mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-01 20:12:02 +00:00
818 lines
30 KiB
C++
818 lines
30 KiB
C++
#pragma once
|
|
|
|
#include <cassert>
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <type_traits>
|
|
#include <functional>
|
|
|
|
#include <Common/Exception.h>
|
|
#include <Common/UInt128.h>
|
|
#include <Core/Types.h>
|
|
#include <Core/Defines.h>
|
|
#include <Core/UUID.h>
|
|
#include <common/DayNum.h>
|
|
#include <common/strong_typedef.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int BAD_TYPE_OF_FIELD;
|
|
extern const int BAD_GET;
|
|
extern const int NOT_IMPLEMENTED;
|
|
extern const int LOGICAL_ERROR;
|
|
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
|
|
}
|
|
|
|
template <typename T, typename SFINAE = void>
|
|
struct NearestFieldTypeImpl;
|
|
|
|
template <typename T>
|
|
using NearestFieldType = typename NearestFieldTypeImpl<T>::Type;
|
|
|
|
class Field;
|
|
using FieldVector = std::vector<Field>;
|
|
|
|
/// Array and Tuple use the same storage type -- FieldVector, but we declare
|
|
/// distinct types for them, so that the caller can choose whether it wants to
|
|
/// construct a Field of Array or a Tuple type. An alternative approach would be
|
|
/// to construct both of these types from FieldVector, and have the caller
|
|
/// specify the desired Field type explicitly.
|
|
#define DEFINE_FIELD_VECTOR(X) \
|
|
struct X : public FieldVector \
|
|
{ \
|
|
using FieldVector::FieldVector; \
|
|
}
|
|
|
|
DEFINE_FIELD_VECTOR(Array);
|
|
DEFINE_FIELD_VECTOR(Tuple);
|
|
|
|
#undef DEFINE_FIELD_VECTOR
|
|
|
|
struct AggregateFunctionStateData
|
|
{
|
|
String name; /// Name with arguments.
|
|
String data;
|
|
|
|
bool operator < (const AggregateFunctionStateData &) const
|
|
{
|
|
throw Exception("Operator < is not implemented for AggregateFunctionStateData.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
|
}
|
|
|
|
bool operator <= (const AggregateFunctionStateData &) const
|
|
{
|
|
throw Exception("Operator <= is not implemented for AggregateFunctionStateData.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
|
}
|
|
|
|
bool operator > (const AggregateFunctionStateData &) const
|
|
{
|
|
throw Exception("Operator > is not implemented for AggregateFunctionStateData.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
|
}
|
|
|
|
bool operator >= (const AggregateFunctionStateData &) const
|
|
{
|
|
throw Exception("Operator >= is not implemented for AggregateFunctionStateData.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
|
}
|
|
|
|
bool operator == (const AggregateFunctionStateData & rhs) const
|
|
{
|
|
if (name != rhs.name)
|
|
throw Exception("Comparing aggregate functions with different types: " + name + " and " + rhs.name,
|
|
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
|
|
|
return data == rhs.data;
|
|
}
|
|
};
|
|
|
|
template <typename T> bool decimalEqual(T x, T y, UInt32 x_scale, UInt32 y_scale);
|
|
template <typename T> bool decimalLess(T x, T y, UInt32 x_scale, UInt32 y_scale);
|
|
template <typename T> bool decimalLessOrEqual(T x, T y, UInt32 x_scale, UInt32 y_scale);
|
|
|
|
template <typename T>
|
|
class DecimalField
|
|
{
|
|
public:
|
|
DecimalField(T value, UInt32 scale_)
|
|
: dec(value),
|
|
scale(scale_)
|
|
{}
|
|
|
|
operator T() const { return dec; }
|
|
T getValue() const { return dec; }
|
|
T getScaleMultiplier() const { return T::getScaleMultiplier(scale); }
|
|
UInt32 getScale() const { return scale; }
|
|
|
|
template <typename U>
|
|
bool operator < (const DecimalField<U> & r) const
|
|
{
|
|
using MaxType = std::conditional_t<(sizeof(T) > sizeof(U)), T, U>;
|
|
return decimalLess<MaxType>(dec, r.getValue(), scale, r.getScale());
|
|
}
|
|
|
|
template <typename U>
|
|
bool operator <= (const DecimalField<U> & r) const
|
|
{
|
|
using MaxType = std::conditional_t<(sizeof(T) > sizeof(U)), T, U>;
|
|
return decimalLessOrEqual<MaxType>(dec, r.getValue(), scale, r.getScale());
|
|
}
|
|
|
|
template <typename U>
|
|
bool operator == (const DecimalField<U> & r) const
|
|
{
|
|
using MaxType = std::conditional_t<(sizeof(T) > sizeof(U)), T, U>;
|
|
return decimalEqual<MaxType>(dec, r.getValue(), scale, r.getScale());
|
|
}
|
|
|
|
template <typename U> bool operator > (const DecimalField<U> & r) const { return r < *this; }
|
|
template <typename U> bool operator >= (const DecimalField<U> & r) const { return r <= * this; }
|
|
template <typename U> bool operator != (const DecimalField<U> & r) const { return !(*this == r); }
|
|
|
|
const DecimalField<T> & operator += (const DecimalField<T> & r)
|
|
{
|
|
if (scale != r.getScale())
|
|
throw Exception("Add different decimal fields", ErrorCodes::LOGICAL_ERROR);
|
|
dec += r.getValue();
|
|
return *this;
|
|
}
|
|
|
|
const DecimalField<T> & operator -= (const DecimalField<T> & r)
|
|
{
|
|
if (scale != r.getScale())
|
|
throw Exception("Sub different decimal fields", ErrorCodes::LOGICAL_ERROR);
|
|
dec -= r.getValue();
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
T dec;
|
|
UInt32 scale;
|
|
};
|
|
|
|
/// char may be signed or unsigned, and behave identically to signed char or unsigned char,
|
|
/// but they are always three different types.
|
|
/// signedness of char is different in Linux on x86 and Linux on ARM.
|
|
template <> struct NearestFieldTypeImpl<char> { using Type = std::conditional_t<is_signed_v<char>, Int64, UInt64>; };
|
|
template <> struct NearestFieldTypeImpl<signed char> { using Type = Int64; };
|
|
template <> struct NearestFieldTypeImpl<unsigned char> { using Type = UInt64; };
|
|
#if __cplusplus > 201703L
|
|
template <> struct NearestFieldTypeImpl<char8_t> { using Type = UInt64; };
|
|
#endif
|
|
|
|
template <> struct NearestFieldTypeImpl<UInt16> { using Type = UInt64; };
|
|
template <> struct NearestFieldTypeImpl<UInt32> { using Type = UInt64; };
|
|
|
|
template <> struct NearestFieldTypeImpl<DayNum> { using Type = UInt64; };
|
|
template <> struct NearestFieldTypeImpl<UInt128> { using Type = UInt128; };
|
|
template <> struct NearestFieldTypeImpl<UUID> { using Type = UInt128; };
|
|
template <> struct NearestFieldTypeImpl<Int16> { using Type = Int64; };
|
|
template <> struct NearestFieldTypeImpl<Int32> { using Type = Int64; };
|
|
|
|
/// long and long long are always different types that may behave identically or not.
|
|
/// This is different on Linux and Mac.
|
|
template <> struct NearestFieldTypeImpl<long> { using Type = Int64; };
|
|
template <> struct NearestFieldTypeImpl<long long> { using Type = Int64; };
|
|
template <> struct NearestFieldTypeImpl<unsigned long> { using Type = UInt64; };
|
|
template <> struct NearestFieldTypeImpl<unsigned long long> { using Type = UInt64; };
|
|
|
|
template <> struct NearestFieldTypeImpl<Int128> { using Type = Int128; };
|
|
template <> struct NearestFieldTypeImpl<Decimal32> { using Type = DecimalField<Decimal32>; };
|
|
template <> struct NearestFieldTypeImpl<Decimal64> { using Type = DecimalField<Decimal64>; };
|
|
template <> struct NearestFieldTypeImpl<Decimal128> { using Type = DecimalField<Decimal128>; };
|
|
template <> struct NearestFieldTypeImpl<DecimalField<Decimal32>> { using Type = DecimalField<Decimal32>; };
|
|
template <> struct NearestFieldTypeImpl<DecimalField<Decimal64>> { using Type = DecimalField<Decimal64>; };
|
|
template <> struct NearestFieldTypeImpl<DecimalField<Decimal128>> { using Type = DecimalField<Decimal128>; };
|
|
template <> struct NearestFieldTypeImpl<Float32> { using Type = Float64; };
|
|
template <> struct NearestFieldTypeImpl<Float64> { using Type = Float64; };
|
|
template <> struct NearestFieldTypeImpl<const char *> { using Type = String; };
|
|
template <> struct NearestFieldTypeImpl<String> { using Type = String; };
|
|
template <> struct NearestFieldTypeImpl<Array> { using Type = Array; };
|
|
template <> struct NearestFieldTypeImpl<Tuple> { using Type = Tuple; };
|
|
template <> struct NearestFieldTypeImpl<bool> { using Type = UInt64; };
|
|
template <> struct NearestFieldTypeImpl<Null> { using Type = Null; };
|
|
|
|
template <> struct NearestFieldTypeImpl<AggregateFunctionStateData> { using Type = AggregateFunctionStateData; };
|
|
|
|
// For enum types, use the field type that corresponds to their underlying type.
|
|
template <typename T>
|
|
struct NearestFieldTypeImpl<T, std::enable_if_t<std::is_enum_v<T>>>
|
|
{
|
|
using Type = NearestFieldType<std::underlying_type_t<T>>;
|
|
};
|
|
|
|
/** 32 is enough. Round number is used for alignment and for better arithmetic inside std::vector.
|
|
* NOTE: Actually, sizeof(std::string) is 32 when using libc++, so Field is 40 bytes.
|
|
*/
|
|
#define DBMS_MIN_FIELD_SIZE 32
|
|
|
|
|
|
/** Discriminated union of several types.
|
|
* Made for replacement of `boost::variant`
|
|
* is not generalized,
|
|
* but somewhat more efficient, and simpler.
|
|
*
|
|
* Used to represent a single value of one of several types in memory.
|
|
* Warning! Prefer to use chunks of columns instead of single values. See Column.h
|
|
*/
|
|
class Field
|
|
{
|
|
public:
|
|
struct Types
|
|
{
|
|
/// Type tag.
|
|
enum Which
|
|
{
|
|
Null = 0,
|
|
UInt64 = 1,
|
|
Int64 = 2,
|
|
Float64 = 3,
|
|
UInt128 = 4,
|
|
Int128 = 5,
|
|
|
|
/// Non-POD types.
|
|
|
|
String = 16,
|
|
Array = 17,
|
|
Tuple = 18,
|
|
Decimal32 = 19,
|
|
Decimal64 = 20,
|
|
Decimal128 = 21,
|
|
AggregateFunctionState = 22,
|
|
};
|
|
|
|
static const int MIN_NON_POD = 16;
|
|
|
|
static const char * toString(Which which)
|
|
{
|
|
switch (which)
|
|
{
|
|
case Null: return "Null";
|
|
case UInt64: return "UInt64";
|
|
case UInt128: return "UInt128";
|
|
case Int64: return "Int64";
|
|
case Int128: return "Int128";
|
|
case Float64: return "Float64";
|
|
case String: return "String";
|
|
case Array: return "Array";
|
|
case Tuple: return "Tuple";
|
|
case Decimal32: return "Decimal32";
|
|
case Decimal64: return "Decimal64";
|
|
case Decimal128: return "Decimal128";
|
|
case AggregateFunctionState: return "AggregateFunctionState";
|
|
}
|
|
|
|
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
|
|
}
|
|
};
|
|
|
|
|
|
/// Returns an identifier for the type or vice versa.
|
|
template <typename T> struct TypeToEnum;
|
|
template <Types::Which which> struct EnumToType;
|
|
|
|
static bool IsDecimal(Types::Which which) { return which >= Types::Decimal32 && which <= Types::Decimal128; }
|
|
|
|
Field()
|
|
: which(Types::Null)
|
|
{
|
|
}
|
|
|
|
/** Despite the presence of a template constructor, this constructor is still needed,
|
|
* since, in its absence, the compiler will still generate the default constructor.
|
|
*/
|
|
Field(const Field & rhs)
|
|
{
|
|
create(rhs);
|
|
}
|
|
|
|
Field(Field && rhs)
|
|
{
|
|
create(std::move(rhs));
|
|
}
|
|
|
|
template <typename T>
|
|
Field(T && rhs, std::enable_if_t<!std::is_same_v<std::decay_t<T>, Field>, void *> = nullptr);
|
|
|
|
/// Create a string inplace.
|
|
template <typename CharT>
|
|
Field(const CharT * data, size_t size)
|
|
{
|
|
create(data, size);
|
|
}
|
|
|
|
/// NOTE In case when field already has string type, more direct assign is possible.
|
|
template <typename CharT>
|
|
void assignString(const CharT * data, size_t size)
|
|
{
|
|
destroy();
|
|
create(data, size);
|
|
}
|
|
|
|
Field & operator= (const Field & rhs)
|
|
{
|
|
if (this != &rhs)
|
|
{
|
|
if (which != rhs.which)
|
|
{
|
|
destroy();
|
|
create(rhs);
|
|
}
|
|
else
|
|
assign(rhs); /// This assigns string or vector without deallocation of existing buffer.
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Field & operator= (Field && rhs)
|
|
{
|
|
if (this != &rhs)
|
|
{
|
|
if (which != rhs.which)
|
|
{
|
|
destroy();
|
|
create(std::move(rhs));
|
|
}
|
|
else
|
|
assign(std::move(rhs));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
template <typename T>
|
|
std::enable_if_t<!std::is_same_v<std::decay_t<T>, Field>, Field &>
|
|
operator= (T && rhs);
|
|
|
|
~Field()
|
|
{
|
|
destroy();
|
|
}
|
|
|
|
|
|
Types::Which getType() const { return which; }
|
|
const char * getTypeName() const { return Types::toString(which); }
|
|
|
|
bool isNull() const { return which == Types::Null; }
|
|
|
|
|
|
template <typename T>
|
|
T & get();
|
|
|
|
template <typename T>
|
|
const T & get() const
|
|
{
|
|
auto mutable_this = const_cast<std::decay_t<decltype(*this)> *>(this);
|
|
return mutable_this->get<T>();
|
|
}
|
|
|
|
template <typename T>
|
|
T & reinterpret();
|
|
|
|
template <typename T>
|
|
const T & reinterpret() const
|
|
{
|
|
auto mutable_this = const_cast<std::decay_t<decltype(*this)> *>(this);
|
|
return mutable_this->reinterpret<T>();
|
|
}
|
|
|
|
template <typename T> bool tryGet(T & result)
|
|
{
|
|
const Types::Which requested = TypeToEnum<std::decay_t<T>>::value;
|
|
if (which != requested)
|
|
return false;
|
|
result = get<T>();
|
|
return true;
|
|
}
|
|
|
|
template <typename T> bool tryGet(T & result) const
|
|
{
|
|
const Types::Which requested = TypeToEnum<std::decay_t<T>>::value;
|
|
if (which != requested)
|
|
return false;
|
|
result = get<T>();
|
|
return true;
|
|
}
|
|
|
|
template <typename T> T & safeGet()
|
|
{
|
|
const Types::Which requested = TypeToEnum<std::decay_t<T>>::value;
|
|
if (which != requested)
|
|
throw Exception("Bad get: has " + std::string(getTypeName()) + ", requested " + std::string(Types::toString(requested)), ErrorCodes::BAD_GET);
|
|
return get<T>();
|
|
}
|
|
|
|
template <typename T> const T & safeGet() const
|
|
{
|
|
const Types::Which requested = TypeToEnum<std::decay_t<T>>::value;
|
|
if (which != requested)
|
|
throw Exception("Bad get: has " + std::string(getTypeName()) + ", requested " + std::string(Types::toString(requested)), ErrorCodes::BAD_GET);
|
|
return get<T>();
|
|
}
|
|
|
|
|
|
bool operator< (const Field & rhs) const
|
|
{
|
|
if (which < rhs.which)
|
|
return true;
|
|
if (which > rhs.which)
|
|
return false;
|
|
|
|
switch (which)
|
|
{
|
|
case Types::Null: return false;
|
|
case Types::UInt64: return get<UInt64>() < rhs.get<UInt64>();
|
|
case Types::UInt128: return get<UInt128>() < rhs.get<UInt128>();
|
|
case Types::Int64: return get<Int64>() < rhs.get<Int64>();
|
|
case Types::Int128: return get<Int128>() < rhs.get<Int128>();
|
|
case Types::Float64: return get<Float64>() < rhs.get<Float64>();
|
|
case Types::String: return get<String>() < rhs.get<String>();
|
|
case Types::Array: return get<Array>() < rhs.get<Array>();
|
|
case Types::Tuple: return get<Tuple>() < rhs.get<Tuple>();
|
|
case Types::Decimal32: return get<DecimalField<Decimal32>>() < rhs.get<DecimalField<Decimal32>>();
|
|
case Types::Decimal64: return get<DecimalField<Decimal64>>() < rhs.get<DecimalField<Decimal64>>();
|
|
case Types::Decimal128: return get<DecimalField<Decimal128>>() < rhs.get<DecimalField<Decimal128>>();
|
|
case Types::AggregateFunctionState: return get<AggregateFunctionStateData>() < rhs.get<AggregateFunctionStateData>();
|
|
}
|
|
|
|
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
|
|
}
|
|
|
|
bool operator> (const Field & rhs) const
|
|
{
|
|
return rhs < *this;
|
|
}
|
|
|
|
bool operator<= (const Field & rhs) const
|
|
{
|
|
if (which < rhs.which)
|
|
return true;
|
|
if (which > rhs.which)
|
|
return false;
|
|
|
|
switch (which)
|
|
{
|
|
case Types::Null: return true;
|
|
case Types::UInt64: return get<UInt64>() <= rhs.get<UInt64>();
|
|
case Types::UInt128: return get<UInt128>() <= rhs.get<UInt128>();
|
|
case Types::Int64: return get<Int64>() <= rhs.get<Int64>();
|
|
case Types::Int128: return get<Int128>() <= rhs.get<Int128>();
|
|
case Types::Float64: return get<Float64>() <= rhs.get<Float64>();
|
|
case Types::String: return get<String>() <= rhs.get<String>();
|
|
case Types::Array: return get<Array>() <= rhs.get<Array>();
|
|
case Types::Tuple: return get<Tuple>() <= rhs.get<Tuple>();
|
|
case Types::Decimal32: return get<DecimalField<Decimal32>>() <= rhs.get<DecimalField<Decimal32>>();
|
|
case Types::Decimal64: return get<DecimalField<Decimal64>>() <= rhs.get<DecimalField<Decimal64>>();
|
|
case Types::Decimal128: return get<DecimalField<Decimal128>>() <= rhs.get<DecimalField<Decimal128>>();
|
|
case Types::AggregateFunctionState: return get<AggregateFunctionStateData>() <= rhs.get<AggregateFunctionStateData>();
|
|
}
|
|
|
|
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
|
|
}
|
|
|
|
bool operator>= (const Field & rhs) const
|
|
{
|
|
return rhs <= *this;
|
|
}
|
|
|
|
// More like bitwise equality as opposed to semantic equality:
|
|
// Null equals Null and NaN equals NaN.
|
|
bool operator== (const Field & rhs) const
|
|
{
|
|
if (which != rhs.which)
|
|
return false;
|
|
|
|
switch (which)
|
|
{
|
|
case Types::Null: return true;
|
|
case Types::UInt64: return get<UInt64>() == rhs.get<UInt64>();
|
|
case Types::Int64: return get<Int64>() == rhs.get<Int64>();
|
|
case Types::Float64:
|
|
{
|
|
// Compare as UInt64 so that NaNs compare as equal.
|
|
return reinterpret<UInt64>() == rhs.reinterpret<UInt64>();
|
|
}
|
|
case Types::String: return get<String>() == rhs.get<String>();
|
|
case Types::Array: return get<Array>() == rhs.get<Array>();
|
|
case Types::Tuple: return get<Tuple>() == rhs.get<Tuple>();
|
|
case Types::UInt128: return get<UInt128>() == rhs.get<UInt128>();
|
|
case Types::Int128: return get<Int128>() == rhs.get<Int128>();
|
|
case Types::Decimal32: return get<DecimalField<Decimal32>>() == rhs.get<DecimalField<Decimal32>>();
|
|
case Types::Decimal64: return get<DecimalField<Decimal64>>() == rhs.get<DecimalField<Decimal64>>();
|
|
case Types::Decimal128: return get<DecimalField<Decimal128>>() == rhs.get<DecimalField<Decimal128>>();
|
|
case Types::AggregateFunctionState: return get<AggregateFunctionStateData>() == rhs.get<AggregateFunctionStateData>();
|
|
}
|
|
|
|
throw Exception("Bad type of Field", ErrorCodes::BAD_TYPE_OF_FIELD);
|
|
}
|
|
|
|
bool operator!= (const Field & rhs) const
|
|
{
|
|
return !(*this == rhs);
|
|
}
|
|
|
|
/// Field is template parameter, to allow universal reference for field,
|
|
/// that is useful for const and non-const .
|
|
template <typename F, typename FieldRef>
|
|
static auto dispatch(F && f, FieldRef && field)
|
|
{
|
|
switch (field.which)
|
|
{
|
|
case Types::Null: return f(field.template get<Null>());
|
|
// gcc 8.2.1
|
|
#if !__clang__
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
|
|
#endif
|
|
case Types::UInt64: return f(field.template get<UInt64>());
|
|
case Types::UInt128: return f(field.template get<UInt128>());
|
|
case Types::Int64: return f(field.template get<Int64>());
|
|
case Types::Float64: return f(field.template get<Float64>());
|
|
case Types::String: return f(field.template get<String>());
|
|
case Types::Array: return f(field.template get<Array>());
|
|
case Types::Tuple: return f(field.template get<Tuple>());
|
|
#if !__clang__
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
case Types::Decimal32: return f(field.template get<DecimalField<Decimal32>>());
|
|
case Types::Decimal64: return f(field.template get<DecimalField<Decimal64>>());
|
|
case Types::Decimal128: return f(field.template get<DecimalField<Decimal128>>());
|
|
case Types::AggregateFunctionState: return f(field.template get<AggregateFunctionStateData>());
|
|
case Types::Int128:
|
|
// TODO: investigate where we need Int128 Fields. There are no
|
|
// field visitors that support them, and they only arise indirectly
|
|
// in some functions that use Decimal columns: they get the
|
|
// underlying Field value with get<Int128>(). Probably should be
|
|
// switched to DecimalField, but this is a whole endeavor in itself.
|
|
throw Exception("Unexpected Int128 in Field::dispatch()", ErrorCodes::LOGICAL_ERROR);
|
|
}
|
|
|
|
// GCC 9 complains that control reaches the end, despite that we handle
|
|
// all the cases above (maybe because of throw?). Return something to
|
|
// silence it.
|
|
Null null{};
|
|
return f(null);
|
|
}
|
|
|
|
|
|
private:
|
|
std::aligned_union_t<DBMS_MIN_FIELD_SIZE - sizeof(Types::Which),
|
|
Null, UInt64, UInt128, Int64, Int128, Float64, String, Array, Tuple,
|
|
DecimalField<Decimal32>, DecimalField<Decimal64>, DecimalField<Decimal128>, AggregateFunctionStateData
|
|
> storage;
|
|
|
|
Types::Which which;
|
|
|
|
|
|
/// Assuming there was no allocated state or it was deallocated (see destroy).
|
|
template <typename T>
|
|
void createConcrete(T && x)
|
|
{
|
|
using UnqualifiedType = std::decay_t<T>;
|
|
|
|
// In both Field and PODArray, small types may be stored as wider types,
|
|
// e.g. char is stored as UInt64. Field can return this extended value
|
|
// with get<StorageType>(). To avoid uninitialized results from get(),
|
|
// we must initialize the entire wide stored type, and not just the
|
|
// nominal type.
|
|
using StorageType = NearestFieldType<UnqualifiedType>;
|
|
new (&storage) StorageType(std::forward<T>(x));
|
|
which = TypeToEnum<UnqualifiedType>::value;
|
|
}
|
|
|
|
/// Assuming same types.
|
|
template <typename T>
|
|
void assignConcrete(T && x)
|
|
{
|
|
using JustT = std::decay_t<T>;
|
|
assert(which == TypeToEnum<JustT>::value);
|
|
JustT * MAY_ALIAS ptr = reinterpret_cast<JustT *>(&storage);
|
|
*ptr = std::forward<T>(x);
|
|
}
|
|
|
|
|
|
void create(const Field & x)
|
|
{
|
|
dispatch([this] (auto & value) { createConcrete(value); }, x);
|
|
}
|
|
|
|
void create(Field && x)
|
|
{
|
|
dispatch([this] (auto & value) { createConcrete(std::move(value)); }, x);
|
|
}
|
|
|
|
void assign(const Field & x)
|
|
{
|
|
dispatch([this] (auto & value) { assignConcrete(value); }, x);
|
|
}
|
|
|
|
void assign(Field && x)
|
|
{
|
|
dispatch([this] (auto & value) { assignConcrete(std::move(value)); }, x);
|
|
}
|
|
|
|
template <typename CharT>
|
|
std::enable_if_t<sizeof(CharT) == 1> create(const CharT * data, size_t size)
|
|
{
|
|
new (&storage) String(reinterpret_cast<const char *>(data), size);
|
|
which = Types::String;
|
|
}
|
|
|
|
ALWAYS_INLINE void destroy()
|
|
{
|
|
if (which < Types::MIN_NON_POD)
|
|
return;
|
|
|
|
switch (which)
|
|
{
|
|
case Types::String:
|
|
destroy<String>();
|
|
break;
|
|
case Types::Array:
|
|
destroy<Array>();
|
|
break;
|
|
case Types::Tuple:
|
|
destroy<Tuple>();
|
|
break;
|
|
case Types::AggregateFunctionState:
|
|
destroy<AggregateFunctionStateData>();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
which = Types::Null; /// for exception safety in subsequent calls to destroy and create, when create fails.
|
|
}
|
|
|
|
template <typename T>
|
|
void destroy()
|
|
{
|
|
T * MAY_ALIAS ptr = reinterpret_cast<T*>(&storage);
|
|
ptr->~T();
|
|
}
|
|
};
|
|
|
|
#undef DBMS_MIN_FIELD_SIZE
|
|
|
|
|
|
template <> struct Field::TypeToEnum<Null> { static const Types::Which value = Types::Null; };
|
|
template <> struct Field::TypeToEnum<UInt64> { static const Types::Which value = Types::UInt64; };
|
|
template <> struct Field::TypeToEnum<UInt128> { static const Types::Which value = Types::UInt128; };
|
|
template <> struct Field::TypeToEnum<Int64> { static const Types::Which value = Types::Int64; };
|
|
template <> struct Field::TypeToEnum<Int128> { static const Types::Which value = Types::Int128; };
|
|
template <> struct Field::TypeToEnum<Float64> { static const Types::Which value = Types::Float64; };
|
|
template <> struct Field::TypeToEnum<String> { static const Types::Which value = Types::String; };
|
|
template <> struct Field::TypeToEnum<Array> { static const Types::Which value = Types::Array; };
|
|
template <> struct Field::TypeToEnum<Tuple> { static const Types::Which value = Types::Tuple; };
|
|
template <> struct Field::TypeToEnum<DecimalField<Decimal32>>{ static const Types::Which value = Types::Decimal32; };
|
|
template <> struct Field::TypeToEnum<DecimalField<Decimal64>>{ static const Types::Which value = Types::Decimal64; };
|
|
template <> struct Field::TypeToEnum<DecimalField<Decimal128>>{ static const Types::Which value = Types::Decimal128; };
|
|
template <> struct Field::TypeToEnum<AggregateFunctionStateData>{ static const Types::Which value = Types::AggregateFunctionState; };
|
|
|
|
template <> struct Field::EnumToType<Field::Types::Null> { using Type = Null; };
|
|
template <> struct Field::EnumToType<Field::Types::UInt64> { using Type = UInt64; };
|
|
template <> struct Field::EnumToType<Field::Types::UInt128> { using Type = UInt128; };
|
|
template <> struct Field::EnumToType<Field::Types::Int64> { using Type = Int64; };
|
|
template <> struct Field::EnumToType<Field::Types::Int128> { using Type = Int128; };
|
|
template <> struct Field::EnumToType<Field::Types::Float64> { using Type = Float64; };
|
|
template <> struct Field::EnumToType<Field::Types::String> { using Type = String; };
|
|
template <> struct Field::EnumToType<Field::Types::Array> { using Type = Array; };
|
|
template <> struct Field::EnumToType<Field::Types::Tuple> { using Type = Tuple; };
|
|
template <> struct Field::EnumToType<Field::Types::Decimal32> { using Type = DecimalField<Decimal32>; };
|
|
template <> struct Field::EnumToType<Field::Types::Decimal64> { using Type = DecimalField<Decimal64>; };
|
|
template <> struct Field::EnumToType<Field::Types::Decimal128> { using Type = DecimalField<Decimal128>; };
|
|
template <> struct Field::EnumToType<Field::Types::AggregateFunctionState> { using Type = DecimalField<AggregateFunctionStateData>; };
|
|
|
|
inline constexpr bool isInt64FieldType(Field::Types::Which t)
|
|
{
|
|
return t == Field::Types::Int64
|
|
|| t == Field::Types::UInt64;
|
|
}
|
|
|
|
// Field value getter with type checking in debug builds.
|
|
template <typename T>
|
|
T & Field::get()
|
|
{
|
|
using ValueType = std::decay_t<T>;
|
|
|
|
#ifndef NDEBUG
|
|
// Disregard signedness when converting between int64 types.
|
|
constexpr Field::Types::Which target = TypeToEnum<NearestFieldType<ValueType>>::value;
|
|
assert(target == which
|
|
|| (isInt64FieldType(target) && isInt64FieldType(which)));
|
|
#endif
|
|
|
|
ValueType * MAY_ALIAS ptr = reinterpret_cast<ValueType *>(&storage);
|
|
return *ptr;
|
|
}
|
|
|
|
template <typename T>
|
|
T & Field::reinterpret()
|
|
{
|
|
using ValueType = std::decay_t<T>;
|
|
ValueType * MAY_ALIAS ptr = reinterpret_cast<ValueType *>(&storage);
|
|
return *ptr;
|
|
}
|
|
|
|
template <typename T>
|
|
T get(const Field & field)
|
|
{
|
|
return field.template get<T>();
|
|
}
|
|
|
|
template <typename T>
|
|
T get(Field & field)
|
|
{
|
|
return field.template get<T>();
|
|
}
|
|
|
|
template <typename T>
|
|
T safeGet(const Field & field)
|
|
{
|
|
return field.template safeGet<T>();
|
|
}
|
|
|
|
template <typename T>
|
|
T safeGet(Field & field)
|
|
{
|
|
return field.template safeGet<T>();
|
|
}
|
|
|
|
|
|
template <> struct TypeName<Array> { static std::string get() { return "Array"; } };
|
|
template <> struct TypeName<Tuple> { static std::string get() { return "Tuple"; } };
|
|
template <> struct TypeName<AggregateFunctionStateData> { static std::string get() { return "AggregateFunctionState"; } };
|
|
|
|
template <typename T>
|
|
decltype(auto) castToNearestFieldType(T && x)
|
|
{
|
|
using U = NearestFieldType<std::decay_t<T>>;
|
|
if constexpr (std::is_same_v<std::decay_t<T>, U>)
|
|
return std::forward<T>(x);
|
|
else
|
|
return U(x);
|
|
}
|
|
|
|
/// This (rather tricky) code is to avoid ambiguity in expressions like
|
|
/// Field f = 1;
|
|
/// instead of
|
|
/// Field f = Int64(1);
|
|
/// Things to note:
|
|
/// 1. float <--> int needs explicit cast
|
|
/// 2. customized types needs explicit cast
|
|
template <typename T>
|
|
Field::Field(T && rhs, std::enable_if_t<!std::is_same_v<std::decay_t<T>, Field>, void *>)
|
|
{
|
|
auto && val = castToNearestFieldType(std::forward<T>(rhs));
|
|
createConcrete(std::forward<decltype(val)>(val));
|
|
}
|
|
|
|
template <typename T>
|
|
std::enable_if_t<!std::is_same_v<std::decay_t<T>, Field>, Field &>
|
|
Field::operator= (T && rhs)
|
|
{
|
|
auto && val = castToNearestFieldType(std::forward<T>(rhs));
|
|
using U = decltype(val);
|
|
if (which != TypeToEnum<std::decay_t<U>>::value)
|
|
{
|
|
destroy();
|
|
createConcrete(std::forward<U>(val));
|
|
}
|
|
else
|
|
assignConcrete(std::forward<U>(val));
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
class ReadBuffer;
|
|
class WriteBuffer;
|
|
|
|
/// It is assumed that all elements of the array have the same type.
|
|
void readBinary(Array & x, ReadBuffer & buf);
|
|
|
|
[[noreturn]] inline void readText(Array &, ReadBuffer &) { throw Exception("Cannot read Array.", ErrorCodes::NOT_IMPLEMENTED); }
|
|
[[noreturn]] inline void readQuoted(Array &, ReadBuffer &) { throw Exception("Cannot read Array.", ErrorCodes::NOT_IMPLEMENTED); }
|
|
|
|
/// It is assumed that all elements of the array have the same type.
|
|
/// Also write size and type into buf. UInt64 and Int64 is written in variadic size form
|
|
void writeBinary(const Array & x, WriteBuffer & buf);
|
|
|
|
void writeText(const Array & x, WriteBuffer & buf);
|
|
|
|
[[noreturn]] inline void writeQuoted(const Array &, WriteBuffer &) { throw Exception("Cannot write Array quoted.", ErrorCodes::NOT_IMPLEMENTED); }
|
|
|
|
void readBinary(Tuple & x, ReadBuffer & buf);
|
|
|
|
[[noreturn]] inline void readText(Tuple &, ReadBuffer &) { throw Exception("Cannot read Tuple.", ErrorCodes::NOT_IMPLEMENTED); }
|
|
[[noreturn]] inline void readQuoted(Tuple &, ReadBuffer &) { throw Exception("Cannot read Tuple.", ErrorCodes::NOT_IMPLEMENTED); }
|
|
|
|
void writeBinary(const Tuple & x, WriteBuffer & buf);
|
|
|
|
void writeText(const Tuple & x, WriteBuffer & buf);
|
|
|
|
void writeFieldText(const Field & x, WriteBuffer & buf);
|
|
|
|
[[noreturn]] inline void writeQuoted(const Tuple &, WriteBuffer &) { throw Exception("Cannot write Tuple quoted.", ErrorCodes::NOT_IMPLEMENTED); }
|
|
}
|