
size_t max_rows_to_group_by;
|
||
OverflowMode group_by_overflow_mode;
|
||
|
||
Block sample;
|
||
|
||
Logger * log = &Logger::get("Aggregator");
|
||
|
||
|
||
/** Для динамической компиляции, если предусмотрено. */
|
||
Compiler * compiler = nullptr;
|
||
UInt32 min_count_to_compile;
|
||
|
||
/** Динамически скомпилированная библиотека для агрегации, если есть.
|
||
* Смысл динамической компиляции в том, чтобы специализировать код
|
||
* под конкретный список агрегатных функций.
|
||
* Это позволяет развернуть цикл по созданию и обновлению состояний агрегатных функций,
|
||
* а также использовать вместо виртуальных вызовов inline-код.
|
||
*/
|
||
struct CompiledData
|
||
{
|
||
SharedLibraryPtr compiled_aggregator;
|
||
|
||
/// Получены с помощью dlsym. Нужно ещё сделать reinterpret_cast в указатель на функцию.
|
||
void * compiled_method_ptr = nullptr;
|
||
void * compiled_two_level_method_ptr = nullptr;
|
||
};
|
||
/// shared_ptr - чтобы передавать в callback, который может пережить Aggregator.
|
||
std::shared_ptr<CompiledData> compiled_data { new CompiledData };
|
||
|
||
bool compiled_if_possible = false;
|
||
void compileIfPossible(AggregatedDataVariants::Type type);
|
||
|
||
/** При каком количестве ключей, начинает использоваться двухуровневая агрегация.
|
||
* 0 - никогда не использовать.
|
||
*/
|
||
size_t group_by_two_level_threshold;
|
||
|
||
/// Возвращает true, если можно прервать текущую задачу.
|
||
CancellationHook isCancelled;
|
||
|
||
/** Если заданы только имена столбцов (key_names, а также aggregates[i].column_name), то вычислить номера столбцов.
|
||
* Сформировать блок - пример результата.
|
||
*/
|
||
void initialize(const Block & block);
|
||
|
||
/** Выбрать способ агрегации на основе количества и типов ключей. */
|
||
AggregatedDataVariants::Type chooseAggregationMethod(const ConstColumnPlainPtrs & key_columns, Sizes & key_sizes);
|
||
|
||
/** Создать состояния агрегатных функций для одного ключа.
|
||
*/
|
||
void createAggregateStates(AggregateDataPtr & aggregate_data) const;
|
||
|
||
/** Вызвать методы destroy для состояний агрегатных функций.
|
||
* Используется в обработчике исключений при агрегации, так как RAII в данном случае не применим.
|
||
*/
|
||
void destroyAllAggregateStates(AggregatedDataVariants & result);
|
||
|
||
|
||
/// Обработать один блок данных, агрегировать данные в хэш-таблицу.
|
||
template <typename Method>
|
||
void executeImpl(
|
||
Method & method,
|
||
Arena * aggregates_pool,
|
||
size_t rows,
|
||
ConstColumnPlainPtrs & key_columns,
|
||
AggregateColumns & aggregate_columns,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
bool no_more_keys,
|
||
AggregateDataPtr overflow_row) const;
|
||
|
||
/// Специализация для конкретного значения no_more_keys.
|
||
template <bool no_more_keys, typename Method>
|
||
void executeImplCase(
|
||
Method & method,
|
||
typename Method::State & state,
|
||
Arena * aggregates_pool,
|
||
size_t rows,
|
||
ConstColumnPlainPtrs & key_columns,
|
||
AggregateColumns & aggregate_columns,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
AggregateDataPtr overflow_row) const;
|
||
|
||
/// Для случая, когда нет ключей (всё агрегировать в одну строку).
|
||
void executeWithoutKeyImpl(
|
||
AggregatedDataWithoutKey & res,
|
||
size_t rows,
|
||
AggregateColumns & aggregate_columns) const;
|
||
|
||
public:
|
||
/// Шаблоны, инстанцирующиеся путём динамической компиляции кода - см. SpecializedAggregator.h
|
||
|
||
template <typename Method, typename AggregateFunctionsList>
|
||
void executeSpecialized(
|
||
Method & method,
|
||
Arena * aggregates_pool,
|
||
size_t rows,
|
||
ConstColumnPlainPtrs & key_columns,
|
||
AggregateColumns & aggregate_columns,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
bool no_more_keys,
|
||
AggregateDataPtr overflow_row) const;
|
||
|
||
template <bool no_more_keys, typename Method, typename AggregateFunctionsList>
|
||
void executeSpecializedCase(
|
||
Method & method,
|
||
typename Method::State & state,
|
||
Arena * aggregates_pool,
|
||
size_t rows,
|
||
ConstColumnPlainPtrs & key_columns,
|
||
AggregateColumns & aggregate_columns,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
AggregateDataPtr overflow_row) const;
|
||
|
||
template <typename AggregateFunctionsList>
|
||
void executeSpecializedWithoutKey(
|
||
AggregatedDataWithoutKey & res,
|
||
size_t rows,
|
||
AggregateColumns & aggregate_columns) const;
|
||
|
||
protected:
|
||
/// Слить данные из хэш-таблицы src в dst.
|
||
template <typename Method, typename Table>
|
||
void mergeDataImpl(
|
||
Table & table_dst,
|
||
Table & table_src) const;
|
||
|
||
/// Слить данные из хэш-таблицы src в dst, но только для ключей, которые уже есть в dst. В остальных случаях, слить данные в overflows.
|
||
template <typename Method, typename Table>
|
||
void mergeDataNoMoreKeysImpl(
|
||
Table & table_dst,
|
||
AggregatedDataWithoutKey & overflows,
|
||
Table & table_src) const;
|
||
|
||
/// То же самое, но игнорирует остальные ключи.
|
||
template <typename Method, typename Table>
|
||
void mergeDataOnlyExistingKeysImpl(
|
||
Table & table_dst,
|
||
Table & table_src) const;
|
||
|
||
/// Слить все ключи, оставшиеся после предыдущего метода, в overflows.
|
||
template <typename Method, typename Table>
|
||
void mergeDataRemainingKeysToOverflowsImpl(
|
||
AggregatedDataWithoutKey & overflows,
|
||
Table & table_src) const;
|
||
|
||
void mergeWithoutKeyDataImpl(
|
||
ManyAggregatedDataVariants & non_empty_data) const;
|
||
|
||
template <typename Method>
|
||
void mergeSingleLevelDataImpl(
|
||
ManyAggregatedDataVariants & non_empty_data) const;
|
||
|
||
template <typename Method>
|
||
void mergeTwoLevelDataImpl(
|
||
ManyAggregatedDataVariants & many_data,
|
||
boost::threadpool::pool * thread_pool) const;
|
||
|
||
template <typename Method, typename Table>
|
||
void convertToBlockImpl(
|
||
Method & method,
|
||
Table & data,
|
||
ColumnPlainPtrs & key_columns,
|
||
AggregateColumnsData & aggregate_columns,
|
||
ColumnPlainPtrs & final_aggregate_columns,
|
||
const Sizes & key_sizes,
|
||
bool final) const;
|
||
|
||
template <typename Method, typename Table>
|
||
void convertToBlockImplFinal(
|
||
Method & method,
|
||
Table & data,
|
||
ColumnPlainPtrs & key_columns,
|
||
ColumnPlainPtrs & final_aggregate_columns,
|
||
const Sizes & key_sizes) const;
|
||
|
||
template <typename Method, typename Table>
|
||
void convertToBlockImplNotFinal(
|
||
Method & method,
|
||
Table & data,
|
||
ColumnPlainPtrs & key_columns,
|
||
AggregateColumnsData & aggregate_columns,
|
||
const Sizes & key_sizes) const;
|
||
|
||
template <typename Filler>
|
||
Block prepareBlockAndFill(
|
||
AggregatedDataVariants & data_variants,
|
||
bool final,
|
||
size_t rows,
|
||
Filler && filler) const;
|
||
|
||
BlocksList prepareBlocksAndFillWithoutKey(AggregatedDataVariants & data_variants, bool final) const;
|
||
BlocksList prepareBlocksAndFillSingleLevel(AggregatedDataVariants & data_variants, bool final) const;
|
||
BlocksList prepareBlocksAndFillTwoLevel(AggregatedDataVariants & data_variants, bool final, boost::threadpool::pool * thread_pool) const;
|
||
|
||
template <typename Method>
|
||
BlocksList prepareBlocksAndFillTwoLevelImpl(
|
||
AggregatedDataVariants & data_variants,
|
||
Method & method,
|
||
bool final,
|
||
boost::threadpool::pool * thread_pool) const;
|
||
|
||
template <bool no_more_keys, typename Method, typename Table>
|
||
void mergeStreamsImplCase(
|
||
Block & block,
|
||
const Sizes & key_sizes,
|
||
Arena * aggregates_pool,
|
||
Method & method,
|
||
Table & data,
|
||
AggregateDataPtr overflow_row) const;
|
||
|
||
template <typename Method, typename Table>
|
||
void mergeStreamsImpl(
|
||
Block & block,
|
||
const Sizes & key_sizes,
|
||
Arena * aggregates_pool,
|
||
Method & method,
|
||
Table & data,
|
||
AggregateDataPtr overflow_row,
|
||
bool no_more_keys) const;
|
||
|
||
void mergeWithoutKeyStreamsImpl(
|
||
Block & block,
|
||
AggregatedDataVariants & result) const;
|
||
|
||
template <typename Method>
|
||
void convertBlockToTwoLevelImpl(
|
||
Method & method,
|
||
Arena * pool,
|
||
ConstColumnPlainPtrs & key_columns,
|
||
const Sizes & key_sizes,
|
||
StringRefs & keys,
|
||
const Block & source,
|
||
std::vector<Block> & destinations) const;
|
||
|
||
template <typename Method>
|
||
void destroyImpl(
|
||
Method & method) const;
|
||
|
||
|
||
/** Проверяет ограничения на максимальное количество ключей для агрегации.
|
||
* Если оно превышено, то, в зависимости от group_by_overflow_mode, либо
|
||
* - кидает исключение;
|
||
* - возвращает false, что говорит о том, что выполнение нужно прервать;
|
||
* - выставляет переменную no_more_keys в true.
|
||
*/
|
||
bool checkLimits(size_t result_size, bool & no_more_keys) const;
|
||
};
|
||
|
||
|
||
/** Достать вариант агрегации по его типу. */
|
||
template <typename Method> Method & getDataVariant(AggregatedDataVariants & variants);
|
||
|
||
#define M(NAME, IS_TWO_LEVEL) \
|
||
template <> inline decltype(AggregatedDataVariants::NAME)::element_type & getDataVariant<decltype(AggregatedDataVariants::NAME)::element_type>(AggregatedDataVariants & variants) { return *variants.NAME; }
|
||
|
||
APPLY_FOR_AGGREGATED_VARIANTS(M)
|
||
|
||
#undef M
|
||
|
||
|
||
}
|