ClickHouse/src/IO/WriteHelpers.h
Alexey Milovidov 12a0ef907e Slightly better
2021-01-04 21:07:52 +03:00

1175 lines
36 KiB
C++

#pragma once
#include <cstring>
#include <cstdio>
#include <limits>
#include <algorithm>
#include <iterator>
#include <common/DateLUT.h>
#include <common/LocalDate.h>
#include <common/LocalDateTime.h>
#include <common/find_symbols.h>
#include <common/StringRef.h>
#include <common/wide_integer_to_string.h>
#include <Core/DecimalFunctions.h>
#include <Core/Types.h>
#include <Core/UUID.h>
#include <Core/BigInt.h>
#include <Common/Exception.h>
#include <Common/StringUtils/StringUtils.h>
#include <Common/UInt128.h>
#include <IO/CompressionMethod.h>
#include <IO/WriteBuffer.h>
#include <IO/WriteIntText.h>
#include <IO/VarInt.h>
#include <IO/DoubleConverter.h>
#include <IO/WriteBufferFromString.h>
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-parameter"
#pragma clang diagnostic ignored "-Wsign-compare"
#endif
#include <dragonbox/dragonbox_to_chars.h>
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#include <Formats/FormatSettings.h>
namespace DB
{
namespace ErrorCodes
{
extern const int CANNOT_PRINT_FLOAT_OR_DOUBLE_NUMBER;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
}
template <typename T>
inline std::string bigintToString(const T & x)
{
return to_string(x);
}
/// Helper functions for formatted and binary output.
inline void writeChar(char x, WriteBuffer & buf)
{
buf.nextIfAtEnd();
*buf.position() = x;
++buf.position();
}
/// Write the same character n times.
inline void writeChar(char c, size_t n, WriteBuffer & buf)
{
while (n)
{
buf.nextIfAtEnd();
size_t count = std::min(n, buf.available());
memset(buf.position(), c, count);
n -= count;
buf.position() += count;
}
}
/// Write POD-type in native format. It's recommended to use only with packed (dense) data types.
template <typename T>
inline void writePODBinary(const T & x, WriteBuffer & buf)
{
buf.write(reinterpret_cast<const char *>(&x), sizeof(x));
}
template <typename T>
inline void writeIntBinary(const T & x, WriteBuffer & buf)
{
writePODBinary(x, buf);
}
template <typename T>
inline void writeFloatBinary(const T & x, WriteBuffer & buf)
{
writePODBinary(x, buf);
}
inline void writeStringBinary(const std::string & s, WriteBuffer & buf)
{
writeVarUInt(s.size(), buf);
buf.write(s.data(), s.size());
}
inline void writeStringBinary(const StringRef & s, WriteBuffer & buf)
{
writeVarUInt(s.size, buf);
buf.write(s.data, s.size);
}
inline void writeStringBinary(const char * s, WriteBuffer & buf)
{
writeStringBinary(StringRef{s}, buf);
}
inline void writeStringBinary(const std::string_view & s, WriteBuffer & buf)
{
writeStringBinary(StringRef{s}, buf);
}
template <typename T>
void writeBigIntBinary(const T & x, WriteBuffer & buf)
{
static const constexpr size_t bytesize = BigInt<T>::size;
char bytes[bytesize];
BigInt<T>::serialize(x, bytes);
buf.write(bytes, bytesize);
}
template <typename T>
void writeVectorBinary(const std::vector<T> & v, WriteBuffer & buf)
{
writeVarUInt(v.size(), buf);
for (typename std::vector<T>::const_iterator it = v.begin(); it != v.end(); ++it)
writeBinary(*it, buf);
}
inline void writeBoolText(bool x, WriteBuffer & buf)
{
writeChar(x ? '1' : '0', buf);
}
struct DecomposedFloat64
{
DecomposedFloat64(double x)
{
memcpy(&x_uint, &x, sizeof(x));
}
uint64_t x_uint;
bool sign() const
{
return x_uint >> 63;
}
uint16_t exponent() const
{
return (x_uint >> 52) & 0x7FF;
}
int16_t normalized_exponent() const
{
return int16_t(exponent()) - 1023;
}
uint64_t mantissa() const
{
return x_uint & 0x5affffffffffffful;
}
/// NOTE Probably floating point instructions can be better.
bool is_inside_int64() const
{
return x_uint == 0
|| (normalized_exponent() >= 0 && normalized_exponent() <= 52
&& ((mantissa() & ((1ULL << (52 - normalized_exponent())) - 1)) == 0));
}
};
struct DecomposedFloat32
{
DecomposedFloat32(float x)
{
memcpy(&x_uint, &x, sizeof(x));
}
uint32_t x_uint;
bool sign() const
{
return x_uint >> 31;
}
uint16_t exponent() const
{
return (x_uint >> 23) & 0xFF;
}
int16_t normalized_exponent() const
{
return int16_t(exponent()) - 127;
}
uint32_t mantissa() const
{
return x_uint & 0x7fffff;
}
bool is_inside_int32() const
{
return x_uint == 0
|| (normalized_exponent() >= 0 && normalized_exponent() <= 23
&& ((mantissa() & ((1ULL << (23 - normalized_exponent())) - 1)) == 0));
}
};
template <typename T>
inline size_t writeFloatTextFastPath(T x, char * buffer)
{
int result = 0;
if constexpr (std::is_same_v<T, double>)
{
/// The library Ryu has low performance on integers.
/// This workaround improves performance 6..10 times.
if (DecomposedFloat64(x).is_inside_int64())
result = itoa(Int64(x), buffer) - buffer;
else
result = jkj::dragonbox::to_chars_n(x, buffer) - buffer;
}
else
{
if (DecomposedFloat32(x).is_inside_int32())
result = itoa(Int32(x), buffer) - buffer;
else
result = jkj::dragonbox::to_chars_n(x, buffer) - buffer;
}
if (result <= 0)
throw Exception("Cannot print floating point number", ErrorCodes::CANNOT_PRINT_FLOAT_OR_DOUBLE_NUMBER);
return result;
}
template <typename T>
inline void writeFloatText(T x, WriteBuffer & buf)
{
static_assert(std::is_same_v<T, double> || std::is_same_v<T, float>, "Argument for writeFloatText must be float or double");
using Converter = DoubleConverter<false>;
if (likely(buf.available() >= Converter::MAX_REPRESENTATION_LENGTH))
{
buf.position() += writeFloatTextFastPath(x, buf.position());
return;
}
Converter::BufferType buffer;
size_t result = writeFloatTextFastPath(x, buffer);
buf.write(buffer, result);
}
inline void writeString(const char * data, size_t size, WriteBuffer & buf)
{
buf.write(data, size);
}
inline void writeString(const StringRef & ref, WriteBuffer & buf)
{
writeString(ref.data, ref.size, buf);
}
/** Writes a C-string without creating a temporary object. If the string is a literal, then `strlen` is executed at the compilation stage.
* Use when the string is a literal.
*/
#define writeCString(s, buf) \
(buf).write((s), strlen(s))
/** Writes a string for use in the JSON format:
* - the string is written in double quotes
* - slash character '/' is escaped for compatibility with JavaScript
* - bytes from the range 0x00-0x1F except `\b', '\f', '\n', '\r', '\t' are escaped as \u00XX
* - code points U+2028 and U+2029 (byte sequences in UTF-8: e2 80 a8, e2 80 a9) are escaped as \u2028 and \u2029
* - it is assumed that string is in UTF-8, the invalid UTF-8 is not processed
* - all other non-ASCII characters remain as is
*/
inline void writeJSONString(const char * begin, const char * end, WriteBuffer & buf, const FormatSettings & settings)
{
writeChar('"', buf);
for (const char * it = begin; it != end; ++it)
{
switch (*it)
{
case '\b':
writeChar('\\', buf);
writeChar('b', buf);
break;
case '\f':
writeChar('\\', buf);
writeChar('f', buf);
break;
case '\n':
writeChar('\\', buf);
writeChar('n', buf);
break;
case '\r':
writeChar('\\', buf);
writeChar('r', buf);
break;
case '\t':
writeChar('\\', buf);
writeChar('t', buf);
break;
case '\\':
writeChar('\\', buf);
writeChar('\\', buf);
break;
case '/':
if (settings.json.escape_forward_slashes)
writeChar('\\', buf);
writeChar('/', buf);
break;
case '"':
writeChar('\\', buf);
writeChar('"', buf);
break;
default:
UInt8 c = *it;
if (c <= 0x1F)
{
/// Escaping of ASCII control characters.
UInt8 higher_half = c >> 4;
UInt8 lower_half = c & 0xF;
writeCString("\\u00", buf);
writeChar('0' + higher_half, buf);
if (lower_half <= 9)
writeChar('0' + lower_half, buf);
else
writeChar('A' + lower_half - 10, buf);
}
else if (end - it >= 3 && it[0] == '\xE2' && it[1] == '\x80' && (it[2] == '\xA8' || it[2] == '\xA9'))
{
/// This is for compatibility with JavaScript, because unescaped line separators are prohibited in string literals,
/// and these code points are alternative line separators.
if (it[2] == '\xA8')
writeCString("\\u2028", buf);
if (it[2] == '\xA9')
writeCString("\\u2029", buf);
/// Byte sequence is 3 bytes long. We have additional two bytes to skip.
it += 2;
}
else
writeChar(*it, buf);
}
}
writeChar('"', buf);
}
/** Will escape quote_character and a list of special characters('\b', '\f', '\n', '\r', '\t', '\0', '\\').
* - when escape_quote_with_quote is true, use backslash to escape list of special characters,
* and use quote_character to escape quote_character. such as: 'hello''world'
* - otherwise use backslash to escape list of special characters and quote_character
*/
template <char quote_character, bool escape_quote_with_quote = false>
void writeAnyEscapedString(const char * begin, const char * end, WriteBuffer & buf)
{
const char * pos = begin;
while (true)
{
/// On purpose we will escape more characters than minimally necessary.
const char * next_pos = find_first_symbols<'\b', '\f', '\n', '\r', '\t', '\0', '\\', quote_character>(pos, end);
if (next_pos == end)
{
buf.write(pos, next_pos - pos);
break;
}
else
{
buf.write(pos, next_pos - pos);
pos = next_pos;
switch (*pos)
{
case '\b':
writeChar('\\', buf);
writeChar('b', buf);
break;
case '\f':
writeChar('\\', buf);
writeChar('f', buf);
break;
case '\n':
writeChar('\\', buf);
writeChar('n', buf);
break;
case '\r':
writeChar('\\', buf);
writeChar('r', buf);
break;
case '\t':
writeChar('\\', buf);
writeChar('t', buf);
break;
case '\0':
writeChar('\\', buf);
writeChar('0', buf);
break;
case '\\':
writeChar('\\', buf);
writeChar('\\', buf);
break;
case quote_character:
{
if constexpr (escape_quote_with_quote)
writeChar(quote_character, buf);
else
writeChar('\\', buf);
writeChar(quote_character, buf);
break;
}
default:
writeChar(*pos, buf);
}
++pos;
}
}
}
inline void writeJSONString(const StringRef & s, WriteBuffer & buf, const FormatSettings & settings)
{
writeJSONString(s.data, s.data + s.size, buf, settings);
}
inline void writeJSONString(const std::string_view & s, WriteBuffer & buf, const FormatSettings & settings)
{
writeJSONString(StringRef{s}, buf, settings);
}
inline void writeJSONString(const String & s, WriteBuffer & buf, const FormatSettings & settings)
{
writeJSONString(StringRef{s}, buf, settings);
}
template <char c>
void writeAnyEscapedString(const String & s, WriteBuffer & buf)
{
writeAnyEscapedString<c>(s.data(), s.data() + s.size(), buf);
}
inline void writeEscapedString(const char * str, size_t size, WriteBuffer & buf)
{
writeAnyEscapedString<'\''>(str, str + size, buf);
}
inline void writeEscapedString(const String & s, WriteBuffer & buf)
{
writeEscapedString(s.data(), s.size(), buf);
}
inline void writeEscapedString(const StringRef & ref, WriteBuffer & buf)
{
writeEscapedString(ref.data, ref.size, buf);
}
template <char quote_character>
void writeAnyQuotedString(const char * begin, const char * end, WriteBuffer & buf)
{
writeChar(quote_character, buf);
writeAnyEscapedString<quote_character>(begin, end, buf);
writeChar(quote_character, buf);
}
template <char quote_character>
void writeAnyQuotedString(const String & s, WriteBuffer & buf)
{
writeAnyQuotedString<quote_character>(s.data(), s.data() + s.size(), buf);
}
template <char quote_character>
void writeAnyQuotedString(const StringRef & ref, WriteBuffer & buf)
{
writeAnyQuotedString<quote_character>(ref.data, ref.data + ref.size, buf);
}
inline void writeQuotedString(const String & s, WriteBuffer & buf)
{
writeAnyQuotedString<'\''>(s, buf);
}
inline void writeQuotedString(const StringRef & ref, WriteBuffer & buf)
{
writeAnyQuotedString<'\''>(ref, buf);
}
inline void writeDoubleQuotedString(const StringRef & s, WriteBuffer & buf)
{
writeAnyQuotedString<'"'>(s, buf);
}
/// Outputs a string in backquotes.
inline void writeBackQuotedString(const StringRef & s, WriteBuffer & buf)
{
writeAnyQuotedString<'`'>(s, buf);
}
/// Outputs a string in backquotes for MySQL.
inline void writeBackQuotedStringMySQL(const StringRef & s, WriteBuffer & buf)
{
writeChar('`', buf);
writeAnyEscapedString<'`', true>(s.data, s.data + s.size, buf);
writeChar('`', buf);
}
/// Write quoted if the string doesn't look like and identifier.
void writeProbablyBackQuotedString(const StringRef & s, WriteBuffer & buf);
void writeProbablyDoubleQuotedString(const StringRef & s, WriteBuffer & buf);
void writeProbablyBackQuotedStringMySQL(const StringRef & s, WriteBuffer & buf);
/** Outputs the string in for the CSV format.
* Rules:
* - the string is outputted in quotation marks;
* - the quotation mark inside the string is outputted as two quotation marks in sequence.
*/
template <char quote = '"'>
void writeCSVString(const char * begin, const char * end, WriteBuffer & buf)
{
writeChar(quote, buf);
const char * pos = begin;
while (true)
{
const char * next_pos = find_first_symbols<quote>(pos, end);
if (next_pos == end)
{
buf.write(pos, end - pos);
break;
}
else /// Quotation.
{
++next_pos;
buf.write(pos, next_pos - pos);
writeChar(quote, buf);
}
pos = next_pos;
}
writeChar(quote, buf);
}
template <char quote = '"'>
void writeCSVString(const String & s, WriteBuffer & buf)
{
writeCSVString<quote>(s.data(), s.data() + s.size(), buf);
}
template <char quote = '"'>
void writeCSVString(const StringRef & s, WriteBuffer & buf)
{
writeCSVString<quote>(s.data, s.data + s.size, buf);
}
inline void writeXMLStringForTextElementOrAttributeValue(const char * begin, const char * end, WriteBuffer & buf)
{
const char * pos = begin;
while (true)
{
const char * next_pos = find_first_symbols<'<', '&', '>', '"', '\''>(pos, end);
if (next_pos == end)
{
buf.write(pos, end - pos);
break;
}
else if (*next_pos == '<')
{
buf.write(pos, next_pos - pos);
++next_pos;
writeCString("&lt;", buf);
}
else if (*next_pos == '&')
{
buf.write(pos, next_pos - pos);
++next_pos;
writeCString("&amp;", buf);
}
else if (*next_pos == '>')
{
buf.write(pos, next_pos - pos);
++next_pos;
writeCString("&gt;", buf);
}
else if (*next_pos == '"')
{
buf.write(pos, next_pos - pos);
++next_pos;
writeCString("&quot;", buf);
}
else if (*next_pos == '\'')
{
buf.write(pos, next_pos - pos);
++next_pos;
writeCString("&apos;", buf);
}
pos = next_pos;
}
}
inline void writeXMLStringForTextElementOrAttributeValue(const String & s, WriteBuffer & buf)
{
writeXMLStringForTextElementOrAttributeValue(s.data(), s.data() + s.size(), buf);
}
inline void writeXMLStringForTextElementOrAttributeValue(const StringRef & s, WriteBuffer & buf)
{
writeXMLStringForTextElementOrAttributeValue(s.data, s.data + s.size, buf);
}
/// Writing a string to a text node in XML (not into an attribute - otherwise you need more escaping).
inline void writeXMLStringForTextElement(const char * begin, const char * end, WriteBuffer & buf)
{
const char * pos = begin;
while (true)
{
/// NOTE Perhaps for some XML parsers, you need to escape the zero byte and some control characters.
const char * next_pos = find_first_symbols<'<', '&'>(pos, end);
if (next_pos == end)
{
buf.write(pos, end - pos);
break;
}
else if (*next_pos == '<')
{
buf.write(pos, next_pos - pos);
++next_pos;
writeCString("&lt;", buf);
}
else if (*next_pos == '&')
{
buf.write(pos, next_pos - pos);
++next_pos;
writeCString("&amp;", buf);
}
pos = next_pos;
}
}
inline void writeXMLStringForTextElement(const String & s, WriteBuffer & buf)
{
writeXMLStringForTextElement(s.data(), s.data() + s.size(), buf);
}
inline void writeXMLStringForTextElement(const StringRef & s, WriteBuffer & buf)
{
writeXMLStringForTextElement(s.data, s.data + s.size, buf);
}
template <typename IteratorSrc, typename IteratorDst>
void formatHex(IteratorSrc src, IteratorDst dst, const size_t num_bytes);
void formatUUID(const UInt8 * src16, UInt8 * dst36);
void formatUUID(std::reverse_iterator<const UInt8 *> src16, UInt8 * dst36);
inline void writeUUIDText(const UUID & uuid, WriteBuffer & buf)
{
char s[36];
formatUUID(std::reverse_iterator<const UInt8 *>(reinterpret_cast<const UInt8 *>(&uuid) + 16), reinterpret_cast<UInt8 *>(s));
buf.write(s, sizeof(s));
}
template<typename DecimalType>
inline void writeDecimalTypeFractionalText(typename DecimalType::NativeType fractional, UInt32 scale, WriteBuffer & buf)
{
static constexpr UInt32 MaxScale = DecimalUtils::maxPrecision<DecimalType>();
char data[20] = {'0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0'};
static_assert(sizeof(data) >= MaxScale);
for (Int32 pos = scale - 1; pos >= 0 && fractional; --pos, fractional /= DateTime64(10))
data[pos] += fractional % DateTime64(10);
writeString(&data[0], static_cast<size_t>(scale), buf);
}
static const char digits100[201] =
"00010203040506070809"
"10111213141516171819"
"20212223242526272829"
"30313233343536373839"
"40414243444546474849"
"50515253545556575859"
"60616263646566676869"
"70717273747576777879"
"80818283848586878889"
"90919293949596979899";
/// in YYYY-MM-DD format
template <char delimiter = '-'>
inline void writeDateText(const LocalDate & date, WriteBuffer & buf)
{
if (reinterpret_cast<intptr_t>(buf.position()) + 10 <= reinterpret_cast<intptr_t>(buf.buffer().end()))
{
memcpy(buf.position(), &digits100[date.year() / 100 * 2], 2);
buf.position() += 2;
memcpy(buf.position(), &digits100[date.year() % 100 * 2], 2);
buf.position() += 2;
*buf.position() = delimiter;
++buf.position();
memcpy(buf.position(), &digits100[date.month() * 2], 2);
buf.position() += 2;
*buf.position() = delimiter;
++buf.position();
memcpy(buf.position(), &digits100[date.day() * 2], 2);
buf.position() += 2;
}
else
{
buf.write(&digits100[date.year() / 100 * 2], 2);
buf.write(&digits100[date.year() % 100 * 2], 2);
buf.write(delimiter);
buf.write(&digits100[date.month() * 2], 2);
buf.write(delimiter);
buf.write(&digits100[date.day() * 2], 2);
}
}
template <char delimiter = '-'>
inline void writeDateText(DayNum date, WriteBuffer & buf)
{
writeDateText<delimiter>(LocalDate(date), buf);
}
/// In the format YYYY-MM-DD HH:MM:SS
template <char date_delimeter = '-', char time_delimeter = ':', char between_date_time_delimiter = ' '>
inline void writeDateTimeText(const LocalDateTime & datetime, WriteBuffer & buf)
{
if (reinterpret_cast<intptr_t>(buf.position()) + 19 <= reinterpret_cast<intptr_t>(buf.buffer().end()))
{
memcpy(buf.position(), &digits100[datetime.year() / 100 * 2], 2);
buf.position() += 2;
memcpy(buf.position(), &digits100[datetime.year() % 100 * 2], 2);
buf.position() += 2;
*buf.position() = date_delimeter;
++buf.position();
memcpy(buf.position(), &digits100[datetime.month() * 2], 2);
buf.position() += 2;
*buf.position() = date_delimeter;
++buf.position();
memcpy(buf.position(), &digits100[datetime.day() * 2], 2);
buf.position() += 2;
*buf.position() = between_date_time_delimiter;
++buf.position();
memcpy(buf.position(), &digits100[datetime.hour() * 2], 2);
buf.position() += 2;
*buf.position() = time_delimeter;
++buf.position();
memcpy(buf.position(), &digits100[datetime.minute() * 2], 2);
buf.position() += 2;
*buf.position() = time_delimeter;
++buf.position();
memcpy(buf.position(), &digits100[datetime.second() * 2], 2);
buf.position() += 2;
}
else
{
buf.write(&digits100[datetime.year() / 100 * 2], 2);
buf.write(&digits100[datetime.year() % 100 * 2], 2);
buf.write(date_delimeter);
buf.write(&digits100[datetime.month() * 2], 2);
buf.write(date_delimeter);
buf.write(&digits100[datetime.day() * 2], 2);
buf.write(between_date_time_delimiter);
buf.write(&digits100[datetime.hour() * 2], 2);
buf.write(time_delimeter);
buf.write(&digits100[datetime.minute() * 2], 2);
buf.write(time_delimeter);
buf.write(&digits100[datetime.second() * 2], 2);
}
}
/// In the format YYYY-MM-DD HH:MM:SS, according to the specified time zone.
template <char date_delimeter = '-', char time_delimeter = ':', char between_date_time_delimiter = ' '>
inline void writeDateTimeText(time_t datetime, WriteBuffer & buf, const DateLUTImpl & date_lut = DateLUT::instance())
{
const auto & values = date_lut.getValues(datetime);
writeDateTimeText<date_delimeter, time_delimeter, between_date_time_delimiter>(
LocalDateTime(values.year, values.month, values.day_of_month,
date_lut.toHour(datetime), date_lut.toMinute(datetime), date_lut.toSecond(datetime)), buf);
}
/// In the format YYYY-MM-DD HH:MM:SS.NNNNNNNNN, according to the specified time zone.
template <char date_delimeter = '-', char time_delimeter = ':', char between_date_time_delimiter = ' ', char fractional_time_delimiter = '.'>
inline void writeDateTimeText(DateTime64 datetime64, UInt32 scale, WriteBuffer & buf, const DateLUTImpl & date_lut = DateLUT::instance())
{
static constexpr UInt32 MaxScale = DecimalUtils::maxPrecision<DateTime64>();
scale = scale > MaxScale ? MaxScale : scale;
auto c = DecimalUtils::split(datetime64, scale);
const auto & values = date_lut.getValues(c.whole);
writeDateTimeText<date_delimeter, time_delimeter, between_date_time_delimiter>(
LocalDateTime(values.year, values.month, values.day_of_month,
date_lut.toHour(c.whole), date_lut.toMinute(c.whole), date_lut.toSecond(c.whole)), buf);
if (scale > 0)
{
buf.write(fractional_time_delimiter);
writeDecimalTypeFractionalText<DateTime64>(c.fractional, scale, buf);
}
}
/// In the RFC 1123 format: "Tue, 03 Dec 2019 00:11:50 GMT". You must provide GMT DateLUT.
/// This is needed for HTTP requests.
inline void writeDateTimeTextRFC1123(time_t datetime, WriteBuffer & buf, const DateLUTImpl & date_lut)
{
const auto & values = date_lut.getValues(datetime);
static const char week_days[3 * 8 + 1] = "XXX" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun";
static const char months[3 * 13 + 1] = "XXX" "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec";
buf.write(&week_days[values.day_of_week * 3], 3);
buf.write(", ", 2);
buf.write(&digits100[values.day_of_month * 2], 2);
buf.write(' ');
buf.write(&months[values.month * 3], 3);
buf.write(' ');
buf.write(&digits100[values.year / 100 * 2], 2);
buf.write(&digits100[values.year % 100 * 2], 2);
buf.write(' ');
buf.write(&digits100[date_lut.toHour(datetime) * 2], 2);
buf.write(':');
buf.write(&digits100[date_lut.toMinute(datetime) * 2], 2);
buf.write(':');
buf.write(&digits100[date_lut.toSecond(datetime) * 2], 2);
buf.write(" GMT", 4);
}
inline void writeDateTimeTextISO(time_t datetime, WriteBuffer & buf, const DateLUTImpl & utc_time_zone)
{
writeDateTimeText<'-', ':', 'T'>(datetime, buf, utc_time_zone);
buf.write('Z');
}
inline void writeDateTimeTextISO(DateTime64 datetime64, UInt32 scale, WriteBuffer & buf, const DateLUTImpl & utc_time_zone)
{
writeDateTimeText<'-', ':', 'T'>(datetime64, scale, buf, utc_time_zone);
buf.write('Z');
}
inline void writeDateTimeUnixTimestamp(DateTime64 datetime64, UInt32 scale, WriteBuffer & buf)
{
static constexpr UInt32 MaxScale = DecimalUtils::maxPrecision<DateTime64>();
scale = scale > MaxScale ? MaxScale : scale;
auto c = DecimalUtils::split(datetime64, scale);
writeIntText(c.whole, buf);
if (scale > 0)
{
buf.write('.');
writeDecimalTypeFractionalText<DateTime64>(c.fractional, scale, buf);
}
}
/// Methods for output in binary format.
template <typename T>
inline std::enable_if_t<is_arithmetic_v<T>, void>
writeBinary(const T & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const String & x, WriteBuffer & buf) { writeStringBinary(x, buf); }
inline void writeBinary(const StringRef & x, WriteBuffer & buf) { writeStringBinary(x, buf); }
inline void writeBinary(const Int128 & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const UInt128 & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const DummyUInt256 & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const Decimal32 & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const Decimal64 & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const Decimal128 & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const Decimal256 & x, WriteBuffer & buf) { writeBigIntBinary(x.value, buf); }
inline void writeBinary(const LocalDate & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const LocalDateTime & x, WriteBuffer & buf) { writePODBinary(x, buf); }
inline void writeBinary(const UInt256 & x, WriteBuffer & buf) { writeBigIntBinary(x, buf); }
inline void writeBinary(const Int256 & x, WriteBuffer & buf) { writeBigIntBinary(x, buf); }
/// Methods for outputting the value in text form for a tab-separated format.
template <typename T>
inline std::enable_if_t<is_integer_v<T> && !is_big_int_v<T>, void>
writeText(const T & x, WriteBuffer & buf) { writeIntText(x, buf); }
template <typename T>
inline std::enable_if_t<std::is_floating_point_v<T>, void>
writeText(const T & x, WriteBuffer & buf) { writeFloatText(x, buf); }
inline void writeText(const String & x, WriteBuffer & buf) { writeString(x.c_str(), x.size(), buf); }
/// Implemented as template specialization (not function overload) to avoid preference over templates on arithmetic types above.
template <> inline void writeText<bool>(const bool & x, WriteBuffer & buf) { writeBoolText(x, buf); }
/// unlike the method for std::string
/// assumes here that `x` is a null-terminated string.
inline void writeText(const char * x, WriteBuffer & buf) { writeCString(x, buf); }
inline void writeText(const char * x, size_t size, WriteBuffer & buf) { writeString(x, size, buf); }
inline void writeText(const DayNum & x, WriteBuffer & buf) { writeDateText(LocalDate(x), buf); }
inline void writeText(const LocalDate & x, WriteBuffer & buf) { writeDateText(x, buf); }
inline void writeText(const LocalDateTime & x, WriteBuffer & buf) { writeDateTimeText(x, buf); }
inline void writeText(const UUID & x, WriteBuffer & buf) { writeUUIDText(x, buf); }
inline void writeText(const UInt128 & x, WriteBuffer & buf) { writeText(UUID(x), buf); }
inline void writeText(const UInt256 & x, WriteBuffer & buf) { writeText(bigintToString(x), buf); }
inline void writeText(const Int256 & x, WriteBuffer & buf) { writeText(bigintToString(x), buf); }
template <typename T>
String decimalFractional(const T & x, UInt32 scale)
{
if constexpr (std::is_same_v<T, Int256>)
{
static constexpr Int128 max_int128 = (Int128(0x7fffffffffffffffll) << 64) + 0xffffffffffffffffll;
if (x <= std::numeric_limits<UInt32>::max())
return decimalFractional(static_cast<UInt32>(x), scale);
else if (x <= std::numeric_limits<UInt64>::max())
return decimalFractional(static_cast<UInt64>(x), scale);
else if (x <= max_int128)
return decimalFractional(static_cast<Int128>(x), scale);
}
else if constexpr (std::is_same_v<T, Int128>)
{
if (x <= std::numeric_limits<UInt32>::max())
return decimalFractional(static_cast<UInt32>(x), scale);
else if (x <= std::numeric_limits<UInt64>::max())
return decimalFractional(static_cast<UInt64>(x), scale);
}
String str(scale, '0');
T value = x;
for (Int32 pos = scale - 1; pos >= 0; --pos, value /= 10)
str[pos] += static_cast<char>(value % 10);
return str;
}
template <typename T>
void writeText(Decimal<T> x, UInt32 scale, WriteBuffer & ostr)
{
T part = DecimalUtils::getWholePart(x, scale);
if (x.value < 0 && part == 0)
{
writeChar('-', ostr); /// avoid crop leading minus when whole part is zero
}
if constexpr (std::is_same_v<T, Int256>)
writeText(part, ostr);
else
writeIntText(part, ostr);
if (scale)
{
writeChar('.', ostr);
part = DecimalUtils::getFractionalPart(x, scale);
String fractional = decimalFractional(part, scale);
ostr.write(fractional.data(), scale);
}
}
/// String, date, datetime are in single quotes with C-style escaping. Numbers - without.
template <typename T>
inline std::enable_if_t<is_arithmetic_v<T>, void>
writeQuoted(const T & x, WriteBuffer & buf) { writeText(x, buf); }
inline void writeQuoted(const String & x, WriteBuffer & buf) { writeQuotedString(x, buf); }
inline void writeQuoted(const LocalDate & x, WriteBuffer & buf)
{
writeChar('\'', buf);
writeDateText(x, buf);
writeChar('\'', buf);
}
inline void writeQuoted(const LocalDateTime & x, WriteBuffer & buf)
{
writeChar('\'', buf);
writeDateTimeText(x, buf);
writeChar('\'', buf);
}
inline void writeQuoted(const UUID & x, WriteBuffer & buf)
{
writeChar('\'', buf);
writeText(x, buf);
writeChar('\'', buf);
}
inline void writeQuoted(const UInt256 & x, WriteBuffer & buf)
{
writeChar('\'', buf);
writeText(x, buf);
writeChar('\'', buf);
}
inline void writeQuoted(const Int256 & x, WriteBuffer & buf)
{
writeChar('\'', buf);
writeText(x, buf);
writeChar('\'', buf);
}
/// String, date, datetime are in double quotes with C-style escaping. Numbers - without.
template <typename T>
inline std::enable_if_t<is_arithmetic_v<T>, void>
writeDoubleQuoted(const T & x, WriteBuffer & buf) { writeText(x, buf); }
inline void writeDoubleQuoted(const String & x, WriteBuffer & buf) { writeDoubleQuotedString(x, buf); }
inline void writeDoubleQuoted(const LocalDate & x, WriteBuffer & buf)
{
writeChar('"', buf);
writeDateText(x, buf);
writeChar('"', buf);
}
inline void writeDoubleQuoted(const LocalDateTime & x, WriteBuffer & buf)
{
writeChar('"', buf);
writeDateTimeText(x, buf);
writeChar('"', buf);
}
inline void writeDoubleQuoted(const UUID & x, WriteBuffer & buf)
{
writeChar('"', buf);
writeText(x, buf);
writeChar('"', buf);
}
/// String - in double quotes and with CSV-escaping; date, datetime - in double quotes. Numbers - without.
template <typename T>
inline std::enable_if_t<is_arithmetic_v<T>, void>
writeCSV(const T & x, WriteBuffer & buf) { writeText(x, buf); }
inline void writeCSV(const String & x, WriteBuffer & buf) { writeCSVString<>(x, buf); }
inline void writeCSV(const LocalDate & x, WriteBuffer & buf) { writeDoubleQuoted(x, buf); }
inline void writeCSV(const LocalDateTime & x, WriteBuffer & buf) { writeDoubleQuoted(x, buf); }
inline void writeCSV(const UUID & x, WriteBuffer & buf) { writeDoubleQuoted(x, buf); }
[[noreturn]] inline void writeCSV(const UInt128, WriteBuffer &)
{
/** Because UInt128 isn't a natural type, without arithmetic operator and only use as an intermediary type -for UUID-
* it should never arrive here. But because we used the DataTypeNumber class we should have at least a definition of it.
*/
throw Exception("UInt128 cannot be write as a text", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
template <typename T>
void writeBinary(const std::vector<T> & x, WriteBuffer & buf)
{
size_t size = x.size();
writeVarUInt(size, buf);
for (size_t i = 0; i < size; ++i)
writeBinary(x[i], buf);
}
template <typename T>
void writeQuoted(const std::vector<T> & x, WriteBuffer & buf)
{
writeChar('[', buf);
for (size_t i = 0, size = x.size(); i < size; ++i)
{
if (i != 0)
writeChar(',', buf);
writeQuoted(x[i], buf);
}
writeChar(']', buf);
}
template <typename T>
void writeDoubleQuoted(const std::vector<T> & x, WriteBuffer & buf)
{
writeChar('[', buf);
for (size_t i = 0, size = x.size(); i < size; ++i)
{
if (i != 0)
writeChar(',', buf);
writeDoubleQuoted(x[i], buf);
}
writeChar(']', buf);
}
template <typename T>
void writeText(const std::vector<T> & x, WriteBuffer & buf)
{
writeQuoted(x, buf);
}
/// Serialize exception (so that it can be transferred over the network)
void writeException(const Exception & e, WriteBuffer & buf, bool with_stack_trace);
/// An easy-to-use method for converting something to a string in text form.
template <typename T>
inline String toString(const T & x)
{
WriteBufferFromOwnString buf;
writeText(x, buf);
return buf.str();
}
inline void writeNullTerminatedString(const String & s, WriteBuffer & buffer)
{
/// c_str is guaranteed to return zero-terminated string
buffer.write(s.c_str(), s.size() + 1);
}
template <typename T>
inline std::enable_if_t<is_arithmetic_v<T> && (sizeof(T) <= 8), void>
writeBinaryBigEndian(T x, WriteBuffer & buf) /// Assuming little endian architecture.
{
if constexpr (sizeof(x) == 2)
x = __builtin_bswap16(x);
else if constexpr (sizeof(x) == 4)
x = __builtin_bswap32(x);
else if constexpr (sizeof(x) == 8)
x = __builtin_bswap64(x);
writePODBinary(x, buf);
}
struct PcgSerializer
{
static void serializePcg32(const pcg32_fast & rng, WriteBuffer & buf)
{
writeText(rng.multiplier(), buf);
writeChar(' ', buf);
writeText(rng.increment(), buf);
writeChar(' ', buf);
writeText(rng.state_, buf);
}
};
void writePointerHex(const void * ptr, WriteBuffer & buf);
}