mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-05 15:21:43 +00:00
6d5bfc8c6f
* Better code [#CLICKHOUSE-2]. * Addition to prev. revision [#CLICKHOUSE-2]. * Addition to prev. revision [#CLICKHOUSE-2]. * Addition to prev. revision [#CLICKHOUSE-2].
654 lines
18 KiB
C++
654 lines
18 KiB
C++
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cassert>
|
|
|
|
#include <vector>
|
|
#include <algorithm>
|
|
|
|
#include <DB/Common/RadixSort.h>
|
|
#include <DB/Common/PODArray.h>
|
|
#include <DB/Columns/ColumnArray.h>
|
|
#include <DB/Columns/ColumnsNumber.h>
|
|
#include <DB/AggregateFunctions/IUnaryAggregateFunction.h>
|
|
#include <DB/AggregateFunctions/IBinaryAggregateFunction.h>
|
|
#include <DB/AggregateFunctions/QuantilesCommon.h>
|
|
#include <DB/DataTypes/DataTypesNumber.h>
|
|
#include <DB/DataTypes/DataTypeArray.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int TOO_LARGE_ARRAY_SIZE;
|
|
}
|
|
}
|
|
|
|
/** The algorithm was implemented by Alexei Borzenkov https: //███████████.yandex-team.ru/snaury
|
|
* He owns the authorship of the code and half the comments in this namespace,
|
|
* except for merging, serialization, and sorting, as well as selecting types and other changes.
|
|
* We thank Alexei Borzenkov for writing the original code.
|
|
*/
|
|
namespace tdigest
|
|
{
|
|
|
|
/**
|
|
* The centroid stores the weight of points around their mean value
|
|
*/
|
|
template <typename Value, typename Count>
|
|
struct Centroid
|
|
{
|
|
Value mean;
|
|
Count count;
|
|
|
|
Centroid() = default;
|
|
|
|
explicit Centroid(Value mean, Count count = 1)
|
|
: mean(mean)
|
|
, count(count)
|
|
{}
|
|
|
|
Centroid & operator+=(const Centroid & other)
|
|
{
|
|
count += other.count;
|
|
mean += other.count * (other.mean - mean) / count;
|
|
return *this;
|
|
}
|
|
|
|
bool operator<(const Centroid & other) const
|
|
{
|
|
return mean < other.mean;
|
|
}
|
|
};
|
|
|
|
|
|
/** :param epsilon: value \delta from the article - error in the range
|
|
* quantile 0.5 (default is 0.01, i.e. 1%)
|
|
* :param max_unmerged: when accumulating count of new points beyond this
|
|
* value centroid compression is triggered
|
|
* (default is 2048, the higher the value - the
|
|
* more memory is required, but amortization of execution time increases)
|
|
*/
|
|
template <typename Value>
|
|
struct Params
|
|
{
|
|
Value epsilon = 0.01;
|
|
size_t max_unmerged = 2048;
|
|
};
|
|
|
|
|
|
/** Implementation of t-digest algorithm (https://github.com/tdunning/t-digest).
|
|
* This option is very similar to MergingDigest on java, however the decision about
|
|
* the union is accepted based on the original condition from the article
|
|
* (via a size constraint, using the approximation of the quantile of each
|
|
* centroid, not the distance on the curve of the position of their boundaries). MergingDigest
|
|
* on java gives significantly fewer centroids than this variant, that
|
|
* negatively affects accuracy with the same compression factor, but gives
|
|
* size guarantees. The author himself on the proposal for this variant said that
|
|
* the size of the digest grows like O(log(n)), while the version on java
|
|
* does not depend on the expected number of points. Also an variant on java
|
|
* uses asin, which slows down the algorithm a bit.
|
|
*/
|
|
template <typename Value, typename CentroidCount, typename TotalCount>
|
|
class MergingDigest
|
|
{
|
|
using Params = tdigest::Params<Value>;
|
|
using Centroid = tdigest::Centroid<Value, CentroidCount>;
|
|
|
|
/// The memory will be allocated to several elements at once, so that the state occupies 64 bytes.
|
|
static constexpr size_t bytes_in_arena = 64 - sizeof(DB::PODArray<Centroid>) - sizeof(TotalCount) - sizeof(uint32_t);
|
|
|
|
using Summary = DB::PODArray<Centroid, bytes_in_arena / sizeof(Centroid), AllocatorWithStackMemory<Allocator<false>, bytes_in_arena>>;
|
|
|
|
Summary summary;
|
|
TotalCount count = 0;
|
|
uint32_t unmerged = 0;
|
|
|
|
/** Linear interpolation at the point x on the line (x1, y1)..(x2, y2)
|
|
*/
|
|
static Value interpolate(Value x, Value x1, Value y1, Value x2, Value y2)
|
|
{
|
|
double k = (x - x1) / (x2 - x1);
|
|
return y1 + k * (y2 - y1);
|
|
}
|
|
|
|
struct RadixSortTraits
|
|
{
|
|
using Element = Centroid;
|
|
using Key = Value;
|
|
using CountType = uint32_t;
|
|
using KeyBits = uint32_t;
|
|
|
|
static constexpr size_t PART_SIZE_BITS = 8;
|
|
|
|
using Transform = RadixSortFloatTransform<KeyBits>;
|
|
using Allocator = RadixSortMallocAllocator;
|
|
|
|
/// The function to get the key from an array element.
|
|
static Key & extractKey(Element & elem) { return elem.mean; }
|
|
};
|
|
|
|
public:
|
|
/** Adds to the digest a change in `x` with a weight of `cnt` (default 1)
|
|
*/
|
|
void add(const Params & params, Value x, CentroidCount cnt = 1)
|
|
{
|
|
add(params, Centroid(x, cnt));
|
|
}
|
|
|
|
/** Adds a centroid `c` to the digest
|
|
*/
|
|
void add(const Params & params, const Centroid & c)
|
|
{
|
|
summary.push_back(c);
|
|
count += c.count;
|
|
++unmerged;
|
|
if (unmerged >= params.max_unmerged)
|
|
compress(params);
|
|
}
|
|
|
|
/** Performs compression of accumulated centroids
|
|
* When merging, the invariant is retained to the maximum size of each
|
|
* centroid that does not exceed `4 q (1 - q) \ delta N`.
|
|
*/
|
|
void compress(const Params & params)
|
|
{
|
|
if (unmerged > 0)
|
|
{
|
|
RadixSort<RadixSortTraits>::execute(&summary[0], summary.size());
|
|
|
|
if (summary.size() > 3)
|
|
{
|
|
/// A pair of consecutive bars of the histogram.
|
|
auto l = summary.begin();
|
|
auto r = std::next(l);
|
|
|
|
TotalCount sum = 0;
|
|
while (r != summary.end())
|
|
{
|
|
// we use quantile which gives us the smallest error
|
|
|
|
/// The ratio of the part of the histogram to l, including the half l to the entire histogram. That is, what level quantile in position l.
|
|
Value ql = (sum + l->count * 0.5) / count;
|
|
Value err = ql * (1 - ql);
|
|
|
|
/// The ratio of the portion of the histogram to l, including l and half r to the entire histogram. That is, what level is the quantile in position r.
|
|
Value qr = (sum + l->count + r->count * 0.5) / count;
|
|
Value err2 = qr * (1 - qr);
|
|
|
|
if (err > err2)
|
|
err = err2;
|
|
|
|
Value k = 4 * count * err * params.epsilon;
|
|
|
|
/** The ratio of the weight of the glued column pair to all values is not greater,
|
|
* than epsilon multiply by a certain quadratic coefficient, which in the median is 1 (4 * 1/2 * 1/2),
|
|
* and at the edges decreases and is approximately equal to the distance to the edge * 4.
|
|
*/
|
|
|
|
if (l->count + r->count <= k)
|
|
{
|
|
// it is possible to merge left and right
|
|
/// The left column "eats" the right.
|
|
*l += *r;
|
|
}
|
|
else
|
|
{
|
|
// not enough capacity, check the next pair
|
|
sum += l->count;
|
|
++l;
|
|
|
|
/// We skip all the values "eaten" earlier.
|
|
if (l != r)
|
|
*l = *r;
|
|
}
|
|
++r;
|
|
}
|
|
|
|
/// At the end of the loop, all values to the right of l were "eaten".
|
|
summary.resize(l - summary.begin() + 1);
|
|
}
|
|
|
|
unmerged = 0;
|
|
}
|
|
}
|
|
|
|
/** Calculates the quantile q [0, 1] based on the digest.
|
|
* For an empty digest returns NaN.
|
|
*/
|
|
Value getQuantile(const Params & params, Value q)
|
|
{
|
|
if (summary.empty())
|
|
return NAN;
|
|
|
|
compress(params);
|
|
|
|
if (summary.size() == 1)
|
|
return summary.front().mean;
|
|
|
|
Value x = q * count;
|
|
TotalCount sum = 0;
|
|
Value prev_mean = summary.front().mean;
|
|
Value prev_x = 0;
|
|
|
|
for (const auto & c : summary)
|
|
{
|
|
Value current_x = sum + c.count * 0.5;
|
|
|
|
if (current_x >= x)
|
|
return interpolate(x, prev_x, prev_mean, current_x, c.mean);
|
|
|
|
sum += c.count;
|
|
prev_mean = c.mean;
|
|
prev_x = current_x;
|
|
}
|
|
|
|
return summary.back().mean;
|
|
}
|
|
|
|
/** Get multiple quantiles (`size` pieces).
|
|
* levels - an array of levels of the desired quantiles. They are in a random order.
|
|
* levels_permutation - array-permutation levels. The i-th position will be the index of the i-th ascending level in the `levels` array.
|
|
* result - the array where the results are added, in order of `levels`,
|
|
*/
|
|
template <typename ResultType>
|
|
void getManyQuantiles(const Params & params, const Value * levels, const size_t * levels_permutation, size_t size, ResultType * result)
|
|
{
|
|
if (summary.empty())
|
|
{
|
|
for (size_t result_num = 0; result_num < size; ++result_num)
|
|
result[result_num] = std::is_floating_point<ResultType>::value ? NAN : 0;
|
|
return;
|
|
}
|
|
|
|
compress(params);
|
|
|
|
if (summary.size() == 1)
|
|
{
|
|
for (size_t result_num = 0; result_num < size; ++result_num)
|
|
result[result_num] = summary.front().mean;
|
|
return;
|
|
}
|
|
|
|
Value x = levels[levels_permutation[0]] * count;
|
|
TotalCount sum = 0;
|
|
Value prev_mean = summary.front().mean;
|
|
Value prev_x = 0;
|
|
|
|
size_t result_num = 0;
|
|
for (const auto & c : summary)
|
|
{
|
|
Value current_x = sum + c.count * 0.5;
|
|
|
|
while (current_x >= x)
|
|
{
|
|
result[levels_permutation[result_num]] = interpolate(x, prev_x, prev_mean, current_x, c.mean);
|
|
|
|
++result_num;
|
|
if (result_num >= size)
|
|
return;
|
|
|
|
x = levels[levels_permutation[result_num]] * count;
|
|
}
|
|
|
|
sum += c.count;
|
|
prev_mean = c.mean;
|
|
prev_x = current_x;
|
|
}
|
|
|
|
auto rest_of_results = summary.back().mean;
|
|
for (; result_num < size; ++result_num)
|
|
result[levels_permutation[result_num]] = rest_of_results;
|
|
}
|
|
|
|
/** Combine with another state.
|
|
*/
|
|
void merge(const Params & params, const MergingDigest & other)
|
|
{
|
|
for (const auto & c : other.summary)
|
|
add(params, c);
|
|
}
|
|
|
|
/** Write to the stream.
|
|
*/
|
|
void write(const Params & params, DB::WriteBuffer & buf)
|
|
{
|
|
compress(params);
|
|
DB::writeVarUInt(summary.size(), buf);
|
|
buf.write(reinterpret_cast<const char *>(&summary[0]), summary.size() * sizeof(summary[0]));
|
|
}
|
|
|
|
/** Read from the stream.
|
|
*/
|
|
void read(const Params & params, DB::ReadBuffer & buf)
|
|
{
|
|
size_t size = 0;
|
|
DB::readVarUInt(size, buf);
|
|
|
|
if (size > params.max_unmerged)
|
|
throw DB::Exception("Too large t-digest summary size", DB::ErrorCodes::TOO_LARGE_ARRAY_SIZE);
|
|
|
|
summary.resize(size);
|
|
buf.read(reinterpret_cast<char *>(&summary[0]), size * sizeof(summary[0]));
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
struct AggregateFunctionQuantileTDigestData
|
|
{
|
|
tdigest::MergingDigest<Float32, Float32, Float32> digest;
|
|
};
|
|
|
|
|
|
template <typename T, bool returns_float = true>
|
|
class AggregateFunctionQuantileTDigest final
|
|
: public IUnaryAggregateFunction<AggregateFunctionQuantileTDigestData, AggregateFunctionQuantileTDigest<T>>
|
|
{
|
|
private:
|
|
Float32 level;
|
|
tdigest::Params<Float32> params;
|
|
DataTypePtr type;
|
|
|
|
public:
|
|
AggregateFunctionQuantileTDigest(double level_ = 0.5) : level(level_) {}
|
|
|
|
String getName() const override { return "quantileTDigest"; }
|
|
|
|
DataTypePtr getReturnType() const override
|
|
{
|
|
return type;
|
|
}
|
|
|
|
void setArgument(const DataTypePtr & argument)
|
|
{
|
|
if (returns_float)
|
|
type = std::make_shared<DataTypeFloat32>();
|
|
else
|
|
type = argument;
|
|
}
|
|
|
|
void setParameters(const Array & params) override
|
|
{
|
|
if (params.size() != 1)
|
|
throw Exception("Aggregate function " + getName() + " requires exactly one parameter.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
|
|
|
level = applyVisitor(FieldVisitorConvertToNumber<Float32>(), params[0]);
|
|
}
|
|
|
|
void addImpl(AggregateDataPtr place, const IColumn & column, size_t row_num, Arena *) const
|
|
{
|
|
this->data(place).digest.add(params, static_cast<const ColumnVector<T> &>(column).getData()[row_num]);
|
|
}
|
|
|
|
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
|
|
{
|
|
this->data(place).digest.merge(params, this->data(rhs).digest);
|
|
}
|
|
|
|
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
|
|
{
|
|
this->data(const_cast<AggregateDataPtr>(place)).digest.write(params, buf);
|
|
}
|
|
|
|
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
|
|
{
|
|
this->data(place).digest.read(params, buf);
|
|
}
|
|
|
|
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
|
|
{
|
|
auto quantile = this->data(const_cast<AggregateDataPtr>(place)).digest.getQuantile(params, level);
|
|
|
|
if (returns_float)
|
|
static_cast<ColumnFloat32 &>(to).getData().push_back(quantile);
|
|
else
|
|
static_cast<ColumnVector<T> &>(to).getData().push_back(quantile);
|
|
}
|
|
};
|
|
|
|
|
|
template <typename T, typename Weight, bool returns_float = true>
|
|
class AggregateFunctionQuantileTDigestWeighted final
|
|
: public IBinaryAggregateFunction<AggregateFunctionQuantileTDigestData, AggregateFunctionQuantileTDigestWeighted<T, Weight, returns_float>>
|
|
{
|
|
private:
|
|
Float32 level;
|
|
tdigest::Params<Float32> params;
|
|
DataTypePtr type;
|
|
|
|
public:
|
|
AggregateFunctionQuantileTDigestWeighted(double level_ = 0.5) : level(level_) {}
|
|
|
|
String getName() const override { return "quantileTDigestWeighted"; }
|
|
|
|
DataTypePtr getReturnType() const override
|
|
{
|
|
return type;
|
|
}
|
|
|
|
void setArgumentsImpl(const DataTypes & arguments)
|
|
{
|
|
if (returns_float)
|
|
type = std::make_shared<DataTypeFloat32>();
|
|
else
|
|
type = arguments.at(0);
|
|
}
|
|
|
|
void setParameters(const Array & params) override
|
|
{
|
|
if (params.size() != 1)
|
|
throw Exception("Aggregate function " + getName() + " requires exactly one parameter.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
|
|
|
level = applyVisitor(FieldVisitorConvertToNumber<Float32>(), params[0]);
|
|
}
|
|
|
|
void addImpl(AggregateDataPtr place, const IColumn & column_value, const IColumn & column_weight, size_t row_num, Arena *) const
|
|
{
|
|
this->data(place).digest.add(params,
|
|
static_cast<const ColumnVector<T> &>(column_value).getData()[row_num],
|
|
static_cast<const ColumnVector<Weight> &>(column_weight).getData()[row_num]);
|
|
}
|
|
|
|
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
|
|
{
|
|
this->data(place).digest.merge(params, this->data(rhs).digest);
|
|
}
|
|
|
|
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
|
|
{
|
|
this->data(const_cast<AggregateDataPtr>(place)).digest.write(params, buf);
|
|
}
|
|
|
|
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
|
|
{
|
|
this->data(place).digest.read(params, buf);
|
|
}
|
|
|
|
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
|
|
{
|
|
auto quantile = this->data(const_cast<AggregateDataPtr>(place)).digest.getQuantile(params, level);
|
|
|
|
if (returns_float)
|
|
static_cast<ColumnFloat32 &>(to).getData().push_back(quantile);
|
|
else
|
|
static_cast<ColumnVector<T> &>(to).getData().push_back(quantile);
|
|
}
|
|
};
|
|
|
|
|
|
template <typename T, bool returns_float = true>
|
|
class AggregateFunctionQuantilesTDigest final
|
|
: public IUnaryAggregateFunction<AggregateFunctionQuantileTDigestData, AggregateFunctionQuantilesTDigest<T>>
|
|
{
|
|
private:
|
|
QuantileLevels<Float32> levels;
|
|
tdigest::Params<Float32> params;
|
|
DataTypePtr type;
|
|
|
|
public:
|
|
String getName() const override { return "quantilesTDigest"; }
|
|
|
|
DataTypePtr getReturnType() const override
|
|
{
|
|
return std::make_shared<DataTypeArray>(type);
|
|
}
|
|
|
|
void setArgument(const DataTypePtr & argument)
|
|
{
|
|
if (returns_float)
|
|
type = std::make_shared<DataTypeFloat32>();
|
|
else
|
|
type = argument;
|
|
}
|
|
|
|
void setParameters(const Array & params) override
|
|
{
|
|
levels.set(params);
|
|
}
|
|
|
|
void addImpl(AggregateDataPtr place, const IColumn & column, size_t row_num, Arena *) const
|
|
{
|
|
this->data(place).digest.add(params, static_cast<const ColumnVector<T> &>(column).getData()[row_num]);
|
|
}
|
|
|
|
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
|
|
{
|
|
this->data(place).digest.merge(params, this->data(rhs).digest);
|
|
}
|
|
|
|
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
|
|
{
|
|
this->data(const_cast<AggregateDataPtr>(place)).digest.write(params, buf);
|
|
}
|
|
|
|
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
|
|
{
|
|
this->data(place).digest.read(params, buf);
|
|
}
|
|
|
|
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
|
|
{
|
|
ColumnArray & arr_to = static_cast<ColumnArray &>(to);
|
|
ColumnArray::Offsets_t & offsets_to = arr_to.getOffsets();
|
|
|
|
size_t size = levels.size();
|
|
offsets_to.push_back((offsets_to.size() == 0 ? 0 : offsets_to.back()) + size);
|
|
|
|
if (!size)
|
|
return;
|
|
|
|
if (returns_float)
|
|
{
|
|
typename ColumnFloat32::Container_t & data_to = static_cast<ColumnFloat32 &>(arr_to.getData()).getData();
|
|
size_t old_size = data_to.size();
|
|
data_to.resize(data_to.size() + size);
|
|
|
|
this->data(const_cast<AggregateDataPtr>(place)).digest.getManyQuantiles(
|
|
params, &levels.levels[0], &levels.permutation[0], size, &data_to[old_size]);
|
|
}
|
|
else
|
|
{
|
|
typename ColumnVector<T>::Container_t & data_to = static_cast<ColumnVector<T> &>(arr_to.getData()).getData();
|
|
size_t old_size = data_to.size();
|
|
data_to.resize(data_to.size() + size);
|
|
|
|
this->data(const_cast<AggregateDataPtr>(place)).digest.getManyQuantiles(
|
|
params, &levels.levels[0], &levels.permutation[0], size, &data_to[old_size]);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
template <typename T, typename Weight, bool returns_float = true>
|
|
class AggregateFunctionQuantilesTDigestWeighted final
|
|
: public IBinaryAggregateFunction<AggregateFunctionQuantileTDigestData, AggregateFunctionQuantilesTDigestWeighted<T, Weight, returns_float>>
|
|
{
|
|
private:
|
|
QuantileLevels<Float32> levels;
|
|
tdigest::Params<Float32> params;
|
|
DataTypePtr type;
|
|
|
|
public:
|
|
String getName() const override { return "quantilesTDigest"; }
|
|
|
|
DataTypePtr getReturnType() const override
|
|
{
|
|
return std::make_shared<DataTypeArray>(type);
|
|
}
|
|
|
|
void setArgumentsImpl(const DataTypes & arguments)
|
|
{
|
|
if (returns_float)
|
|
type = std::make_shared<DataTypeFloat32>();
|
|
else
|
|
type = arguments.at(0);
|
|
}
|
|
|
|
void setParameters(const Array & params) override
|
|
{
|
|
levels.set(params);
|
|
}
|
|
|
|
void addImpl(AggregateDataPtr place, const IColumn & column_value, const IColumn & column_weight, size_t row_num, Arena *) const
|
|
{
|
|
this->data(place).digest.add(params,
|
|
static_cast<const ColumnVector<T> &>(column_value).getData()[row_num],
|
|
static_cast<const ColumnVector<Weight> &>(column_weight).getData()[row_num]);
|
|
}
|
|
|
|
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
|
|
{
|
|
this->data(place).digest.merge(params, this->data(rhs).digest);
|
|
}
|
|
|
|
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
|
|
{
|
|
this->data(const_cast<AggregateDataPtr>(place)).digest.write(params, buf);
|
|
}
|
|
|
|
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
|
|
{
|
|
this->data(place).digest.read(params, buf);
|
|
}
|
|
|
|
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
|
|
{
|
|
ColumnArray & arr_to = static_cast<ColumnArray &>(to);
|
|
ColumnArray::Offsets_t & offsets_to = arr_to.getOffsets();
|
|
|
|
size_t size = levels.size();
|
|
offsets_to.push_back((offsets_to.size() == 0 ? 0 : offsets_to.back()) + size);
|
|
|
|
if (!size)
|
|
return;
|
|
|
|
if (returns_float)
|
|
{
|
|
typename ColumnFloat32::Container_t & data_to = static_cast<ColumnFloat32 &>(arr_to.getData()).getData();
|
|
size_t old_size = data_to.size();
|
|
data_to.resize(data_to.size() + size);
|
|
|
|
this->data(const_cast<AggregateDataPtr>(place)).digest.getManyQuantiles(
|
|
params, &levels.levels[0], &levels.permutation[0], size, &data_to[old_size]);
|
|
}
|
|
else
|
|
{
|
|
typename ColumnVector<T>::Container_t & data_to = static_cast<ColumnVector<T> &>(arr_to.getData()).getData();
|
|
size_t old_size = data_to.size();
|
|
data_to.resize(data_to.size() + size);
|
|
|
|
this->data(const_cast<AggregateDataPtr>(place)).digest.getManyQuantiles(
|
|
params, &levels.levels[0], &levels.permutation[0], size, &data_to[old_size]);
|
|
}
|
|
}
|
|
};
|
|
|
|
}
|