ClickHouse/src/AggregateFunctions/QuantileExact.h
Ivan 902091cc07
Slightly better miniselect usage (#16896)
* Slightly better miniselect usage
* Update ColumnDecimal.cpp
2020-11-13 14:28:18 +03:00

386 lines
14 KiB
C++

#pragma once
#include <IO/ReadBuffer.h>
#include <IO/VarInt.h>
#include <IO/WriteBuffer.h>
#include <Common/NaNUtils.h>
#include <Common/PODArray.h>
#include <common/sort.h>
#include <common/types.h>
namespace DB
{
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
extern const int BAD_ARGUMENTS;
}
template <typename Value, typename Derived>
struct QuantileExactBase
{
/// The memory will be allocated to several elements at once, so that the state occupies 64 bytes.
static constexpr size_t bytes_in_arena = 64 - sizeof(PODArray<Value>);
using Array = PODArrayWithStackMemory<Value, bytes_in_arena>;
Array array;
void add(const Value & x)
{
/// We must skip NaNs as they are not compatible with comparison sorting.
if (!isNaN(x))
array.push_back(x);
}
template <typename Weight>
void add(const Value &, const Weight &)
{
throw Exception("Method add with weight is not implemented for QuantileExact", ErrorCodes::NOT_IMPLEMENTED);
}
void merge(const QuantileExactBase & rhs) { array.insert(rhs.array.begin(), rhs.array.end()); }
void serialize(WriteBuffer & buf) const
{
size_t size = array.size();
writeVarUInt(size, buf);
buf.write(reinterpret_cast<const char *>(array.data()), size * sizeof(array[0]));
}
void deserialize(ReadBuffer & buf)
{
size_t size = 0;
readVarUInt(size, buf);
array.resize(size);
buf.read(reinterpret_cast<char *>(array.data()), size * sizeof(array[0]));
}
Value get(Float64 level)
{
auto derived = static_cast<Derived*>(this);
return derived->getImpl(level);
}
void getMany(const Float64 * levels, const size_t * indices, size_t size, Value * result)
{
auto derived = static_cast<Derived*>(this);
return derived->getManyImpl(levels, indices, size, result);
}
};
/** Calculates quantile by collecting all values into array
* and applying n-th element (introselect) algorithm for the resulting array.
*
* It uses O(N) memory and it is very inefficient in case of high amount of identical values.
* But it is very CPU efficient for not large datasets.
*/
template <typename Value>
struct QuantileExact : QuantileExactBase<Value, QuantileExact<Value>>
{
using QuantileExactBase<Value, QuantileExact<Value>>::array;
// Get the value of the `level` quantile. The level must be between 0 and 1.
Value getImpl(Float64 level)
{
if (!array.empty())
{
size_t n = level < 1 ? level * array.size() : (array.size() - 1);
nth_element(array.begin(), array.begin() + n, array.end()); /// NOTE: You can think of the radix-select algorithm.
return array[n];
}
return std::numeric_limits<Value>::quiet_NaN();
}
/// Get the `size` values of `levels` quantiles. Write `size` results starting with `result` address.
/// indices - an array of index levels such that the corresponding elements will go in ascending order.
void getManyImpl(const Float64 * levels, const size_t * indices, size_t size, Value * result)
{
if (!array.empty())
{
size_t prev_n = 0;
for (size_t i = 0; i < size; ++i)
{
auto level = levels[indices[i]];
size_t n = level < 1 ? level * array.size() : (array.size() - 1);
nth_element(array.begin() + prev_n, array.begin() + n, array.end());
result[indices[i]] = array[n];
prev_n = n;
}
}
else
{
for (size_t i = 0; i < size; ++i)
result[i] = Value();
}
}
};
/// QuantileExactExclusive is equivalent to Excel PERCENTILE.EXC, R-6, SAS-4, SciPy-(0,0)
template <typename Value>
/// There is no virtual-like functions. So we don't inherit from QuantileExactBase.
struct QuantileExactExclusive : public QuantileExact<Value>
{
using QuantileExact<Value>::array;
/// Get the value of the `level` quantile. The level must be between 0 and 1 excluding bounds.
Float64 getFloat(Float64 level)
{
if (!array.empty())
{
if (level == 0. || level == 1.)
throw Exception("QuantileExactExclusive cannot interpolate for the percentiles 1 and 0", ErrorCodes::BAD_ARGUMENTS);
Float64 h = level * (array.size() + 1);
auto n = static_cast<size_t>(h);
if (n >= array.size())
return static_cast<Float64>(array[array.size() - 1]);
else if (n < 1)
return static_cast<Float64>(array[0]);
nth_element(array.begin(), array.begin() + n - 1, array.end());
auto nth_elem = std::min_element(array.begin() + n, array.end());
return static_cast<Float64>(array[n - 1]) + (h - n) * static_cast<Float64>(*nth_elem - array[n - 1]);
}
return std::numeric_limits<Float64>::quiet_NaN();
}
void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result)
{
if (!array.empty())
{
size_t prev_n = 0;
for (size_t i = 0; i < size; ++i)
{
auto level = levels[indices[i]];
if (level == 0. || level == 1.)
throw Exception("QuantileExactExclusive cannot interpolate for the percentiles 1 and 0", ErrorCodes::BAD_ARGUMENTS);
Float64 h = level * (array.size() + 1);
auto n = static_cast<size_t>(h);
if (n >= array.size())
result[indices[i]] = static_cast<Float64>(array[array.size() - 1]);
else if (n < 1)
result[indices[i]] = static_cast<Float64>(array[0]);
else
{
nth_element(array.begin() + prev_n, array.begin() + n - 1, array.end());
auto nth_elem = std::min_element(array.begin() + n, array.end());
result[indices[i]] = static_cast<Float64>(array[n - 1]) + (h - n) * static_cast<Float64>(*nth_elem - array[n - 1]);
prev_n = n - 1;
}
}
}
else
{
for (size_t i = 0; i < size; ++i)
result[i] = std::numeric_limits<Float64>::quiet_NaN();
}
}
};
/// QuantileExactInclusive is equivalent to Excel PERCENTILE and PERCENTILE.INC, R-7, SciPy-(1,1)
template <typename Value>
/// There is no virtual-like functions. So we don't inherit from QuantileExactBase.
struct QuantileExactInclusive : public QuantileExact<Value>
{
using QuantileExact<Value>::array;
/// Get the value of the `level` quantile. The level must be between 0 and 1 including bounds.
Float64 getFloat(Float64 level)
{
if (!array.empty())
{
Float64 h = level * (array.size() - 1) + 1;
auto n = static_cast<size_t>(h);
if (n >= array.size())
return static_cast<Float64>(array[array.size() - 1]);
else if (n < 1)
return static_cast<Float64>(array[0]);
nth_element(array.begin(), array.begin() + n - 1, array.end());
auto nth_elem = std::min_element(array.begin() + n, array.end());
return static_cast<Float64>(array[n - 1]) + (h - n) * static_cast<Float64>(*nth_elem - array[n - 1]);
}
return std::numeric_limits<Float64>::quiet_NaN();
}
void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result)
{
if (!array.empty())
{
size_t prev_n = 0;
for (size_t i = 0; i < size; ++i)
{
auto level = levels[indices[i]];
Float64 h = level * (array.size() - 1) + 1;
auto n = static_cast<size_t>(h);
if (n >= array.size())
result[indices[i]] = static_cast<Float64>(array[array.size() - 1]);
else if (n < 1)
result[indices[i]] = static_cast<Float64>(array[0]);
else
{
nth_element(array.begin() + prev_n, array.begin() + n - 1, array.end());
auto nth_elem = std::min_element(array.begin() + n, array.end());
result[indices[i]] = static_cast<Float64>(array[n - 1]) + (h - n) * static_cast<Float64>(*nth_elem - array[n - 1]);
prev_n = n - 1;
}
}
}
else
{
for (size_t i = 0; i < size; ++i)
result[i] = std::numeric_limits<Float64>::quiet_NaN();
}
}
};
// QuantileExactLow returns the low median of given data.
// Implementation is as per "medium_low" function from python:
// https://docs.python.org/3/library/statistics.html#statistics.median_low
template <typename Value>
struct QuantileExactLow : public QuantileExactBase<Value, QuantileExactLow<Value>>
{
using QuantileExactBase<Value, QuantileExactLow<Value>>::array;
Value getImpl(Float64 level)
{
if (!array.empty())
{
// sort inputs in ascending order
std::sort(array.begin(), array.end());
size_t n = level < 1 ? level * array.size() : (array.size() - 1);
// if level is 0.5 then compute the "low" median of the sorted array
// by the method of rounding.
if (level == 0.5)
{
auto s = array.size();
if (s % 2 == 1)
{
return array[static_cast<size_t>(floor(s / 2))];
}
else
{
return array[static_cast<size_t>((floor(s / 2)) - 1)];
}
}
// else quantile is the nth index of the sorted array obtained by multiplying
// level and size of array. Example if level = 0.1 and size of array is 10,
// then return array[1].
return array[n];
}
return std::numeric_limits<Value>::quiet_NaN();
}
void getManyImpl(const Float64 * levels, const size_t * indices, size_t size, Value * result)
{
if (!array.empty())
{
// sort inputs in ascending order
std::sort(array.begin(), array.end());
for (size_t i = 0; i < size; ++i)
{
auto level = levels[indices[i]];
size_t n = level < 1 ? level * array.size() : (array.size() - 1);
// if level is 0.5 then compute the "low" median of the sorted array
// by the method of rounding.
if (level == 0.5)
{
auto s = array.size();
if (s % 2 == 1)
{
result[indices[i]] = array[static_cast<size_t>(floor(s / 2))];
}
else
{
result[indices[i]] = array[static_cast<size_t>(floor((s / 2) - 1))];
}
}
// else quantile is the nth index of the sorted array obtained by multiplying
// level and size of array. Example if level = 0.1 and size of array is 10.
result[indices[i]] = array[n];
}
}
else
{
for (size_t i = 0; i < size; ++i)
result[i] = Value();
}
}
};
// QuantileExactLow returns the high median of given data.
// Implementation is as per "medium_high function from python:
// https://docs.python.org/3/library/statistics.html#statistics.median_high
template <typename Value>
struct QuantileExactHigh : public QuantileExactBase<Value, QuantileExactHigh<Value>>
{
using QuantileExactBase<Value, QuantileExactHigh<Value>>::array;
Value getImpl(Float64 level)
{
if (!array.empty())
{
// sort inputs in ascending order
std::sort(array.begin(), array.end());
size_t n = level < 1 ? level * array.size() : (array.size() - 1);
// if level is 0.5 then compute the "high" median of the sorted array
// by the method of rounding.
if (level == 0.5)
{
auto s = array.size();
return array[static_cast<size_t>(floor(s / 2))];
}
// else quantile is the nth index of the sorted array obtained by multiplying
// level and size of array. Example if level = 0.1 and size of array is 10.
return array[n];
}
return std::numeric_limits<Value>::quiet_NaN();
}
void getManyImpl(const Float64 * levels, const size_t * indices, size_t size, Value * result)
{
if (!array.empty())
{
// sort inputs in ascending order
std::sort(array.begin(), array.end());
for (size_t i = 0; i < size; ++i)
{
auto level = levels[indices[i]];
size_t n = level < 1 ? level * array.size() : (array.size() - 1);
// if level is 0.5 then compute the "high" median of the sorted array
// by the method of rounding.
if (level == 0.5)
{
auto s = array.size();
result[indices[i]] = array[static_cast<size_t>(floor(s / 2))];
}
// else quantile is the nth index of the sorted array obtained by multiplying
// level and size of array. Example if level = 0.1 and size of array is 10.
result[indices[i]] = array[n];
}
}
else
{
for (size_t i = 0; i < size; ++i)
result[i] = Value();
}
}
};
}