ClickHouse/src/Dictionaries/SSDComplexKeyCacheDictionary.cpp
2020-09-01 02:10:04 +03:00

1811 lines
66 KiB
C++

#if defined(OS_LINUX) || defined(__FreeBSD__)
#include "SSDComplexKeyCacheDictionary.h"
#include <algorithm>
#include <Columns/ColumnsNumber.h>
#include <Common/typeid_cast.h>
#include <Common/ProfileEvents.h>
#include <Common/ProfilingScopedRWLock.h>
#include <Common/MemorySanitizer.h>
#include <DataStreams/IBlockInputStream.h>
#include "DictionaryBlockInputStream.h"
#include "DictionaryFactory.h"
#include <IO/AIO.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <ext/chrono_io.h>
#include <ext/map.h>
#include <ext/range.h>
#include <ext/size.h>
#include <ext/bit_cast.h>
#include <numeric>
#include <filesystem>
#include <city.h>
namespace ProfileEvents
{
extern const Event DictCacheKeysRequested;
extern const Event DictCacheKeysRequestedMiss;
extern const Event DictCacheKeysRequestedFound;
extern const Event DictCacheKeysExpired;
extern const Event DictCacheKeysNotFound;
extern const Event DictCacheKeysHit;
extern const Event DictCacheRequestTimeNs;
extern const Event DictCacheRequests;
extern const Event DictCacheLockWriteNs;
extern const Event DictCacheLockReadNs;
extern const Event FileOpen;
extern const Event WriteBufferAIOWrite;
extern const Event WriteBufferAIOWriteBytes;
}
namespace CurrentMetrics
{
extern const Metric DictCacheRequests;
extern const Metric Write;
}
namespace DB
{
namespace ErrorCodes
{
extern const int AIO_READ_ERROR;
extern const int AIO_WRITE_ERROR;
extern const int BAD_ARGUMENTS;
extern const int CANNOT_ALLOCATE_MEMORY;
extern const int CANNOT_CREATE_DIRECTORY;
extern const int CANNOT_FSYNC;
extern const int CANNOT_IO_GETEVENTS;
extern const int CANNOT_IO_SUBMIT;
extern const int CANNOT_OPEN_FILE;
extern const int CORRUPTED_DATA;
extern const int FILE_DOESNT_EXIST;
extern const int NOT_IMPLEMENTED;
extern const int TYPE_MISMATCH;
extern const int UNSUPPORTED_METHOD;
}
namespace
{
constexpr size_t DEFAULT_SSD_BLOCK_SIZE_BYTES = DEFAULT_AIO_FILE_BLOCK_SIZE;
constexpr size_t DEFAULT_FILE_SIZE_BYTES = 4 * 1024 * 1024 * 1024ULL;
constexpr size_t DEFAULT_PARTITIONS_COUNT = 16;
constexpr size_t DEFAULT_READ_BUFFER_SIZE_BYTES = 16 * DEFAULT_SSD_BLOCK_SIZE_BYTES;
constexpr size_t DEFAULT_WRITE_BUFFER_SIZE_BYTES = DEFAULT_SSD_BLOCK_SIZE_BYTES;
constexpr size_t DEFAULT_MAX_STORED_KEYS = 100000;
constexpr size_t BUFFER_ALIGNMENT = DEFAULT_AIO_FILE_BLOCK_SIZE;
constexpr size_t BLOCK_CHECKSUM_SIZE_BYTES = 8;
constexpr size_t BLOCK_SPECIAL_FIELDS_SIZE_BYTES = 4;
constexpr UInt64 KEY_METADATA_EXPIRES_AT_MASK = std::numeric_limits<std::chrono::system_clock::time_point::rep>::max();
constexpr UInt64 KEY_METADATA_IS_DEFAULT_MASK = ~KEY_METADATA_EXPIRES_AT_MASK;
constexpr size_t KEY_IN_MEMORY_BIT = 63;
constexpr size_t KEY_IN_MEMORY = (1ULL << KEY_IN_MEMORY_BIT);
constexpr size_t BLOCK_INDEX_BITS = 32;
constexpr size_t INDEX_IN_BLOCK_BITS = 16;
constexpr size_t INDEX_IN_BLOCK_MASK = (1ULL << INDEX_IN_BLOCK_BITS) - 1;
constexpr size_t BLOCK_INDEX_MASK = ((1ULL << (BLOCK_INDEX_BITS + INDEX_IN_BLOCK_BITS)) - 1) ^ INDEX_IN_BLOCK_MASK;
constexpr size_t NOT_EXISTS = -1;
constexpr UInt8 HAS_NOT_FOUND = 2;
const std::string BIN_FILE_EXT = ".bin";
const std::string IND_FILE_EXT = ".idx";
int preallocateDiskSpace(int fd, size_t len)
{
#if defined(__FreeBSD__)
return posix_fallocate(fd, 0, len);
#else
return fallocate(fd, 0, 0, len);
#endif
}
}
SSDComplexKeyCachePartition::Metadata::time_point_t SSDComplexKeyCachePartition::Metadata::expiresAt() const
{
return ext::safe_bit_cast<time_point_t>(data & KEY_METADATA_EXPIRES_AT_MASK);
}
void SSDComplexKeyCachePartition::Metadata::setExpiresAt(const time_point_t & t)
{
data = ext::safe_bit_cast<time_point_urep_t>(t);
}
bool SSDComplexKeyCachePartition::Metadata::isDefault() const
{
return (data & KEY_METADATA_IS_DEFAULT_MASK) == KEY_METADATA_IS_DEFAULT_MASK;
}
void SSDComplexKeyCachePartition::Metadata::setDefault()
{
data |= KEY_METADATA_IS_DEFAULT_MASK;
}
bool SSDComplexKeyCachePartition::Index::inMemory() const
{
return (index & KEY_IN_MEMORY) == KEY_IN_MEMORY;
}
bool SSDComplexKeyCachePartition::Index::exists() const
{
return index != NOT_EXISTS;
}
void SSDComplexKeyCachePartition::Index::setNotExists()
{
index = NOT_EXISTS;
}
void SSDComplexKeyCachePartition::Index::setInMemory(const bool in_memory)
{
index = (index & ~KEY_IN_MEMORY) | (static_cast<size_t>(in_memory) << KEY_IN_MEMORY_BIT);
}
size_t SSDComplexKeyCachePartition::Index::getAddressInBlock() const
{
return index & INDEX_IN_BLOCK_MASK;
}
void SSDComplexKeyCachePartition::Index::setAddressInBlock(const size_t address_in_block)
{
index = (index & ~INDEX_IN_BLOCK_MASK) | address_in_block;
}
size_t SSDComplexKeyCachePartition::Index::getBlockId() const
{
return (index & BLOCK_INDEX_MASK) >> INDEX_IN_BLOCK_BITS;
}
void SSDComplexKeyCachePartition::Index::setBlockId(const size_t block_id)
{
index = (index & ~BLOCK_INDEX_MASK) | (block_id << INDEX_IN_BLOCK_BITS);
}
SSDComplexKeyCachePartition::SSDComplexKeyCachePartition(
const AttributeUnderlyingType & /* key_structure */,
const std::vector<AttributeUnderlyingType> & attributes_structure_,
const std::string & dir_path,
const size_t file_id_,
const size_t max_size_,
const size_t block_size_,
const size_t read_buffer_size_,
const size_t write_buffer_size_,
const size_t max_stored_keys_)
: file_id(file_id_)
, max_size(max_size_)
, block_size(block_size_)
, read_buffer_size(read_buffer_size_)
, write_buffer_size(write_buffer_size_)
, max_stored_keys(max_stored_keys_)
, path(dir_path + "/" + std::to_string(file_id))
, key_to_index(max_stored_keys, KeyDeleter(keys_pool))
, attributes_structure(attributes_structure_)
{
if (!std::filesystem::create_directories(std::filesystem::path{dir_path}))
{
if (std::filesystem::exists(std::filesystem::path{dir_path}))
LOG_INFO(&Poco::Logger::get("SSDComplexKeyCachePartition::Constructor"), "Using existing directory '{}' for cache-partition", dir_path);
else
throw Exception{"Failed to create directories.", ErrorCodes::CANNOT_CREATE_DIRECTORY};
}
{
ProfileEvents::increment(ProfileEvents::FileOpen);
const std::string filename = path + BIN_FILE_EXT;
fd = ::open(filename.c_str(), O_RDWR | O_CREAT | O_TRUNC | O_DIRECT, 0666);
if (fd == -1)
{
auto error_code = (errno == ENOENT) ? ErrorCodes::FILE_DOESNT_EXIST : ErrorCodes::CANNOT_OPEN_FILE;
throwFromErrnoWithPath("Cannot open file " + filename, filename, error_code);
}
if (preallocateDiskSpace(fd, max_size * block_size) < 0)
throwFromErrnoWithPath("Cannot preallocate space for the file " + filename, filename, ErrorCodes::CANNOT_ALLOCATE_MEMORY);
}
}
SSDComplexKeyCachePartition::~SSDComplexKeyCachePartition()
{
std::unique_lock lock(rw_lock);
::close(fd);
}
size_t SSDComplexKeyCachePartition::appendDefaults(
const KeyRefs & keys_in,
const PaddedPODArray<Metadata> & metadata,
const size_t begin)
{
std::unique_lock lock(rw_lock);
KeyRefs keys(keys_in.size());
for (size_t i = 0; i < keys_in.size(); ++i)
keys[i] = keys_pool.copyKeyFrom(keys_in[i]);
return append(keys, Attributes{}, metadata, begin);
}
size_t SSDComplexKeyCachePartition::appendBlock(
const Columns & key_columns, const DataTypes & /* key_types */,
const Attributes & new_attributes, const PaddedPODArray<Metadata> & metadata, const size_t begin)
{
std::unique_lock lock(rw_lock);
if (!new_attributes.empty() && new_attributes.size() != attributes_structure.size())
throw Exception{"Wrong columns number in block.", ErrorCodes::BAD_ARGUMENTS};
const auto keys_size = key_columns.size();
KeyRefs keys(key_columns.front()->size());
{
StringRefs tmp_keys_refs(keys_size);
for (size_t i = 0; i < key_columns.front()->size(); ++i)
keys[i] = keys_pool.allocKey(i, key_columns, tmp_keys_refs);
}
return append(keys, new_attributes, metadata, begin);
}
size_t SSDComplexKeyCachePartition::append(
const KeyRefs & keys,
const Attributes & new_attributes,
const PaddedPODArray<Metadata> & metadata,
const size_t begin)
{
if (!memory)
memory.emplace(block_size * write_buffer_size, BUFFER_ALIGNMENT);
auto init_write_buffer = [&]()
{
write_buffer.emplace(memory->data() + current_memory_block_id * block_size, block_size);
uint64_t tmp = 0;
write_buffer->write(reinterpret_cast<char*>(&tmp), BLOCK_CHECKSUM_SIZE_BYTES);
write_buffer->write(reinterpret_cast<char*>(&tmp), BLOCK_SPECIAL_FIELDS_SIZE_BYTES);
keys_in_block = 0;
};
if (!write_buffer)
init_write_buffer();
if (!keys_buffer_pool)
keys_buffer_pool.emplace();
bool flushed = false;
auto finish_block = [&]()
{
write_buffer.reset();
std::memcpy(memory->data() + block_size * current_memory_block_id + BLOCK_CHECKSUM_SIZE_BYTES, &keys_in_block, sizeof(keys_in_block)); // set count
uint64_t checksum = CityHash_v1_0_2::CityHash64(memory->data() + block_size * current_memory_block_id + BLOCK_CHECKSUM_SIZE_BYTES, block_size - BLOCK_CHECKSUM_SIZE_BYTES); // checksum
std::memcpy(memory->data() + block_size * current_memory_block_id, &checksum, sizeof(checksum));
if (++current_memory_block_id == write_buffer_size)
flush();
flushed = true;
};
for (size_t index = begin; index < keys.size();)
{
Index cache_index;
cache_index.setInMemory(true);
cache_index.setBlockId(current_memory_block_id);
cache_index.setAddressInBlock(write_buffer->offset());
flushed = false;
if (keys[index].fullSize() + sizeof(UInt64) > write_buffer->available()) // place for key and metadata
{
finish_block();
}
else
{
keys_pool.writeKey(keys[index], *write_buffer);
writeBinary(metadata[index].data, *write_buffer);
}
for (const auto & attribute : new_attributes)
{
if (flushed)
break;
switch (attribute.type)
{
#define DISPATCH(TYPE) \
case AttributeUnderlyingType::ut##TYPE: \
{ \
if (sizeof(TYPE) > write_buffer->available()) \
{ \
finish_block(); \
continue; \
} \
else \
{ \
const auto & values = std::get<Attribute::Container<TYPE>>(attribute.values); /* NOLINT */ \
writeBinary(values[index], *write_buffer); \
} \
} \
break;
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(UInt128)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Decimal32)
DISPATCH(Decimal64)
DISPATCH(Decimal128)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
case AttributeUnderlyingType::utString:
{
const auto & value = std::get<Attribute::Container<String>>(attribute.values)[index];
if (sizeof(UInt64) + value.size() > write_buffer->available())
{
finish_block();
continue;
}
else
{
writeStringBinary(value, *write_buffer);
}
}
break;
}
}
if (!flushed)
{
key_to_index.setWithDelete(keys[index], cache_index);
keys_buffer.push_back(keys_buffer_pool->copyKeyFrom(keys[index]));
++index;
++keys_in_block;
}
else // next block in write buffer or flushed to ssd
{
init_write_buffer();
}
}
return keys.size() - begin;
}
void SSDComplexKeyCachePartition::flush()
{
if (current_file_block_id >= max_size)
clearOldestBlocks();
if (keys_buffer.empty())
return;
AIOContext aio_context{1};
iocb write_request{};
iocb * write_request_ptr{&write_request};
#if defined(__FreeBSD__)
write_request.aio.aio_lio_opcode = LIO_WRITE;
write_request.aio.aio_fildes = fd;
write_request.aio.aio_buf = reinterpret_cast<volatile void *>(memory->data());
write_request.aio.aio_nbytes = block_size * write_buffer_size;
write_request.aio.aio_offset = (current_file_block_id % max_size) * block_size;
#else
write_request.aio_lio_opcode = IOCB_CMD_PWRITE;
write_request.aio_fildes = fd;
write_request.aio_buf = reinterpret_cast<UInt64>(memory->data());
write_request.aio_nbytes = block_size * write_buffer_size;
write_request.aio_offset = (current_file_block_id % max_size) * block_size;
#endif
while (io_submit(aio_context.ctx, 1, &write_request_ptr) < 0)
{
if (errno != EINTR)
throw Exception("Cannot submit request for asynchronous IO on file " + path + BIN_FILE_EXT, ErrorCodes::CANNOT_IO_SUBMIT);
}
CurrentMetrics::Increment metric_increment_write{CurrentMetrics::Write};
io_event event;
while (io_getevents(aio_context.ctx, 1, 1, &event, nullptr) < 0)
{
if (errno != EINTR)
throw Exception("Failed to wait for asynchronous IO completion on file " + path + BIN_FILE_EXT, ErrorCodes::CANNOT_IO_GETEVENTS);
}
// Unpoison the memory returned from an uninstrumented system function.
__msan_unpoison(&event, sizeof(event));
ssize_t bytes_written;
#if defined(__FreeBSD__)
bytes_written = aio_return(reinterpret_cast<struct aiocb *>(event.udata));
#else
bytes_written = event.res;
#endif
ProfileEvents::increment(ProfileEvents::WriteBufferAIOWrite);
ProfileEvents::increment(ProfileEvents::WriteBufferAIOWriteBytes, bytes_written);
if (bytes_written != static_cast<decltype(bytes_written)>(block_size * write_buffer_size))
throw Exception("Not all data was written for asynchronous IO on file " + path + BIN_FILE_EXT + ". returned: " + std::to_string(bytes_written), ErrorCodes::AIO_WRITE_ERROR);
if (::fsync(fd) < 0)
throwFromErrnoWithPath("Cannot fsync " + path + BIN_FILE_EXT, path + BIN_FILE_EXT, ErrorCodes::CANNOT_FSYNC);
/// commit changes in index
for (auto & key : keys_buffer)
{
Index index;
if (key_to_index.getKeyAndValue(key, index))
{
if (index.inMemory()) // Row can be inserted in the buffer twice, so we need to move to ssd only the last index.
{
index.setInMemory(false);
index.setBlockId((current_file_block_id % max_size) + index.getBlockId());
}
key_to_index.set(key, index);
}
}
current_file_block_id += write_buffer_size;
current_memory_block_id = 0;
/// clear buffer
keys_buffer.clear();
keys_buffer_pool.reset();
keys_buffer_pool.emplace();
}
template <typename Out, typename GetDefault>
void SSDComplexKeyCachePartition::getValue(
const size_t attribute_index, const Columns & key_columns, const DataTypes & key_types,
ResultArrayType<Out> & out, std::vector<bool> & found, GetDefault & get_default,
std::chrono::system_clock::time_point now) const
{
auto set_value = [&](const size_t index, ReadBuffer & buf)
{
keys_pool.ignoreKey(buf);
Metadata metadata;
readVarUInt(metadata.data, buf);
if (metadata.expiresAt() > now)
{
if (metadata.isDefault())
out[index] = get_default(index);
else
{
ignoreFromBufferToAttributeIndex(attribute_index, buf);
readBinary(out[index], buf);
}
found[index] = true;
}
};
getImpl(key_columns, key_types, set_value, found);
}
void SSDComplexKeyCachePartition::getString(const size_t attribute_index,
const Columns & key_columns, const DataTypes & key_types,
StringRefs & refs, ArenaWithFreeLists & arena, std::vector<bool> & found,
std::vector<size_t> & default_ids,
std::chrono::system_clock::time_point now) const
{
auto set_value = [&](const size_t index, ReadBuffer & buf)
{
keys_pool.ignoreKey(buf);
Metadata metadata;
readBinary(metadata.data, buf);
if (metadata.expiresAt() > now)
{
if (metadata.isDefault())
default_ids.push_back(index);
else
{
ignoreFromBufferToAttributeIndex(attribute_index, buf);
size_t size = 0;
readVarUInt(size, buf);
char * string_ptr = arena.alloc(size);
memcpy(string_ptr, buf.position(), size);
refs[index].data = string_ptr;
refs[index].size = size;
}
found[index] = true;
}
};
getImpl(key_columns, key_types, set_value, found);
}
void SSDComplexKeyCachePartition::has(
const Columns & key_columns, const DataTypes & key_types, ResultArrayType<UInt8> & out,
std::vector<bool> & found, std::chrono::system_clock::time_point now) const
{
auto set_value = [&](const size_t index, ReadBuffer & buf)
{
keys_pool.ignoreKey(buf);
Metadata metadata;
readBinary(metadata.data, buf);
if (metadata.expiresAt() > now)
out[index] = !metadata.isDefault();
};
getImpl(key_columns, key_types, set_value, found);
}
template <typename SetFunc>
void SSDComplexKeyCachePartition::getImpl(
const Columns & key_columns, const DataTypes & /* key_types */,
SetFunc & set, std::vector<bool> & found) const
{
TemporalComplexKeysPool tmp_keys_pool;
StringRefs tmp_refs(key_columns.size());
std::shared_lock lock(rw_lock);
PaddedPODArray<Index> indices(key_columns.front()->size());
for (size_t i = 0; i < key_columns.front()->size(); ++i)
{
auto key = tmp_keys_pool.allocKey(i, key_columns, tmp_refs);
SCOPE_EXIT(tmp_keys_pool.rollback(key));
Index index;
if (found[i])
indices[i].setNotExists();
else if (key_to_index.get(key, index))
indices[i] = index;
else
indices[i].setNotExists();
}
getValueFromMemory(indices, set);
getValueFromStorage(indices, set);
}
template <typename SetFunc>
void SSDComplexKeyCachePartition::getValueFromMemory(const PaddedPODArray<Index> & indices, SetFunc & set) const
{
// Do not check checksum while reading from memory.
for (size_t i = 0; i < indices.size(); ++i)
{
const auto & index = indices[i];
if (index.exists() && index.inMemory())
{
const size_t offset = index.getBlockId() * block_size + index.getAddressInBlock();
ReadBufferFromMemory read_buffer(memory->data() + offset, block_size * write_buffer_size - offset);
set(i, read_buffer);
}
}
}
template <typename SetFunc>
void SSDComplexKeyCachePartition::getValueFromStorage(const PaddedPODArray<Index> & indices, SetFunc & set) const
{
std::vector<std::pair<Index, size_t>> index_to_out;
for (size_t i = 0; i < indices.size(); ++i)
{
const auto & index = indices[i];
if (index.exists() && !index.inMemory())
index_to_out.emplace_back(index, i);
}
if (index_to_out.empty())
return;
/// sort by (block_id, offset_in_block)
std::sort(std::begin(index_to_out), std::end(index_to_out));
Memory read_buffer(block_size * read_buffer_size, BUFFER_ALIGNMENT);
// TODO: merge requests
std::vector<iocb> requests;
std::vector<iocb*> pointers;
std::vector<std::vector<size_t>> blocks_to_indices;
requests.reserve(index_to_out.size());
pointers.reserve(index_to_out.size());
blocks_to_indices.reserve(index_to_out.size());
for (size_t i = 0; i < index_to_out.size(); ++i)
{
#if defined(__FreeBSD__)
const size_t back_offset = requests.empty() ? -1 : static_cast<size_t>(requests.back().aio.aio_offset);
#else
const size_t back_offset = requests.empty() ? -1 : static_cast<size_t>(requests.back().aio_offset);
#endif
if (!requests.empty() && back_offset == index_to_out[i].first.getBlockId() * block_size)
{
blocks_to_indices.back().push_back(i);
continue;
}
iocb request{};
#if defined(__FreeBSD__)
request.aio.aio_lio_opcode = LIO_READ;
request.aio.aio_fildes = fd;
request.aio.aio_buf = reinterpret_cast<volatile void *>(
reinterpret_cast<UInt64>(read_buffer.data()) + block_size * (requests.size() % read_buffer_size));
request.aio.aio_nbytes = block_size;
request.aio.aio_offset = index_to_out[i].first.getBlockId() * block_size;
request.aio_data = requests.size();
#else
request.aio_lio_opcode = IOCB_CMD_PREAD;
request.aio_fildes = fd;
request.aio_buf = reinterpret_cast<UInt64>(read_buffer.data()) + block_size * (requests.size() % read_buffer_size);
request.aio_nbytes = block_size;
request.aio_offset = index_to_out[i].first.getBlockId() * block_size;
request.aio_data = requests.size();
#endif
requests.push_back(request);
pointers.push_back(&requests.back());
blocks_to_indices.emplace_back();
blocks_to_indices.back().push_back(i);
}
AIOContext aio_context(read_buffer_size);
std::vector<bool> processed(requests.size(), false);
std::vector<io_event> events(requests.size());
#if defined(__linux__)
for (auto & event : events)
event.res = -1;
#endif
size_t to_push = 0;
size_t to_pop = 0;
while (to_pop < requests.size())
{
/// get io tasks from previous iteration
int popped = 0;
while (to_pop < to_push && (popped = io_getevents(aio_context.ctx, to_push - to_pop, to_push - to_pop, &events[to_pop], nullptr)) <= 0)
{
if (errno != EINTR)
throwFromErrno("io_getevents: Failed to get an event for asynchronous IO", ErrorCodes::CANNOT_IO_GETEVENTS);
}
for (size_t i = to_pop; i < to_pop + popped; ++i)
{
const auto request_id = events[i].data;
const auto & request = requests[request_id];
#if defined(__FreeBSD__)
const auto bytes_written = aio_return(reinterpret_cast<struct aiocb *>(events[i].udata));
#else
const auto bytes_written = events[i].res;
#endif
if (bytes_written != static_cast<ssize_t>(block_size))
{
#if defined(__FreeBSD__)
throw Exception("AIO failed to read file " + path + BIN_FILE_EXT + ".", ErrorCodes::AIO_READ_ERROR);
#else
throw Exception("AIO failed to read file " + path + BIN_FILE_EXT + ". " +
"request_id= " + std::to_string(request.aio_data) + "/ " + std::to_string(requests.size()) +
", aio_nbytes=" + std::to_string(request.aio_nbytes) + ", aio_offset=" + std::to_string(request.aio_offset) +
", returned=" + std::to_string(events[i].res) + ", errno=" + std::to_string(errno), ErrorCodes::AIO_READ_ERROR);
#endif
}
#if defined(__FreeBSD__)
const char* buf_ptr = reinterpret_cast<char *>(reinterpret_cast<UInt64>(request.aio.aio_buf));
#else
const auto* buf_ptr = reinterpret_cast<char *>(request.aio_buf);
#endif
__msan_unpoison(buf_ptr, block_size);
uint64_t checksum = 0;
ReadBufferFromMemory buf_special(buf_ptr, block_size);
readBinary(checksum, buf_special);
uint64_t calculated_checksum = CityHash_v1_0_2::CityHash64(buf_ptr + BLOCK_CHECKSUM_SIZE_BYTES, block_size - BLOCK_CHECKSUM_SIZE_BYTES);
if (checksum != calculated_checksum)
{
throw Exception("Cache data corrupted. From block = " + std::to_string(checksum) + " calculated = " + std::to_string(calculated_checksum) + ".", ErrorCodes::CORRUPTED_DATA);
}
for (const size_t idx : blocks_to_indices[request_id])
{
const auto & [file_index, out_index] = index_to_out[idx];
ReadBufferFromMemory buf(
buf_ptr + file_index.getAddressInBlock(),
block_size - file_index.getAddressInBlock());
set(out_index, buf);
}
processed[request_id] = true;
}
while (to_pop < requests.size() && processed[to_pop])
++to_pop;
/// add new io tasks
const int new_tasks_count = std::min(read_buffer_size - (to_push - to_pop), requests.size() - to_push);
int pushed = 0;
while (new_tasks_count > 0 && (pushed = io_submit(aio_context.ctx, new_tasks_count, &pointers[to_push])) <= 0)
{
if (errno != EINTR)
throwFromErrno("io_submit: Failed to submit a request for asynchronous IO", ErrorCodes::CANNOT_IO_SUBMIT);
}
to_push += pushed;
}
}
void SSDComplexKeyCachePartition::clearOldestBlocks()
{
// write_buffer_size, because we need to erase the whole buffer.
Memory read_buffer_memory(block_size * write_buffer_size, BUFFER_ALIGNMENT);
iocb request{};
#if defined(__FreeBSD__)
request.aio.aio_lio_opcode = LIO_READ;
request.aio.aio_fildes = fd;
request.aio.aio_buf = reinterpret_cast<volatile void *>(reinterpret_cast<UInt64>(read_buffer_memory.data()));
request.aio.aio_nbytes = block_size * write_buffer_size;
request.aio.aio_offset = (current_file_block_id % max_size) * block_size;
request.aio_data = 0;
#else
request.aio_lio_opcode = IOCB_CMD_PREAD;
request.aio_fildes = fd;
request.aio_buf = reinterpret_cast<UInt64>(read_buffer_memory.data());
request.aio_nbytes = block_size * write_buffer_size;
request.aio_offset = (current_file_block_id % max_size) * block_size;
request.aio_data = 0;
#endif
{
iocb* request_ptr = &request;
io_event event{};
AIOContext aio_context(1);
while (io_submit(aio_context.ctx, 1, &request_ptr) != 1)
if (errno != EINTR)
throwFromErrno("io_submit: Failed to submit a request for asynchronous IO", ErrorCodes::CANNOT_IO_SUBMIT);
while (io_getevents(aio_context.ctx, 1, 1, &event, nullptr) != 1)
if (errno != EINTR)
throwFromErrno("io_getevents: Failed to get an event for asynchronous IO", ErrorCodes::CANNOT_IO_GETEVENTS);
#if defined(__FreeBSD__)
if (aio_return(reinterpret_cast<struct aiocb *>(event.udata)) != static_cast<ssize_t>(request.aio.aio_nbytes))
throw Exception("GC: AIO failed to read file " + path + BIN_FILE_EXT + ".", ErrorCodes::AIO_READ_ERROR);
#else
if (event.res != static_cast<ssize_t>(request.aio_nbytes))
throw Exception("GC: AIO failed to read file " + path + BIN_FILE_EXT + ". " +
"aio_nbytes=" + std::to_string(request.aio_nbytes) +
", returned=" + std::to_string(event.res) + ".", ErrorCodes::AIO_READ_ERROR);
#endif
__msan_unpoison(read_buffer_memory.data(), read_buffer_memory.size());
}
TemporalComplexKeysPool tmp_keys_pool;
KeyRefs keys;
for (size_t i = 0; i < write_buffer_size; ++i)
{
ReadBufferFromMemory read_buffer(read_buffer_memory.data() + i * block_size, block_size);
uint64_t checksum = 0;
readBinary(checksum, read_buffer);
uint64_t calculated_checksum = CityHash_v1_0_2::CityHash64(read_buffer_memory.data() + i * block_size + BLOCK_CHECKSUM_SIZE_BYTES, block_size - BLOCK_CHECKSUM_SIZE_BYTES);
if (checksum != calculated_checksum)
{
throw Exception("Cache data corrupted. From block = " + std::to_string(checksum) + " calculated = " + std::to_string(calculated_checksum) + ".", ErrorCodes::CORRUPTED_DATA);
}
uint32_t keys_in_current_block = 0;
readBinary(keys_in_current_block, read_buffer);
for (uint32_t j = 0; j < keys_in_current_block; ++j)
{
keys.emplace_back();
tmp_keys_pool.readKey(keys.back(), read_buffer);
Metadata metadata;
readBinary(metadata.data, read_buffer);
if (!metadata.isDefault())
{
for (const auto & attr : attributes_structure)
{
switch (attr)
{
#define DISPATCH(TYPE) \
case AttributeUnderlyingType::ut##TYPE: \
read_buffer.ignore(sizeof(TYPE)); \
break;
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(UInt128)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Decimal32)
DISPATCH(Decimal64)
DISPATCH(Decimal128)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
case AttributeUnderlyingType::utString:
{
size_t size = 0;
readVarUInt(size, read_buffer);
read_buffer.ignore(size);
}
break;
}
}
}
}
}
const size_t start_block = current_file_block_id % max_size;
const size_t finish_block = start_block + write_buffer_size;
for (const auto& key : keys)
{
Index index;
if (key_to_index.get(key, index))
{
size_t block_id = index.getBlockId();
if (start_block <= block_id && block_id < finish_block)
key_to_index.erase(key);
}
}
}
void SSDComplexKeyCachePartition::ignoreFromBufferToAttributeIndex(const size_t attribute_index, ReadBuffer & buf) const
{
for (size_t i = 0; i < attribute_index; ++i)
{
switch (attributes_structure[i])
{
#define DISPATCH(TYPE) \
case AttributeUnderlyingType::ut##TYPE: \
buf.ignore(sizeof(TYPE)); \
break;
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(UInt128)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Decimal32)
DISPATCH(Decimal64)
DISPATCH(Decimal128)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
case AttributeUnderlyingType::utString:
{
size_t size = 0;
readVarUInt(size, buf);
buf.ignore(size);
}
break;
}
}
}
size_t SSDComplexKeyCachePartition::getId() const
{
return file_id;
}
double SSDComplexKeyCachePartition::getLoadFactor() const
{
std::shared_lock lock(rw_lock);
return static_cast<double>(current_file_block_id) / max_size;
}
size_t SSDComplexKeyCachePartition::getElementCount() const
{
std::shared_lock lock(rw_lock);
return key_to_index.size();
}
size_t SSDComplexKeyCachePartition::getBytesAllocated() const
{
std::shared_lock lock(rw_lock);
return 16.5 * key_to_index.capacity() + keys_pool.size() +
(keys_buffer_pool ? keys_buffer_pool->size() : 0) + (memory ? memory->size() : 0);
}
void SSDComplexKeyCachePartition::remove()
{
std::unique_lock lock(rw_lock);
std::filesystem::remove(std::filesystem::path(path + BIN_FILE_EXT));
}
SSDComplexKeyCacheStorage::SSDComplexKeyCacheStorage(
const AttributeTypes & attributes_structure_,
const std::string & path_,
const size_t max_partitions_count_,
const size_t file_size_,
const size_t block_size_,
const size_t read_buffer_size_,
const size_t write_buffer_size_,
const size_t max_stored_keys_)
: attributes_structure(attributes_structure_)
, path(path_)
, max_partitions_count(max_partitions_count_)
, file_size(file_size_)
, block_size(block_size_)
, read_buffer_size(read_buffer_size_)
, write_buffer_size(write_buffer_size_)
, max_stored_keys(max_stored_keys_)
, log(&Poco::Logger::get("SSDComplexKeyCacheStorage"))
{
}
SSDComplexKeyCacheStorage::~SSDComplexKeyCacheStorage()
{
std::unique_lock lock(rw_lock);
partition_delete_queue.splice(std::end(partition_delete_queue), partitions);
collectGarbage();
}
template <typename Out, typename GetDefault>
void SSDComplexKeyCacheStorage::getValue(
const size_t attribute_index, const Columns & key_columns, const DataTypes & key_types,
ResultArrayType<Out> & out, std::unordered_map<KeyRef, std::vector<size_t>> & not_found,
TemporalComplexKeysPool & not_found_pool,
GetDefault & get_default, std::chrono::system_clock::time_point now) const
{
size_t n = key_columns.front()->size();
std::vector<bool> found(n, false);
{
std::shared_lock lock(rw_lock);
for (const auto & partition : partitions)
partition->getValue<Out>(attribute_index, key_columns, key_types, out, found, get_default, now);
}
size_t count_not_found = 0;
StringRefs tmp_refs(key_columns.size());
for (size_t i = 0; i < n; ++i)
{
if (!found[i])
{
auto key = not_found_pool.allocKey(i, key_columns, tmp_refs);
not_found[key].push_back(i);
++count_not_found;
}
}
query_count.fetch_add(n, std::memory_order_relaxed);
hit_count.fetch_add(n - count_not_found, std::memory_order_release);
}
void SSDComplexKeyCacheStorage::getString(
const size_t attribute_index, const Columns & key_columns, const DataTypes & key_types,
StringRefs & refs, ArenaWithFreeLists & arena,
std::unordered_map<KeyRef, std::vector<size_t>> & not_found,
TemporalComplexKeysPool & not_found_pool,
std::vector<size_t> & default_ids, std::chrono::system_clock::time_point now) const
{
size_t n = key_columns.front()->size();
std::vector<bool> found(n, false);
{
std::shared_lock lock(rw_lock);
for (const auto & partition : partitions)
partition->getString(attribute_index, key_columns, key_types, refs, arena, found, default_ids, now);
}
size_t count_not_found = 0;
StringRefs tmp_refs(key_columns.size());
for (size_t i = 0; i < n; ++i)
{
if (!found[i])
{
auto key = not_found_pool.allocKey(i, key_columns, tmp_refs);
not_found[key].push_back(i);
++count_not_found;
}
}
query_count.fetch_add(n, std::memory_order_relaxed);
hit_count.fetch_add(n - count_not_found, std::memory_order_release);
}
void SSDComplexKeyCacheStorage::has(
const Columns & key_columns, const DataTypes & key_types, ResultArrayType<UInt8> & out,
std::unordered_map<KeyRef, std::vector<size_t>> & not_found,
TemporalComplexKeysPool & not_found_pool, std::chrono::system_clock::time_point now) const
{
size_t n = key_columns.front()->size();
for (size_t i = 0; i < n; ++i)
out[i] = HAS_NOT_FOUND;
std::vector<bool> found(n, false);
{
std::shared_lock lock(rw_lock);
for (const auto & partition : partitions)
partition->has(key_columns, key_types, out, found, now);
}
size_t count_not_found = 0;
StringRefs tmp_refs(key_columns.size());
for (size_t i = 0; i < n; ++i)
{
if (out[i] == HAS_NOT_FOUND)
{
auto key = not_found_pool.allocKey(i, key_columns, tmp_refs);
not_found[key].push_back(i);
++count_not_found;
}
}
query_count.fetch_add(n, std::memory_order_relaxed);
hit_count.fetch_add(n - count_not_found, std::memory_order_release);
}
namespace
{
SSDComplexKeyCachePartition::Attributes createAttributesFromBlock(
const Block & block, const size_t begin_column, const std::vector<AttributeUnderlyingType> & structure)
{
SSDComplexKeyCachePartition::Attributes attributes;
const auto columns = block.getColumns();
for (size_t i = 0; i < structure.size(); ++i)
{
const auto & column = columns[i + begin_column];
switch (structure[i])
{
#define DISPATCH(TYPE) \
case AttributeUnderlyingType::ut##TYPE: \
{ \
SSDComplexKeyCachePartition::Attribute::Container<TYPE> values(column->size()); \
memcpy(&values[0], column->getRawData().data, sizeof(TYPE) * values.size()); \
attributes.emplace_back(); \
attributes.back().type = structure[i]; \
attributes.back().values = std::move(values); \
} \
break;
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(UInt128)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Decimal32)
DISPATCH(Decimal64)
DISPATCH(Decimal128)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
case AttributeUnderlyingType::utString:
{
attributes.emplace_back();
SSDComplexKeyCachePartition::Attribute::Container<String> values(column->size());
for (size_t j = 0; j < column->size(); ++j)
{
const auto ref = column->getDataAt(j);
values[j].resize(ref.size);
memcpy(values[j].data(), ref.data, ref.size);
}
attributes.back().type = structure[i];
attributes.back().values = std::move(values);
}
break;
}
}
return attributes;
}
}
template <typename PresentIdHandler, typename AbsentIdHandler>
void SSDComplexKeyCacheStorage::update(
DictionarySourcePtr & source_ptr,
const Columns & key_columns,
const DataTypes & key_types,
const KeyRefs & required_keys,
const std::vector<size_t> & required_rows,
TemporalComplexKeysPool & tmp_keys_pool,
PresentIdHandler && on_updated,
AbsentIdHandler && on_key_not_found,
const DictionaryLifetime lifetime)
{
assert(key_columns.size() == key_types.size());
auto append_block = [&key_types, this](
const Columns & new_keys,
const SSDComplexKeyCachePartition::Attributes & new_attributes,
const PaddedPODArray<SSDComplexKeyCachePartition::Metadata> & metadata)
{
size_t inserted = 0;
while (inserted < metadata.size())
{
if (!partitions.empty())
inserted += partitions.front()->appendBlock(
new_keys, key_types, new_attributes, metadata, inserted);
if (inserted < metadata.size())
{
partitions.emplace_front(std::make_unique<SSDComplexKeyCachePartition>(
AttributeUnderlyingType::utUInt64, attributes_structure, path,
(partitions.empty() ? 0 : partitions.front()->getId() + 1),
file_size, block_size, read_buffer_size, write_buffer_size, max_stored_keys));
}
}
collectGarbage();
};
CurrentMetrics::Increment metric_increment{CurrentMetrics::DictCacheRequests};
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequested, required_keys.size());
std::unordered_map<KeyRef, UInt8> remaining_keys{required_keys.size()};
for (const auto & key : required_keys)
remaining_keys.insert({key, 0});
const auto now = std::chrono::system_clock::now();
{
const auto keys_size = key_columns.size();
StringRefs keys(keys_size);
const ProfilingScopedWriteRWLock write_lock{rw_lock, ProfileEvents::DictCacheLockWriteNs};
if (now > backoff_end_time)
{
try
{
if (update_error_count)
{
/// Recover after error: we have to clone the source here because
/// it could keep connections which should be reset after error.
source_ptr = source_ptr->clone();
}
Stopwatch watch;
auto stream = source_ptr->loadKeys(key_columns, required_rows);
stream->readPrefix();
while (const auto block = stream->read())
{
const auto new_key_columns = ext::map<Columns>(
ext::range(0, keys_size),
[&](const size_t attribute_idx) { return block.safeGetByPosition(attribute_idx).column; });
const auto new_attributes = createAttributesFromBlock(block, keys_size, attributes_structure);
const auto rows_num = block.rows();
PaddedPODArray<SSDComplexKeyCachePartition::Metadata> metadata(rows_num);
for (const auto i : ext::range(0, rows_num))
{
auto key = tmp_keys_pool.allocKey(i, new_key_columns, keys);
//SCOPE_EXIT(tmp_keys_pool.rollback(key));
std::uniform_int_distribution<UInt64> distribution{lifetime.min_sec, lifetime.max_sec};
metadata[i].setExpiresAt(now + std::chrono::seconds(distribution(rnd_engine)));
/// mark corresponding id as found
on_updated(key, i, new_attributes);
remaining_keys[key] = 1;
}
append_block(new_key_columns, new_attributes, metadata);
}
stream->readSuffix();
update_error_count = 0;
last_update_exception = std::exception_ptr{};
backoff_end_time = std::chrono::system_clock::time_point{};
ProfileEvents::increment(ProfileEvents::DictCacheRequestTimeNs, watch.elapsed());
}
catch (...)
{
++update_error_count;
last_update_exception = std::current_exception();
backoff_end_time = now + std::chrono::seconds(calculateDurationWithBackoff(rnd_engine, update_error_count));
tryLogException(last_update_exception, log,
"Could not update ssd cache dictionary, next update is scheduled at " + ext::to_string(backoff_end_time));
}
}
}
auto append_defaults = [this](
const KeyRefs & new_keys,
const PaddedPODArray<SSDComplexKeyCachePartition::Metadata> & metadata)
{
size_t inserted = 0;
while (inserted < metadata.size())
{
if (!partitions.empty())
inserted += partitions.front()->appendDefaults(
new_keys, metadata, inserted);
if (inserted < metadata.size())
{
partitions.emplace_front(std::make_unique<SSDComplexKeyCachePartition>(
AttributeUnderlyingType::utUInt64, attributes_structure, path,
(partitions.empty() ? 0 : partitions.front()->getId() + 1),
file_size, block_size, read_buffer_size, write_buffer_size, max_stored_keys));
}
}
collectGarbage();
};
size_t not_found_num = 0, found_num = 0;
/// Check which ids have not been found and require setting null_value
KeyRefs default_keys;
PaddedPODArray<SSDComplexKeyCachePartition::Metadata> metadata;
{
const ProfilingScopedWriteRWLock write_lock{rw_lock, ProfileEvents::DictCacheLockWriteNs};
for (const auto & key_found_pair : remaining_keys)
{
if (key_found_pair.second)
{
++found_num;
continue;
}
++not_found_num;
const auto key = key_found_pair.first;
if (update_error_count)
{
/// TODO: use old values.
/// We don't have expired data for that `id` so all we can do is to rethrow `last_exception`.
std::rethrow_exception(last_update_exception);
}
std::uniform_int_distribution<UInt64> distribution{lifetime.min_sec, lifetime.max_sec};
metadata.emplace_back();
metadata.back().setExpiresAt(now + std::chrono::seconds(distribution(rnd_engine)));
metadata.back().setDefault();
default_keys.push_back(key);
/// inform caller that the cell has not been found
on_key_not_found(key);
}
if (not_found_num)
append_defaults(default_keys, metadata);
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, not_found_num);
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedFound, found_num);
ProfileEvents::increment(ProfileEvents::DictCacheRequests);
}
double SSDComplexKeyCacheStorage::getLoadFactor() const
{
double result = 0;
std::shared_lock lock(rw_lock);
for (const auto & partition : partitions)
result += partition->getLoadFactor();
return result / partitions.size();
}
size_t SSDComplexKeyCacheStorage::getElementCount() const
{
size_t result = 0;
std::shared_lock lock(rw_lock);
for (const auto & partition : partitions)
result += partition->getElementCount();
return result;
}
void SSDComplexKeyCacheStorage::collectGarbage()
{
// add partitions to queue
while (partitions.size() > max_partitions_count)
{
partition_delete_queue.splice(std::end(partition_delete_queue), partitions, std::prev(std::end(partitions)));
}
// drop unused partitions
while (!partition_delete_queue.empty() && partition_delete_queue.front().use_count() == 1)
{
partition_delete_queue.front()->remove();
partition_delete_queue.pop_front();
}
}
SSDComplexKeyCacheDictionary::SSDComplexKeyCacheDictionary(
const StorageID & dict_id_,
const DictionaryStructure & dict_struct_,
DictionarySourcePtr source_ptr_,
const DictionaryLifetime dict_lifetime_,
const std::string & path_,
const size_t max_partitions_count_,
const size_t file_size_,
const size_t block_size_,
const size_t read_buffer_size_,
const size_t write_buffer_size_,
const size_t max_stored_keys_)
: IDictionaryBase(dict_id_)
, dict_struct(dict_struct_)
, source_ptr(std::move(source_ptr_))
, dict_lifetime(dict_lifetime_)
, path(path_)
, max_partitions_count(max_partitions_count_)
, file_size(file_size_)
, block_size(block_size_)
, read_buffer_size(read_buffer_size_)
, write_buffer_size(write_buffer_size_)
, max_stored_keys(max_stored_keys_)
, storage(ext::map<std::vector>(dict_struct.attributes, [](const auto & attribute) { return attribute.underlying_type; }),
path, max_partitions_count, file_size, block_size, read_buffer_size, write_buffer_size, max_stored_keys)
, log(&Poco::Logger::get("SSDComplexKeyCacheDictionary"))
{
LOG_INFO(log, "Using storage path '{}'.", path);
if (!this->source_ptr->supportsSelectiveLoad())
throw Exception{name + ": source cannot be used with CacheDictionary", ErrorCodes::UNSUPPORTED_METHOD};
createAttributes();
}
#define DECLARE(TYPE) \
void SSDComplexKeyCacheDictionary::get##TYPE( \
const std::string & attribute_name, \
const Columns & key_columns, \
const DataTypes & key_types, \
ResultArrayType<TYPE> & out) const \
{ \
const auto index = getAttributeIndex(attribute_name); \
checkAttributeType(this, attribute_name, dict_struct.attributes[index].underlying_type, AttributeUnderlyingType::ut##TYPE); \
const auto null_value = std::get<TYPE>(null_values[index]); /* NOLINT */ \
getItemsNumberImpl<TYPE, TYPE>(index, key_columns, key_types, out, [&](const size_t) { return null_value; }); /* NOLINT */ \
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
#define DECLARE(TYPE) \
void SSDComplexKeyCacheDictionary::get##TYPE( \
const std::string & attribute_name, \
const Columns & key_columns, \
const DataTypes & key_types, \
const PaddedPODArray<TYPE> & def, \
ResultArrayType<TYPE> & out) const \
{ \
const auto index = getAttributeIndex(attribute_name); \
checkAttributeType(this, attribute_name, dict_struct.attributes[index].underlying_type, AttributeUnderlyingType::ut##TYPE); \
getItemsNumberImpl<TYPE, TYPE>(index, key_columns, key_types, out, [&](const size_t row) { return def[row]; }); /* NOLINT */ \
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
#define DECLARE(TYPE) \
void SSDComplexKeyCacheDictionary::get##TYPE( \
const std::string & attribute_name, \
const Columns & key_columns, \
const DataTypes & key_types, \
const TYPE def, \
ResultArrayType<TYPE> & out) const \
{ \
const auto index = getAttributeIndex(attribute_name); \
checkAttributeType(this, attribute_name, dict_struct.attributes[index].underlying_type, AttributeUnderlyingType::ut##TYPE); \
getItemsNumberImpl<TYPE, TYPE>(index, key_columns, key_types, out, [&](const size_t) { return def; }); /* NOLINT */ \
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
template <typename AttributeType, typename OutputType, typename DefaultGetter>
void SSDComplexKeyCacheDictionary::getItemsNumberImpl(
const size_t attribute_index,
const Columns & key_columns, const DataTypes & key_types,
ResultArrayType<OutputType> & out, DefaultGetter && get_default) const
{
assert(dict_struct.key);
assert(key_columns.size() == key_types.size());
assert(key_columns.size() == dict_struct.key->size());
dict_struct.validateKeyTypes(key_types);
const auto now = std::chrono::system_clock::now();
TemporalComplexKeysPool not_found_pool;
std::unordered_map<KeyRef, std::vector<size_t>> not_found_keys;
storage.getValue<OutputType>(attribute_index, key_columns, key_types, out, not_found_keys, not_found_pool, get_default, now);
if (not_found_keys.empty())
return;
std::vector<KeyRef> required_keys(not_found_keys.size());
std::transform(std::begin(not_found_keys), std::end(not_found_keys), std::begin(required_keys), [](const auto & pair) { return pair.first; });
std::vector<size_t> required_rows;
required_rows.reserve(required_keys.size());
for (const auto & key_ref : required_keys)
required_rows.push_back(not_found_keys[key_ref].front());
TemporalComplexKeysPool tmp_keys_pool;
storage.update(
source_ptr,
key_columns,
key_types,
required_keys,
required_rows,
tmp_keys_pool,
[&](const auto key, const auto row, const auto & new_attributes)
{
for (const size_t out_row : not_found_keys[key])
out[out_row] = std::get<SSDComplexKeyCachePartition::Attribute::Container<OutputType>>(new_attributes[attribute_index].values)[row];
},
[&](const auto key)
{
for (const size_t row : not_found_keys[key])
out[row] = get_default(row);
},
getLifetime());
}
void SSDComplexKeyCacheDictionary::getString(
const std::string & attribute_name,
const Columns & key_columns, const DataTypes & key_types, ColumnString * out) const
{
const auto index = getAttributeIndex(attribute_name);
checkAttributeType(this, attribute_name, dict_struct.attributes[index].underlying_type, AttributeUnderlyingType::utString);
const auto null_value = StringRef{std::get<String>(null_values[index])};
getItemsStringImpl(index, key_columns, key_types, out, [&](const size_t) { return null_value; });
}
void SSDComplexKeyCacheDictionary::getString(
const std::string & attribute_name,
const Columns & key_columns, const DataTypes & key_types,
const ColumnString * const def, ColumnString * const out) const
{
const auto index = getAttributeIndex(attribute_name);
checkAttributeType(this, attribute_name, dict_struct.attributes[index].underlying_type, AttributeUnderlyingType::utString);
getItemsStringImpl(index, key_columns, key_types, out, [&](const size_t row) { return def->getDataAt(row); });
}
void SSDComplexKeyCacheDictionary::getString(
const std::string & attribute_name,
const Columns & key_columns,
const DataTypes & key_types,
const String & def,
ColumnString * const out) const
{
const auto index = getAttributeIndex(attribute_name);
checkAttributeType(this, attribute_name, dict_struct.attributes[index].underlying_type, AttributeUnderlyingType::utString);
getItemsStringImpl(index, key_columns, key_types, out, [&](const size_t) { return StringRef{def}; });
}
template <typename DefaultGetter>
void SSDComplexKeyCacheDictionary::getItemsStringImpl(
const size_t attribute_index,
const Columns & key_columns,
const DataTypes & key_types,
ColumnString * out,
DefaultGetter && get_default) const
{
dict_struct.validateKeyTypes(key_types);
const auto now = std::chrono::system_clock::now();
TemporalComplexKeysPool not_found_pool;
std::unordered_map<KeyRef, std::vector<size_t>> not_found_keys;
const size_t n = key_columns.front()->size();
StringRefs refs(n);
ArenaWithFreeLists string_arena;
std::vector<size_t> default_rows;
storage.getString(
attribute_index, key_columns, key_types,
refs, string_arena, not_found_keys, not_found_pool, default_rows, now);
std::sort(std::begin(default_rows), std::end(default_rows));
if (not_found_keys.empty())
{
size_t default_index = 0;
for (size_t row = 0; row < n; ++row)
{
if (unlikely(default_index != default_rows.size() && default_rows[default_index] == row))
{
auto to_insert = get_default(row);
out->insertData(to_insert.data, to_insert.size);
++default_index;
}
else
out->insertData(refs[row].data, refs[row].size);
}
return;
}
std::vector<KeyRef> required_keys(not_found_keys.size());
std::transform(std::begin(not_found_keys), std::end(not_found_keys), std::begin(required_keys), [](const auto & pair) { return pair.first; });
std::unordered_map<KeyRef, String> update_result;
std::vector<size_t> required_rows;
required_rows.reserve(required_keys.size());
for (const auto & key_ref : required_keys)
required_rows.push_back(not_found_keys[key_ref].front());
TemporalComplexKeysPool tmp_keys_pool;
storage.update(
source_ptr,
key_columns,
key_types,
required_keys,
required_rows,
tmp_keys_pool,
[&](const auto key, const auto row, const auto & new_attributes)
{
update_result[key] = std::get<SSDComplexKeyCachePartition::Attribute::Container<String>>(new_attributes[attribute_index].values)[row];
},
[&](const auto) {},
getLifetime());
StringRefs tmp_refs(key_columns.size());
size_t default_index = 0;
for (size_t row = 0; row < n; ++row)
{
const auto key = tmp_keys_pool.allocKey(row, key_columns, tmp_refs);
SCOPE_EXIT(tmp_keys_pool.rollback(key));
if (unlikely(default_index != default_rows.size() && default_rows[default_index] == row))
{
auto to_insert = get_default(row);
out->insertData(to_insert.data, to_insert.size);
++default_index;
}
else if (auto it = not_found_keys.find(key); it == std::end(not_found_keys))
{
out->insertData(refs[row].data, refs[row].size);
}
else if (auto it_update = update_result.find(key); it_update != std::end(update_result))
{
out->insertData(it_update->second.data(), it_update->second.size());
}
else
{
auto to_insert = get_default(row);
out->insertData(to_insert.data, to_insert.size);
}
}
}
void SSDComplexKeyCacheDictionary::has(
const Columns & key_columns,
const DataTypes & key_types,
PaddedPODArray<UInt8> & out) const
{
const auto now = std::chrono::system_clock::now();
std::unordered_map<KeyRef, std::vector<size_t>> not_found_keys;
TemporalComplexKeysPool not_found_pool;
storage.has(key_columns, key_types, out, not_found_keys, not_found_pool, now);
if (not_found_keys.empty())
return;
std::vector<KeyRef> required_keys(not_found_keys.size());
std::transform(std::begin(not_found_keys), std::end(not_found_keys), std::begin(required_keys), [](const auto & pair) { return pair.first; });
std::vector<size_t> required_rows;
required_rows.reserve(required_keys.size());
for (const auto & key_ref : required_keys)
required_rows.push_back(not_found_keys[key_ref].front());
TemporalComplexKeysPool tmp_keys_pool;
storage.update(
source_ptr,
key_columns,
key_types,
required_keys,
required_rows,
tmp_keys_pool,
[&](const auto key, const auto, const auto &)
{
for (const size_t out_row : not_found_keys[key])
out[out_row] = true;
},
[&](const auto key)
{
for (const size_t row : not_found_keys[key])
out[row] = false;
},
getLifetime());
}
BlockInputStreamPtr SSDComplexKeyCacheDictionary::getBlockInputStream(
const Names & /* column_names */, size_t /* max_block_size*/) const
{
throw DB::Exception("Method not supported.", ErrorCodes::NOT_IMPLEMENTED);
}
size_t SSDComplexKeyCacheDictionary::getAttributeIndex(const std::string & attr_name) const
{
auto it = attribute_index_by_name.find(attr_name);
if (it == std::end(attribute_index_by_name))
throw Exception{"Attribute `" + name + "` does not exist.", ErrorCodes::BAD_ARGUMENTS};
return it->second;
}
template <typename T>
AttributeValueVariant SSDComplexKeyCacheDictionary::createAttributeNullValueWithTypeImpl(const Field & null_value)
{
AttributeValueVariant var_null_value = static_cast<T>(null_value.get<NearestFieldType<T>>());
bytes_allocated += sizeof(T);
return var_null_value;
}
template <>
AttributeValueVariant SSDComplexKeyCacheDictionary::createAttributeNullValueWithTypeImpl<String>(const Field & null_value)
{
AttributeValueVariant var_null_value = null_value.get<String>();
bytes_allocated += sizeof(StringRef);
return var_null_value;
}
AttributeValueVariant SSDComplexKeyCacheDictionary::createAttributeNullValueWithType(const AttributeUnderlyingType type, const Field & null_value)
{
switch (type)
{
#define DISPATCH(TYPE) \
case AttributeUnderlyingType::ut##TYPE: \
return createAttributeNullValueWithTypeImpl<TYPE>(null_value); /* NOLINT */
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(UInt128)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Decimal32)
DISPATCH(Decimal64)
DISPATCH(Decimal128)
DISPATCH(Float32)
DISPATCH(Float64)
DISPATCH(String)
#undef DISPATCH
}
throw Exception{"Unknown attribute type: " + std::to_string(static_cast<int>(type)), ErrorCodes::TYPE_MISMATCH};
}
void SSDComplexKeyCacheDictionary::createAttributes()
{
null_values.reserve(dict_struct.attributes.size());
for (size_t i = 0; i < dict_struct.attributes.size(); ++i)
{
const auto & attribute = dict_struct.attributes[i];
attribute_index_by_name.emplace(attribute.name, i);
null_values.push_back(createAttributeNullValueWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
throw Exception{name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(),
ErrorCodes::TYPE_MISMATCH};
}
}
void registerDictionarySSDComplexKeyCache(DictionaryFactory & factory)
{
auto create_layout = [=](const std::string & name,
const DictionaryStructure & dict_struct,
const Poco::Util::AbstractConfiguration & config,
const std::string & config_prefix,
DictionarySourcePtr source_ptr) -> DictionaryPtr
{
const auto dict_id = StorageID::fromDictionaryConfig(config, config_prefix);
if (dict_struct.id)
throw Exception{"'id' is not supported for dictionary of layout 'complex_key_cache'", ErrorCodes::UNSUPPORTED_METHOD};
if (dict_struct.range_min || dict_struct.range_max)
throw Exception{name
+ ": elements .structure.range_min and .structure.range_max should be defined only "
"for a dictionary of layout 'range_hashed'",
ErrorCodes::BAD_ARGUMENTS};
const auto & layout_prefix = config_prefix + ".layout";
const auto max_partitions_count = config.getInt(layout_prefix + ".complex_key_ssd_cache.max_partitions_count", DEFAULT_PARTITIONS_COUNT);
if (max_partitions_count <= 0)
throw Exception{name + ": dictionary of layout 'complex_key_ssd_cache' cannot have 0 (or less) max_partitions_count", ErrorCodes::BAD_ARGUMENTS};
const auto block_size = config.getInt(layout_prefix + ".complex_key_ssd_cache.block_size", DEFAULT_SSD_BLOCK_SIZE_BYTES);
if (block_size <= 0)
throw Exception{name + ": dictionary of layout 'complex_key_ssd_cache' cannot have 0 (or less) block_size", ErrorCodes::BAD_ARGUMENTS};
const auto file_size = config.getInt64(layout_prefix + ".complex_key_ssd_cache.file_size", DEFAULT_FILE_SIZE_BYTES);
if (file_size <= 0)
throw Exception{name + ": dictionary of layout 'complex_key_ssd_cache' cannot have 0 (or less) file_size", ErrorCodes::BAD_ARGUMENTS};
if (file_size % block_size != 0)
throw Exception{name + ": file_size must be a multiple of block_size", ErrorCodes::BAD_ARGUMENTS};
const auto read_buffer_size = config.getInt64(layout_prefix + ".complex_key_ssd_cache.read_buffer_size", DEFAULT_READ_BUFFER_SIZE_BYTES);
if (read_buffer_size <= 0)
throw Exception{name + ": dictionary of layout 'complex_key_ssd_cache' cannot have 0 (or less) read_buffer_size", ErrorCodes::BAD_ARGUMENTS};
if (read_buffer_size % block_size != 0)
throw Exception{name + ": read_buffer_size must be a multiple of block_size", ErrorCodes::BAD_ARGUMENTS};
const auto write_buffer_size = config.getInt64(layout_prefix + ".complex_key_ssd_cache.write_buffer_size", DEFAULT_WRITE_BUFFER_SIZE_BYTES);
if (write_buffer_size <= 0)
throw Exception{name + ": dictionary of layout 'complex_key_ssd_cache' cannot have 0 (or less) write_buffer_size", ErrorCodes::BAD_ARGUMENTS};
if (write_buffer_size % block_size != 0)
throw Exception{name + ": write_buffer_size must be a multiple of block_size", ErrorCodes::BAD_ARGUMENTS};
auto path = config.getString(layout_prefix + ".complex_key_ssd_cache.path");
if (path.empty())
throw Exception{name + ": dictionary of layout 'complex_key_ssd_cache' cannot have empty path",
ErrorCodes::BAD_ARGUMENTS};
if (path.at(0) != '/')
path = std::filesystem::path{config.getString("path")}.concat(path).string();
const auto max_stored_keys = config.getInt64(layout_prefix + ".complex_key_ssd_cache.max_stored_keys", DEFAULT_MAX_STORED_KEYS);
if (max_stored_keys <= 0)
throw Exception{name + ": dictionary of layout 'complex_key_ssd_cache' cannot have 0 (or less) max_stored_keys", ErrorCodes::BAD_ARGUMENTS};
const DictionaryLifetime dict_lifetime{config, config_prefix + ".lifetime"};
return std::make_unique<SSDComplexKeyCacheDictionary>(
dict_id, dict_struct, std::move(source_ptr), dict_lifetime, path,
max_partitions_count, file_size / block_size, block_size,
read_buffer_size / block_size, write_buffer_size / block_size,
max_stored_keys);
};
factory.registerLayout("complex_key_ssd_cache", create_layout, true);
}
}
#endif