ClickHouse/dbms/src/Functions/FunctionsArithmetic.h

1347 lines
52 KiB
C++

#pragma once
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDateTime.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnConst.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <DataTypes/NumberTraits.h>
#include <Core/AccurateComparison.h>
#include <Core/FieldVisitors.h>
#include <Common/typeid_cast.h>
#include <IO/WriteHelpers.h>
#include <ext/range.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_DIVISION;
extern const int ILLEGAL_COLUMN;
extern const int LOGICAL_ERROR;
extern const int TOO_LESS_ARGUMENTS_FOR_FUNCTION;
}
/** Arithmetic operations: +, -, *, /, %,
* intDiv (integer division), unary minus.
* Bitwise operations: |, &, ^, ~.
* Etc.
*/
template <typename A, typename B, typename Op, typename ResultType_ = typename Op::ResultType>
struct BinaryOperationImplBase
{
using ResultType = ResultType_;
static void vector_vector(const PaddedPODArray<A> & a, const PaddedPODArray<B> & b, PaddedPODArray<ResultType> & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::template apply<ResultType>(a[i], b[i]);
}
static void vector_constant(const PaddedPODArray<A> & a, B b, PaddedPODArray<ResultType> & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::template apply<ResultType>(a[i], b);
}
static void constant_vector(A a, const PaddedPODArray<B> & b, PaddedPODArray<ResultType> & c)
{
size_t size = b.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::template apply<ResultType>(a, b[i]);
}
static void constant_constant(A a, B b, ResultType & c)
{
c = Op::template apply<ResultType>(a, b);
}
};
template <typename A, typename B, typename Op, typename ResultType = typename Op::ResultType>
struct BinaryOperationImpl : BinaryOperationImplBase<A, B, Op, ResultType>
{
};
template <typename A, typename Op>
struct UnaryOperationImpl
{
using ResultType = typename Op::ResultType;
static void vector(const PaddedPODArray<A> & a, PaddedPODArray<ResultType> & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::apply(a[i]);
}
static void constant(A a, ResultType & c)
{
c = Op::apply(a);
}
};
template <typename A, typename B>
struct PlusImpl
{
using ResultType = typename NumberTraits::ResultOfAdditionMultiplication<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
/// Next everywhere, static_cast - so that there is no wrong result in expressions of the form Int64 c = UInt32(a) * Int32(-1).
return static_cast<Result>(a) + b;
}
};
template <typename A, typename B>
struct MultiplyImpl
{
using ResultType = typename NumberTraits::ResultOfAdditionMultiplication<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) * b;
}
};
template <typename A, typename B>
struct MinusImpl
{
using ResultType = typename NumberTraits::ResultOfSubtraction<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) - b;
}
};
template <typename A, typename B>
struct DivideFloatingImpl
{
using ResultType = typename NumberTraits::ResultOfFloatingPointDivision<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) / b;
}
};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
template <typename A, typename B>
inline void throwIfDivisionLeadsToFPE(A a, B b)
{
/// Is it better to use siglongjmp instead of checks?
if (unlikely(b == 0))
throw Exception("Division by zero", ErrorCodes::ILLEGAL_DIVISION);
/// http://avva.livejournal.com/2548306.html
if (unlikely(std::is_signed<A>::value && std::is_signed<B>::value && a == std::numeric_limits<A>::min() && b == -1))
throw Exception("Division of minimal signed number by minus one", ErrorCodes::ILLEGAL_DIVISION);
}
template <typename A, typename B>
inline bool divisionLeadsToFPE(A a, B b)
{
/// Is it better to use siglongjmp instead of checks?
if (unlikely(b == 0))
return true;
/// http://avva.livejournal.com/2548306.html
if (unlikely(std::is_signed<A>::value && std::is_signed<B>::value && a == std::numeric_limits<A>::min() && b == -1))
return true;
return false;
}
#pragma GCC diagnostic pop
template <typename A, typename B>
struct DivideIntegralImpl
{
using ResultType = typename NumberTraits::ResultOfIntegerDivision<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
throwIfDivisionLeadsToFPE(a, b);
return a / b;
}
};
template <typename A, typename B>
struct DivideIntegralOrZeroImpl
{
using ResultType = typename NumberTraits::ResultOfIntegerDivision<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return unlikely(divisionLeadsToFPE(a, b)) ? 0 : a / b;
}
};
template <typename A, typename B>
struct ModuloImpl
{
using ResultType = typename NumberTraits::ResultOfModulo<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
throwIfDivisionLeadsToFPE(typename NumberTraits::ToInteger<A>::Type(a), typename NumberTraits::ToInteger<A>::Type(b));
return typename NumberTraits::ToInteger<A>::Type(a)
% typename NumberTraits::ToInteger<A>::Type(b);
}
};
template <typename A, typename B>
struct BitAndImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a)
& static_cast<Result>(b);
}
};
template <typename A, typename B>
struct BitOrImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a)
| static_cast<Result>(b);
}
};
template <typename A, typename B>
struct BitXorImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a)
^ static_cast<Result>(b);
}
};
template <typename A, typename B>
struct BitShiftLeftImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a)
<< static_cast<Result>(b);
}
};
template <typename A, typename B>
struct BitShiftRightImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a)
>> static_cast<Result>(b);
}
};
template <typename A, typename B>
struct BitRotateLeftImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return (static_cast<Result>(a) << static_cast<Result>(b))
| (static_cast<Result>(a) >> ((sizeof(Result) * 8) - static_cast<Result>(b)));
}
};
template <typename A, typename B>
struct BitRotateRightImpl
{
using ResultType = typename NumberTraits::ResultOfBit<A, B>::Type;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return (static_cast<Result>(a) >> static_cast<Result>(b))
| (static_cast<Result>(a) << ((sizeof(Result) * 8) - static_cast<Result>(b)));
}
};
template <typename T>
std::enable_if_t<std::is_integral<T>::value, T> toInteger(T x) { return x; }
template <typename T>
std::enable_if_t<std::is_floating_point<T>::value, Int64> toInteger(T x) { return Int64(x); }
template <typename A, typename B>
struct BitTestImpl
{
using ResultType = UInt8;
template <typename Result = ResultType>
static inline Result apply(A a, B b) { return (toInteger(a) >> toInteger(b)) & 1; };
};
template <typename A, typename B>
struct LeastBaseImpl
{
using ResultType = NumberTraits::ResultOfLeast<A, B>;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
/** gcc 4.9.2 successfully vectorizes a loop from this function. */
return static_cast<Result>(a) < static_cast<Result>(b) ? static_cast<Result>(a) : static_cast<Result>(b);
}
};
template <typename A, typename B>
struct LeastSpecialImpl
{
using ResultType = std::make_signed_t<A>;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
static_assert(std::is_same<Result, ResultType>::value, "ResultType != Result");
return accurate::lessOp(a, b) ? static_cast<Result>(a) : static_cast<Result>(b);
}
};
template <typename A, typename B>
using LeastImpl = std::conditional_t<!NumberTraits::LeastGreatestSpecialCase<A, B>::value, LeastBaseImpl<A, B>, LeastSpecialImpl<A, B>>;
template <typename A, typename B>
struct GreatestBaseImpl
{
using ResultType = NumberTraits::ResultOfGreatest<A, B>;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
return static_cast<Result>(a) > static_cast<Result>(b) ? static_cast<Result>(a) : static_cast<Result>(b);
}
};
template <typename A, typename B>
struct GreatestSpecialImpl
{
using ResultType = std::make_unsigned_t<A>;
template <typename Result = ResultType>
static inline Result apply(A a, B b)
{
static_assert(std::is_same<Result, ResultType>::value, "ResultType != Result");
return accurate::greaterOp(a, b) ? static_cast<Result>(a) : static_cast<Result>(b);
}
};
template <typename A, typename B>
using GreatestImpl = std::conditional_t<!NumberTraits::LeastGreatestSpecialCase<A, B>::value, GreatestBaseImpl<A, B>, GreatestSpecialImpl<A, B>>;
template <typename A>
struct NegateImpl
{
using ResultType = typename NumberTraits::ResultOfNegate<A>::Type;
static inline ResultType apply(A a)
{
return -static_cast<ResultType>(a);
}
};
template <typename A>
struct BitNotImpl
{
using ResultType = typename NumberTraits::ResultOfBitNot<A>::Type;
static inline ResultType apply(A a)
{
return ~static_cast<ResultType>(a);
}
};
template <typename A>
struct AbsImpl
{
using ResultType = typename NumberTraits::ResultOfAbs<A>::Type;
template <typename T = A>
static inline ResultType apply(T a,
typename std::enable_if<std::is_integral<T>::value && std::is_signed<T>::value, void>::type * = nullptr)
{
return a < 0 ? static_cast<ResultType>(~a) + 1 : a;
}
template <typename T = A>
static inline ResultType apply(T a,
typename std::enable_if<std::is_integral<T>::value && std::is_unsigned<T>::value, void>::type * = nullptr)
{
return static_cast<ResultType>(a);
}
template <typename T = A>
static inline ResultType apply(T a, typename std::enable_if<std::is_floating_point<T>::value, void>::type * = nullptr)
{
return static_cast<ResultType>(std::abs(a));
}
};
/// this one is just for convenience
template <bool B, typename T1, typename T2> using If = typename std::conditional<B, T1, T2>::type;
/// these ones for better semantics
template <typename T> using Then = T;
template <typename T> using Else = T;
/// Used to indicate undefined operation
struct InvalidType;
template <typename T>
struct DataTypeFromFieldType
{
using Type = DataTypeNumber<T>;
};
template <>
struct DataTypeFromFieldType<NumberTraits::Error>
{
using Type = InvalidType;
};
template <typename DataType> struct IsIntegral { static constexpr auto value = false; };
template <> struct IsIntegral<DataTypeUInt8> { static constexpr auto value = true; };
template <> struct IsIntegral<DataTypeUInt16> { static constexpr auto value = true; };
template <> struct IsIntegral<DataTypeUInt32> { static constexpr auto value = true; };
template <> struct IsIntegral<DataTypeUInt64> { static constexpr auto value = true; };
template <> struct IsIntegral<DataTypeInt8> { static constexpr auto value = true; };
template <> struct IsIntegral<DataTypeInt16> { static constexpr auto value = true; };
template <> struct IsIntegral<DataTypeInt32> { static constexpr auto value = true; };
template <> struct IsIntegral<DataTypeInt64> { static constexpr auto value = true; };
template <typename DataType> struct IsFloating { static constexpr auto value = false; };
template <> struct IsFloating<DataTypeFloat32> { static constexpr auto value = true; };
template <> struct IsFloating<DataTypeFloat64> { static constexpr auto value = true; };
template <typename DataType> struct IsNumeric
{
static constexpr auto value = IsIntegral<DataType>::value || IsFloating<DataType>::value;
};
template <typename DataType> struct IsDateOrDateTime { static constexpr auto value = false; };
template <> struct IsDateOrDateTime<DataTypeDate> { static constexpr auto value = true; };
template <> struct IsDateOrDateTime<DataTypeDateTime> { static constexpr auto value = true; };
/** Returns appropriate result type for binary operator on dates (or datetimes):
* Date + Integral -> Date
* Integral + Date -> Date
* Date - Date -> Int32
* Date - Integral -> Date
* least(Date, Date) -> Date
* greatest(Date, Date) -> Date
* All other operations are not defined and return InvalidType, operations on
* distinct date types are also undefined (e.g. DataTypeDate - DataTypeDateTime)
*/
template <template <typename, typename> class Operation, typename LeftDataType, typename RightDataType>
struct DateBinaryOperationTraits
{
using T0 = typename LeftDataType::FieldType;
using T1 = typename RightDataType::FieldType;
using Op = Operation<T0, T1>;
using ResultDataType =
If<std::is_same<Op, PlusImpl<T0, T1>>::value,
Then<
If<IsDateOrDateTime<LeftDataType>::value && IsIntegral<RightDataType>::value,
Then<LeftDataType>,
Else<
If<IsIntegral<LeftDataType>::value && IsDateOrDateTime<RightDataType>::value,
Then<RightDataType>,
Else<InvalidType>>>>>,
Else<
If<std::is_same<Op, MinusImpl<T0, T1>>::value,
Then<
If<IsDateOrDateTime<LeftDataType>::value,
Then<
If<std::is_same<LeftDataType, RightDataType>::value,
Then<DataTypeInt32>,
Else<
If<IsIntegral<RightDataType>::value,
Then<LeftDataType>,
Else<InvalidType>>>>>,
Else<InvalidType>>>,
Else<
If<std::is_same<T0, T1>::value
&& (std::is_same<Op, LeastImpl<T0, T1>>::value || std::is_same<Op, GreatestImpl<T0, T1>>::value),
Then<LeftDataType>,
Else<InvalidType>>>>>>;
};
/// Decides among date and numeric operations
template <template <typename, typename> class Operation, typename LeftDataType, typename RightDataType>
struct BinaryOperationTraits
{
using ResultDataType =
If<IsDateOrDateTime<LeftDataType>::value || IsDateOrDateTime<RightDataType>::value,
Then<
typename DateBinaryOperationTraits<
Operation, LeftDataType, RightDataType>::ResultDataType>,
Else<
typename DataTypeFromFieldType<
typename Operation<
typename LeftDataType::FieldType,
typename RightDataType::FieldType>::ResultType>::Type>>;
};
template <template <typename, typename> class Op, typename Name>
class FunctionBinaryArithmetic : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context & context) { return std::make_shared<FunctionBinaryArithmetic>(); }
private:
/// Overload for InvalidType
template <typename ResultDataType,
typename std::enable_if<std::is_same<ResultDataType, InvalidType>::value>::type * = nullptr>
bool checkRightTypeImpl(DataTypePtr & type_res) const
{
return false;
}
/// Overload for well-defined operations
template <typename ResultDataType,
typename std::enable_if<!std::is_same<ResultDataType, InvalidType>::value>::type * = nullptr>
bool checkRightTypeImpl(DataTypePtr & type_res) const
{
type_res = std::make_shared<ResultDataType>();
return true;
}
template <typename LeftDataType, typename RightDataType>
bool checkRightType(const DataTypes & arguments, DataTypePtr & type_res) const
{
using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType;
if (typeid_cast<const RightDataType *>(arguments[1].get()))
return checkRightTypeImpl<ResultDataType>(type_res);
return false;
}
template <typename T0>
bool checkLeftType(const DataTypes & arguments, DataTypePtr & type_res) const
{
if (typeid_cast<const T0 *>(arguments[0].get()))
{
if ( checkRightType<T0, DataTypeDate>(arguments, type_res)
|| checkRightType<T0, DataTypeDateTime>(arguments, type_res)
|| checkRightType<T0, DataTypeUInt8>(arguments, type_res)
|| checkRightType<T0, DataTypeUInt16>(arguments, type_res)
|| checkRightType<T0, DataTypeUInt32>(arguments, type_res)
|| checkRightType<T0, DataTypeUInt64>(arguments, type_res)
|| checkRightType<T0, DataTypeInt8>(arguments, type_res)
|| checkRightType<T0, DataTypeInt16>(arguments, type_res)
|| checkRightType<T0, DataTypeInt32>(arguments, type_res)
|| checkRightType<T0, DataTypeInt64>(arguments, type_res)
|| checkRightType<T0, DataTypeFloat32>(arguments, type_res)
|| checkRightType<T0, DataTypeFloat64>(arguments, type_res))
return true;
}
return false;
}
/// Overload for date operations
template <typename LeftDataType, typename RightDataType, typename ColumnType>
bool executeRightType(Block & block, const ColumnNumbers & arguments, const size_t result, const ColumnType * col_left)
{
if (!typeid_cast<const RightDataType *>(block.getByPosition(arguments[1]).type.get()))
return false;
using ResultDataType = typename BinaryOperationTraits<Op, LeftDataType, RightDataType>::ResultDataType;
return executeRightTypeDispatch<LeftDataType, RightDataType, ResultDataType>(
block, arguments, result, col_left);
}
/// Overload for InvalidType
template <typename LeftDataType, typename RightDataType, typename ResultDataType, typename ColumnType,
typename std::enable_if<std::is_same<ResultDataType, InvalidType>::value>::type * = nullptr>
bool executeRightTypeDispatch(Block & block, const ColumnNumbers & arguments, const size_t result,
const ColumnType * col_left)
{
throw Exception("Types " + String(TypeName<typename LeftDataType::FieldType>::get())
+ " and " + String(TypeName<typename LeftDataType::FieldType>::get())
+ " are incompatible for function " + getName() + " or not upscaleable to common type", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
/// Overload for well-defined operations
template <typename LeftDataType, typename RightDataType, typename ResultDataType, typename ColumnType,
typename std::enable_if<!std::is_same<ResultDataType, InvalidType>::value>::type * = nullptr>
bool executeRightTypeDispatch(Block & block, const ColumnNumbers & arguments, const size_t result,
const ColumnType * col_left)
{
using T0 = typename LeftDataType::FieldType;
using T1 = typename RightDataType::FieldType;
using ResultType = typename ResultDataType::FieldType;
return executeRightTypeImpl<T0, T1, ResultType>(block, arguments, result, col_left);
}
/// ColumnVector overload
template <typename T0, typename T1, typename ResultType = typename Op<T0, T1>::ResultType>
bool executeRightTypeImpl(Block & block, const ColumnNumbers & arguments, size_t result, const ColumnVector<T0> * col_left)
{
if (auto col_right = checkAndGetColumn<ColumnVector<T1>>(block.getByPosition(arguments[1]).column.get()))
{
auto col_res = std::make_shared<ColumnVector<ResultType>>();
block.getByPosition(result).column = col_res;
auto & vec_res = col_res->getData();
vec_res.resize(col_left->getData().size());
BinaryOperationImpl<T0, T1, Op<T0, T1>, ResultType>::vector_vector(col_left->getData(), col_right->getData(), vec_res);
return true;
}
else if (auto col_right = checkAndGetColumnConst<ColumnVector<T1>>(block.getByPosition(arguments[1]).column.get()))
{
auto col_res = std::make_shared<ColumnVector<ResultType>>();
block.getByPosition(result).column = col_res;
auto & vec_res = col_res->getData();
vec_res.resize(col_left->getData().size());
BinaryOperationImpl<T0, T1, Op<T0, T1>, ResultType>::vector_constant(col_left->getData(), col_right->template getValue<T1>(), vec_res);
return true;
}
throw Exception("Logical error: unexpected type of column", ErrorCodes::LOGICAL_ERROR);
}
/// ColumnConst overload
template <typename T0, typename T1, typename ResultType = typename Op<T0, T1>::ResultType>
bool executeRightTypeImpl(Block & block, const ColumnNumbers & arguments, size_t result, const ColumnConst * col_left)
{
if (auto col_right = checkAndGetColumn<ColumnVector<T1>>(block.getByPosition(arguments[1]).column.get()))
{
auto col_res = std::make_shared<ColumnVector<ResultType>>();
block.getByPosition(result).column = col_res;
auto & vec_res = col_res->getData();
vec_res.resize(col_left->size());
BinaryOperationImpl<T0, T1, Op<T0, T1>, ResultType>::constant_vector(col_left->template getValue<T0>(), col_right->getData(), vec_res);
return true;
}
else if (auto col_right = checkAndGetColumnConst<ColumnVector<T1>>(block.getByPosition(arguments[1]).column.get()))
{
ResultType res = 0;
BinaryOperationImpl<T0, T1, Op<T0, T1>, ResultType>::constant_constant(col_left->template getValue<T0>(), col_right->template getValue<T1>(), res);
block.getByPosition(result).column = DataTypeNumber<ResultType>().createConstColumn(col_left->size(), toField(res));
return true;
}
return false;
}
template <typename LeftDataType>
bool executeLeftType(Block & block, const ColumnNumbers & arguments, const size_t result)
{
if (!typeid_cast<const LeftDataType *>(block.getByPosition(arguments[0]).type.get()))
return false;
return executeLeftTypeImpl<LeftDataType>(block, arguments, result);
}
template <typename LeftDataType>
bool executeLeftTypeImpl(Block & block, const ColumnNumbers & arguments, const size_t result)
{
if (auto col_left = checkAndGetColumn<ColumnVector<typename LeftDataType::FieldType>>(block.getByPosition(arguments[0]).column.get()))
{
if ( executeRightType<LeftDataType, DataTypeDate>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeDateTime>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeUInt8>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeUInt16>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeUInt32>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeUInt64>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeInt8>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeInt16>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeInt32>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeInt64>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeFloat32>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeFloat64>(block, arguments, result, col_left))
return true;
else
throw Exception("Illegal column " + block.getByPosition(arguments[1]).column->getName()
+ " of second argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
else if (auto col_left = checkAndGetColumnConst<ColumnVector<typename LeftDataType::FieldType>>(block.getByPosition(arguments[0]).column.get()))
{
if ( executeRightType<LeftDataType, DataTypeDate>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeDateTime>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeUInt8>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeUInt16>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeUInt32>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeUInt64>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeInt8>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeInt16>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeInt32>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeInt64>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeFloat32>(block, arguments, result, col_left)
|| executeRightType<LeftDataType, DataTypeFloat64>(block, arguments, result, col_left))
return true;
else
throw Exception("Illegal column " + block.getByPosition(arguments[1]).column->getName()
+ " of second argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
return false;
}
public:
String getName() const override
{
return name;
}
size_t getNumberOfArguments() const override { return 2; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
DataTypePtr type_res;
if (!( checkLeftType<DataTypeDate>(arguments, type_res)
|| checkLeftType<DataTypeDateTime>(arguments, type_res)
|| checkLeftType<DataTypeUInt8>(arguments, type_res)
|| checkLeftType<DataTypeUInt16>(arguments, type_res)
|| checkLeftType<DataTypeUInt32>(arguments, type_res)
|| checkLeftType<DataTypeUInt64>(arguments, type_res)
|| checkLeftType<DataTypeInt8>(arguments, type_res)
|| checkLeftType<DataTypeInt16>(arguments, type_res)
|| checkLeftType<DataTypeInt32>(arguments, type_res)
|| checkLeftType<DataTypeInt64>(arguments, type_res)
|| checkLeftType<DataTypeFloat32>(arguments, type_res)
|| checkLeftType<DataTypeFloat64>(arguments, type_res)))
throw Exception("Illegal type " + arguments[0]->getName() + " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return type_res;
}
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result) override
{
if (!( executeLeftType<DataTypeDate>(block, arguments, result)
|| executeLeftType<DataTypeDateTime>(block, arguments, result)
|| executeLeftType<DataTypeUInt8>(block, arguments, result)
|| executeLeftType<DataTypeUInt16>(block, arguments, result)
|| executeLeftType<DataTypeUInt32>(block, arguments, result)
|| executeLeftType<DataTypeUInt64>(block, arguments, result)
|| executeLeftType<DataTypeInt8>(block, arguments, result)
|| executeLeftType<DataTypeInt16>(block, arguments, result)
|| executeLeftType<DataTypeInt32>(block, arguments, result)
|| executeLeftType<DataTypeInt64>(block, arguments, result)
|| executeLeftType<DataTypeFloat32>(block, arguments, result)
|| executeLeftType<DataTypeFloat64>(block, arguments, result)))
throw Exception("Illegal column " + block.getByPosition(arguments[0]).column->getName()
+ " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
};
template <typename FunctionName>
struct FunctionUnaryArithmeticMonotonicity;
template <template <typename> class Op, typename Name, bool is_injective>
class FunctionUnaryArithmetic : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context & context) { return std::make_shared<FunctionUnaryArithmetic>(); }
private:
template <typename T0>
bool checkType(const DataTypes & arguments, DataTypePtr & result) const
{
if (typeid_cast<const T0 *>(arguments[0].get()))
{
result = std::make_shared<DataTypeNumber<typename Op<typename T0::FieldType>::ResultType>>();
return true;
}
return false;
}
template <typename T0>
bool executeType(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (const ColumnVector<T0> * col = checkAndGetColumn<ColumnVector<T0>>(block.getByPosition(arguments[0]).column.get()))
{
using ResultType = typename Op<T0>::ResultType;
std::shared_ptr<ColumnVector<ResultType>> col_res = std::make_shared<ColumnVector<ResultType>>();
block.getByPosition(result).column = col_res;
typename ColumnVector<ResultType>::Container_t & vec_res = col_res->getData();
vec_res.resize(col->getData().size());
UnaryOperationImpl<T0, Op<T0>>::vector(col->getData(), vec_res);
return true;
}
return false;
}
public:
String getName() const override
{
return name;
}
size_t getNumberOfArguments() const override { return 1; }
bool isInjective(const Block &) override { return is_injective; }
bool useDefaultImplementationForConstants() const override { return true; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
DataTypePtr result;
if (!( checkType<DataTypeUInt8>(arguments, result)
|| checkType<DataTypeUInt16>(arguments, result)
|| checkType<DataTypeUInt32>(arguments, result)
|| checkType<DataTypeUInt64>(arguments, result)
|| checkType<DataTypeInt8>(arguments, result)
|| checkType<DataTypeInt16>(arguments, result)
|| checkType<DataTypeInt32>(arguments, result)
|| checkType<DataTypeInt64>(arguments, result)
|| checkType<DataTypeFloat32>(arguments, result)
|| checkType<DataTypeFloat64>(arguments, result)))
throw Exception("Illegal type " + arguments[0]->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return result;
}
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result) override
{
if (!( executeType<UInt8>(block, arguments, result)
|| executeType<UInt16>(block, arguments, result)
|| executeType<UInt32>(block, arguments, result)
|| executeType<UInt64>(block, arguments, result)
|| executeType<Int8>(block, arguments, result)
|| executeType<Int16>(block, arguments, result)
|| executeType<Int32>(block, arguments, result)
|| executeType<Int64>(block, arguments, result)
|| executeType<Float32>(block, arguments, result)
|| executeType<Float64>(block, arguments, result)))
throw Exception("Illegal column " + block.getByPosition(arguments[0]).column->getName()
+ " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
bool hasInformationAboutMonotonicity() const override
{
return FunctionUnaryArithmeticMonotonicity<Name>::has();
}
Monotonicity getMonotonicityForRange(const IDataType & type, const Field & left, const Field & right) const override
{
return FunctionUnaryArithmeticMonotonicity<Name>::get(left, right);
}
};
struct NamePlus { static constexpr auto name = "plus"; };
struct NameMinus { static constexpr auto name = "minus"; };
struct NameMultiply { static constexpr auto name = "multiply"; };
struct NameDivideFloating { static constexpr auto name = "divide"; };
struct NameDivideIntegral { static constexpr auto name = "intDiv"; };
struct NameDivideIntegralOrZero { static constexpr auto name = "intDivOrZero"; };
struct NameModulo { static constexpr auto name = "modulo"; };
struct NameNegate { static constexpr auto name = "negate"; };
struct NameAbs { static constexpr auto name = "abs"; };
struct NameBitAnd { static constexpr auto name = "bitAnd"; };
struct NameBitOr { static constexpr auto name = "bitOr"; };
struct NameBitXor { static constexpr auto name = "bitXor"; };
struct NameBitNot { static constexpr auto name = "bitNot"; };
struct NameBitShiftLeft { static constexpr auto name = "bitShiftLeft"; };
struct NameBitShiftRight { static constexpr auto name = "bitShiftRight"; };
struct NameBitRotateLeft { static constexpr auto name = "bitRotateLeft"; };
struct NameBitRotateRight { static constexpr auto name = "bitRotateRight"; };
struct NameBitTest { static constexpr auto name = "bitTest"; };
struct NameBitTestAny { static constexpr auto name = "bitTestAny"; };
struct NameBitTestAll { static constexpr auto name = "bitTestAll"; };
struct NameLeast { static constexpr auto name = "least"; };
struct NameGreatest { static constexpr auto name = "greatest"; };
using FunctionPlus = FunctionBinaryArithmetic<PlusImpl, NamePlus>;
using FunctionMinus = FunctionBinaryArithmetic<MinusImpl, NameMinus>;
using FunctionMultiply = FunctionBinaryArithmetic<MultiplyImpl, NameMultiply>;
using FunctionDivideFloating = FunctionBinaryArithmetic<DivideFloatingImpl, NameDivideFloating>;
using FunctionDivideIntegral = FunctionBinaryArithmetic<DivideIntegralImpl, NameDivideIntegral>;
using FunctionDivideIntegralOrZero = FunctionBinaryArithmetic<DivideIntegralOrZeroImpl, NameDivideIntegralOrZero>;
using FunctionModulo = FunctionBinaryArithmetic<ModuloImpl, NameModulo>;
using FunctionNegate = FunctionUnaryArithmetic<NegateImpl, NameNegate, true>;
using FunctionAbs = FunctionUnaryArithmetic<AbsImpl, NameAbs, false>;
using FunctionBitAnd = FunctionBinaryArithmetic<BitAndImpl, NameBitAnd>;
using FunctionBitOr = FunctionBinaryArithmetic<BitOrImpl, NameBitOr>;
using FunctionBitXor = FunctionBinaryArithmetic<BitXorImpl, NameBitXor>;
using FunctionBitNot = FunctionUnaryArithmetic<BitNotImpl, NameBitNot, true>;
using FunctionBitShiftLeft = FunctionBinaryArithmetic<BitShiftLeftImpl, NameBitShiftLeft>;
using FunctionBitShiftRight = FunctionBinaryArithmetic<BitShiftRightImpl, NameBitShiftRight>;
using FunctionBitRotateLeft = FunctionBinaryArithmetic<BitRotateLeftImpl, NameBitRotateLeft>;
using FunctionBitRotateRight = FunctionBinaryArithmetic<BitRotateRightImpl, NameBitRotateRight>;
using FunctionBitTest = FunctionBinaryArithmetic<BitTestImpl, NameBitTest>;
using FunctionLeast = FunctionBinaryArithmetic<LeastImpl, NameLeast>;
using FunctionGreatest = FunctionBinaryArithmetic<GreatestImpl, NameGreatest>;
/// Monotonicity properties for some functions.
template <> struct FunctionUnaryArithmeticMonotonicity<NameNegate>
{
static bool has() { return true; }
static IFunction::Monotonicity get(const Field & left, const Field & right)
{
return { true, false };
}
};
template <> struct FunctionUnaryArithmeticMonotonicity<NameAbs>
{
static bool has() { return true; }
static IFunction::Monotonicity get(const Field & left, const Field & right)
{
Float64 left_float = left.isNull() ? -std::numeric_limits<Float64>::infinity() : applyVisitor(FieldVisitorConvertToNumber<Float64>(), left);
Float64 right_float = right.isNull() ? std::numeric_limits<Float64>::infinity() : applyVisitor(FieldVisitorConvertToNumber<Float64>(), right);
if ((left_float < 0 && right_float > 0) || (left_float > 0 && right_float < 0))
return {};
return { true, (left_float > 0) };
}
};
template <> struct FunctionUnaryArithmeticMonotonicity<NameBitNot>
{
static bool has() { return false; }
static IFunction::Monotonicity get(const Field & left, const Field & right)
{
return {};
}
};
}
/// Optimizations for integer division by a constant.
#if __SSE2__
#define LIBDIVIDE_USE_SSE2 1
#endif
#include <libdivide.h>
namespace DB
{
template <typename A, typename B>
struct DivideIntegralByConstantImpl
: BinaryOperationImplBase<A, B, DivideIntegralImpl<A, B>>
{
using ResultType = typename DivideIntegralImpl<A, B>::ResultType;
static void vector_constant(const PaddedPODArray<A> & a, B b, PaddedPODArray<ResultType> & c)
{
if (unlikely(b == 0))
throw Exception("Division by zero", ErrorCodes::ILLEGAL_DIVISION);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
if (unlikely(std::is_signed<B>::value && b == -1))
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = -c[i];
return;
}
#pragma GCC diagnostic pop
libdivide::divider<A> divider(b);
size_t size = a.size();
const A * a_pos = &a[0];
const A * a_end = a_pos + size;
ResultType * c_pos = &c[0];
#if __SSE2__
static constexpr size_t values_per_sse_register = 16 / sizeof(A);
const A * a_end_sse = a_pos + size / values_per_sse_register * values_per_sse_register;
while (a_pos < a_end_sse)
{
_mm_storeu_si128(reinterpret_cast<__m128i *>(c_pos),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(a_pos)) / divider);
a_pos += values_per_sse_register;
c_pos += values_per_sse_register;
}
#endif
while (a_pos < a_end)
{
*c_pos = *a_pos / divider;
++a_pos;
++c_pos;
}
}
};
template <typename A, typename B>
struct ModuloByConstantImpl
: BinaryOperationImplBase<A, B, ModuloImpl<A, B>>
{
using ResultType = typename ModuloImpl<A, B>::ResultType;
static void vector_constant(const PaddedPODArray<A> & a, B b, PaddedPODArray<ResultType> & c)
{
if (unlikely(b == 0))
throw Exception("Division by zero", ErrorCodes::ILLEGAL_DIVISION);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
if (unlikely((std::is_signed<B>::value && b == -1) || b == 1))
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = 0;
return;
}
#pragma GCC diagnostic pop
libdivide::divider<A> divider(b);
/// Here we failed to make the SSE variant from libdivide give an advantage.
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = a[i] - (a[i] / divider) * b; /// NOTE: perhaps, the division semantics with the remainder of negative numbers is not preserved.
}
};
/** Specializations are specified for dividing numbers of the type UInt64 and UInt32 by the numbers of the same sign.
* Can be expanded to all possible combinations, but more code is needed.
*/
template <> struct BinaryOperationImpl<UInt64, UInt8, DivideIntegralImpl<UInt64, UInt8>> : DivideIntegralByConstantImpl<UInt64, UInt8> {};
template <> struct BinaryOperationImpl<UInt64, UInt16, DivideIntegralImpl<UInt64, UInt16>> : DivideIntegralByConstantImpl<UInt64, UInt16> {};
template <> struct BinaryOperationImpl<UInt64, UInt32, DivideIntegralImpl<UInt64, UInt32>> : DivideIntegralByConstantImpl<UInt64, UInt32> {};
template <> struct BinaryOperationImpl<UInt64, UInt64, DivideIntegralImpl<UInt64, UInt64>> : DivideIntegralByConstantImpl<UInt64, UInt64> {};
template <> struct BinaryOperationImpl<UInt32, UInt8, DivideIntegralImpl<UInt32, UInt8>> : DivideIntegralByConstantImpl<UInt32, UInt8> {};
template <> struct BinaryOperationImpl<UInt32, UInt16, DivideIntegralImpl<UInt32, UInt16>> : DivideIntegralByConstantImpl<UInt32, UInt16> {};
template <> struct BinaryOperationImpl<UInt32, UInt32, DivideIntegralImpl<UInt32, UInt32>> : DivideIntegralByConstantImpl<UInt32, UInt32> {};
template <> struct BinaryOperationImpl<UInt32, UInt64, DivideIntegralImpl<UInt32, UInt64>> : DivideIntegralByConstantImpl<UInt32, UInt64> {};
template <> struct BinaryOperationImpl<Int64, Int8, DivideIntegralImpl<Int64, Int8>> : DivideIntegralByConstantImpl<Int64, Int8> {};
template <> struct BinaryOperationImpl<Int64, Int16, DivideIntegralImpl<Int64, Int16>> : DivideIntegralByConstantImpl<Int64, Int16> {};
template <> struct BinaryOperationImpl<Int64, Int32, DivideIntegralImpl<Int64, Int32>> : DivideIntegralByConstantImpl<Int64, Int32> {};
template <> struct BinaryOperationImpl<Int64, Int64, DivideIntegralImpl<Int64, Int64>> : DivideIntegralByConstantImpl<Int64, Int64> {};
template <> struct BinaryOperationImpl<Int32, Int8, DivideIntegralImpl<Int32, Int8>> : DivideIntegralByConstantImpl<Int32, Int8> {};
template <> struct BinaryOperationImpl<Int32, Int16, DivideIntegralImpl<Int32, Int16>> : DivideIntegralByConstantImpl<Int32, Int16> {};
template <> struct BinaryOperationImpl<Int32, Int32, DivideIntegralImpl<Int32, Int32>> : DivideIntegralByConstantImpl<Int32, Int32> {};
template <> struct BinaryOperationImpl<Int32, Int64, DivideIntegralImpl<Int32, Int64>> : DivideIntegralByConstantImpl<Int32, Int64> {};
template <> struct BinaryOperationImpl<UInt64, UInt8, ModuloImpl<UInt64, UInt8>> : ModuloByConstantImpl<UInt64, UInt8> {};
template <> struct BinaryOperationImpl<UInt64, UInt16, ModuloImpl<UInt64, UInt16>> : ModuloByConstantImpl<UInt64, UInt16> {};
template <> struct BinaryOperationImpl<UInt64, UInt32, ModuloImpl<UInt64, UInt32>> : ModuloByConstantImpl<UInt64, UInt32> {};
template <> struct BinaryOperationImpl<UInt64, UInt64, ModuloImpl<UInt64, UInt64>> : ModuloByConstantImpl<UInt64, UInt64> {};
template <> struct BinaryOperationImpl<UInt32, UInt8, ModuloImpl<UInt32, UInt8>> : ModuloByConstantImpl<UInt32, UInt8> {};
template <> struct BinaryOperationImpl<UInt32, UInt16, ModuloImpl<UInt32, UInt16>> : ModuloByConstantImpl<UInt32, UInt16> {};
template <> struct BinaryOperationImpl<UInt32, UInt32, ModuloImpl<UInt32, UInt32>> : ModuloByConstantImpl<UInt32, UInt32> {};
template <> struct BinaryOperationImpl<UInt32, UInt64, ModuloImpl<UInt32, UInt64>> : ModuloByConstantImpl<UInt32, UInt64> {};
template <> struct BinaryOperationImpl<Int64, Int8, ModuloImpl<Int64, Int8>> : ModuloByConstantImpl<Int64, Int8> {};
template <> struct BinaryOperationImpl<Int64, Int16, ModuloImpl<Int64, Int16>> : ModuloByConstantImpl<Int64, Int16> {};
template <> struct BinaryOperationImpl<Int64, Int32, ModuloImpl<Int64, Int32>> : ModuloByConstantImpl<Int64, Int32> {};
template <> struct BinaryOperationImpl<Int64, Int64, ModuloImpl<Int64, Int64>> : ModuloByConstantImpl<Int64, Int64> {};
template <> struct BinaryOperationImpl<Int32, Int8, ModuloImpl<Int32, Int8>> : ModuloByConstantImpl<Int32, Int8> {};
template <> struct BinaryOperationImpl<Int32, Int16, ModuloImpl<Int32, Int16>> : ModuloByConstantImpl<Int32, Int16> {};
template <> struct BinaryOperationImpl<Int32, Int32, ModuloImpl<Int32, Int32>> : ModuloByConstantImpl<Int32, Int32> {};
template <> struct BinaryOperationImpl<Int32, Int64, ModuloImpl<Int32, Int64>> : ModuloByConstantImpl<Int32, Int64> {};
template <typename Impl, typename Name>
struct FunctionBitTestMany : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionBitTestMany>(); }
String getName() const override { return name; }
bool isVariadic() const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (arguments.size() < 2)
throw Exception{
"Number of arguments for function " + getName() + " doesn't match: passed "
+ toString(arguments.size()) + ", should be at least 2.",
ErrorCodes::TOO_LESS_ARGUMENTS_FOR_FUNCTION};
const auto first_arg = arguments.front().get();
if (!checkDataType<DataTypeUInt8>(first_arg)
&& !checkDataType<DataTypeUInt16>(first_arg)
&& !checkDataType<DataTypeUInt32>(first_arg)
&& !checkDataType<DataTypeUInt64>(first_arg)
&& !checkDataType<DataTypeInt8>(first_arg)
&& !checkDataType<DataTypeInt16>(first_arg)
&& !checkDataType<DataTypeInt32>(first_arg)
&& !checkDataType<DataTypeInt64>(first_arg))
throw Exception{
"Illegal type " + first_arg->getName() + " of first argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
for (const auto i : ext::range(1, arguments.size()))
{
const auto pos_arg = arguments[i].get();
if (!checkDataType<DataTypeUInt8>(pos_arg)
&& !checkDataType<DataTypeUInt16>(pos_arg)
&& !checkDataType<DataTypeUInt32>(pos_arg)
&& !checkDataType<DataTypeUInt64>(pos_arg))
throw Exception{
"Illegal type " + pos_arg->getName() + " of " + toString(i) + " argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT};
}
return std::make_shared<DataTypeUInt8>();
}
void executeImpl(Block & block, const ColumnNumbers & arguments, const size_t result) override
{
const auto value_col = block.getByPosition(arguments.front()).column.get();
if (!execute<UInt8>(block, arguments, result, value_col)
&& !execute<UInt16>(block, arguments, result, value_col)
&& !execute<UInt32>(block, arguments, result, value_col)
&& !execute<UInt64>(block, arguments, result, value_col)
&& !execute<Int8>(block, arguments, result, value_col)
&& !execute<Int16>(block, arguments, result, value_col)
&& !execute<Int32>(block, arguments, result, value_col)
&& !execute<Int64>(block, arguments, result, value_col))
throw Exception{
"Illegal column " + value_col->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN};
}
private:
template <typename T>
bool execute(
Block & block, const ColumnNumbers & arguments, const size_t result,
const IColumn * const value_col_untyped)
{
if (const auto value_col = checkAndGetColumn<ColumnVector<T>>(value_col_untyped))
{
const auto size = value_col->size();
bool is_const;
const auto mask = createConstMask<T>(size, block, arguments, is_const);
const auto & val = value_col->getData();
const auto out_col = std::make_shared<ColumnVector<UInt8>>(size);
auto & out = out_col->getData();
if (is_const)
{
for (const auto i : ext::range(0, size))
out[i] = Impl::apply(val[i], mask);
}
else
{
const auto mask = createMask<T>(size, block, arguments);
for (const auto i : ext::range(0, size))
out[i] = Impl::apply(val[i], mask[i]);
}
block.getByPosition(result).column = out_col;
return true;
}
else if (const auto value_col = checkAndGetColumnConst<ColumnVector<T>>(value_col_untyped))
{
const auto size = value_col->size();
bool is_const;
const auto mask = createConstMask<T>(size, block, arguments, is_const);
const auto val = value_col->template getValue<T>();
if (is_const)
{
block.getByPosition(result).column = block.getByPosition(result).type->createConstColumn(size, toField(Impl::apply(val, mask)));
}
else
{
const auto mask = createMask<T>(size, block, arguments);
const auto out_col = std::make_shared<ColumnVector<UInt8>>(size);
auto & out = out_col->getData();
for (const auto i : ext::range(0, size))
out[i] = Impl::apply(val, mask[i]);
block.getByPosition(result).column = out_col;
}
return true;
}
return false;
}
template <typename ValueType>
ValueType createConstMask(const size_t size, const Block & block, const ColumnNumbers & arguments, bool & is_const)
{
is_const = true;
ValueType mask = 0;
for (const auto i : ext::range(1, arguments.size()))
{
if (auto pos_col_const = checkAndGetColumnConst<ColumnVector<ValueType>>(block.getByPosition(arguments[i]).column.get()))
{
const auto pos = pos_col_const->template getValue<ValueType>();
mask = mask | (1 << pos);
}
else
{
is_const = false;
return {};
}
}
return mask;
}
template <typename ValueType>
PaddedPODArray<ValueType> createMask(const size_t size, const Block & block, const ColumnNumbers & arguments)
{
PaddedPODArray<ValueType> mask(size, ValueType{});
for (const auto i : ext::range(1, arguments.size()))
{
const auto pos_col = block.getByPosition(arguments[i]).column.get();
if (!addToMaskImpl<UInt8>(mask, pos_col)
&& !addToMaskImpl<UInt16>(mask, pos_col)
&& !addToMaskImpl<UInt32>(mask, pos_col)
&& !addToMaskImpl<UInt64>(mask, pos_col))
throw Exception{
"Illegal column " + pos_col->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN};
}
return mask;
}
template <typename PosType, typename ValueType>
bool addToMaskImpl(PaddedPODArray<ValueType> & mask, const IColumn * const pos_col_untyped)
{
if (const auto pos_col = checkAndGetColumn<ColumnVector<PosType>>(pos_col_untyped))
{
const auto & pos = pos_col->getData();
for (const auto i : ext::range(0, mask.size()))
mask[i] = mask[i] | (1 << pos[i]);
return true;
}
else if (const auto pos_col = checkAndGetColumnConst<ColumnVector<PosType>>(pos_col_untyped))
{
const auto & pos = pos_col->template getValue<PosType>();
const auto new_mask = 1 << pos;
for (const auto i : ext::range(0, mask.size()))
mask[i] = mask[i] | new_mask;
return true;
}
return false;
}
};
struct BitTestAnyImpl
{
template <typename A, typename B>
static inline UInt8 apply(A a, B b) { return (a & b) != 0; };
};
struct BitTestAllImpl
{
template <typename A, typename B>
static inline UInt8 apply(A a, B b) { return (a & b) == b; };
};
using FunctionBitTestAny = FunctionBitTestMany<BitTestAnyImpl, NameBitTestAny>;
using FunctionBitTestAll = FunctionBitTestMany<BitTestAllImpl, NameBitTestAll>;
}