ClickHouse/dbms/src/Common/COW.h
2019-04-20 23:25:19 +03:00

302 lines
9.5 KiB
C++

#pragma once
#include <boost/smart_ptr/intrusive_ptr.hpp>
#include <boost/smart_ptr/intrusive_ref_counter.hpp>
#include <initializer_list>
/** Copy-on-write shared ptr.
* Allows to work with shared immutable objects and sometimes unshare and mutate you own unique copy.
*
* Usage:
class Column : public COW<Column>
{
private:
friend class COW<Column>;
/// Leave all constructors in private section. They will be avaliable through 'create' method.
Column();
/// Provide 'clone' method. It can be virtual if you want polymorphic behaviour.
virtual Column * clone() const;
public:
/// Correctly use const qualifiers in your interface.
virtual ~Column() {}
};
* It will provide 'create' and 'mutate' methods.
* And 'Ptr' and 'MutablePtr' types.
* Ptr is refcounted pointer to immutable object.
* MutablePtr is refcounted noncopyable pointer to mutable object.
* MutablePtr can be assigned to Ptr through move assignment.
*
* 'create' method creates MutablePtr: you cannot share mutable objects.
* To share, move-assign to immutable pointer.
* 'mutate' method allows to create mutable noncopyable object from immutable object:
* either by cloning or by using directly, if it is not shared.
* These methods are thread-safe.
*
* Example:
*
/// Creating and assigning to immutable ptr.
Column::Ptr x = Column::create(1);
/// Sharing single immutable object in two ptrs.
Column::Ptr y = x;
/// Now x and y are shared.
/// Change value of x.
{
/// Creating mutable ptr. It can clone an object under the hood if it was shared.
Column::MutablePtr mutate_x = std::move(*x).mutate();
/// Using non-const methods of an object.
mutate_x->set(2);
/// Assigning pointer 'x' to mutated object.
x = std::move(mutate_x);
}
/// Now x and y are unshared and have different values.
* Note. You may have heard that COW is bad practice.
* Actually it is, if your values are small or if copying is done implicitly.
* This is the case for string implementations.
*
* In contrast, COW is intended for the cases when you need to share states of large objects,
* (when you usually will use std::shared_ptr) but you also want precise control over modification
* of this shared state.
*
* Caveats:
* - after a call to 'mutate' method, you can still have a reference to immutable ptr somewhere.
* - as 'mutable_ptr' should be unique, it's refcount is redundant - probably it would be better
* to use std::unique_ptr for it somehow.
*/
template <typename Derived>
class COW : public boost::intrusive_ref_counter<Derived>
{
private:
Derived * derived() { return static_cast<Derived *>(this); }
const Derived * derived() const { return static_cast<const Derived *>(this); }
template <typename T>
class IntrusivePtr : public boost::intrusive_ptr<T>
{
public:
using boost::intrusive_ptr<T>::intrusive_ptr;
T & operator*() const & { return boost::intrusive_ptr<T>::operator*(); }
T && operator*() const && { return const_cast<typename std::remove_const<T>::type &&>(*boost::intrusive_ptr<T>::get()); }
};
protected:
template <typename T>
class mutable_ptr : public IntrusivePtr<T>
{
private:
using Base = IntrusivePtr<T>;
template <typename> friend class COW;
template <typename, typename> friend class COWHelper;
explicit mutable_ptr(T * ptr) : Base(ptr) {}
public:
/// Copy: not possible.
mutable_ptr(const mutable_ptr &) = delete;
/// Move: ok.
mutable_ptr(mutable_ptr &&) = default;
mutable_ptr & operator=(mutable_ptr &&) = default;
/// Initializing from temporary of compatible type.
template <typename U>
mutable_ptr(mutable_ptr<U> && other) : Base(std::move(other)) {}
mutable_ptr() = default;
mutable_ptr(std::nullptr_t) {}
};
public:
using MutablePtr = mutable_ptr<Derived>;
protected:
template <typename T>
class immutable_ptr : public IntrusivePtr<const T>
{
private:
using Base = IntrusivePtr<const T>;
template <typename> friend class COW;
template <typename, typename> friend class COWHelper;
explicit immutable_ptr(const T * ptr) : Base(ptr) {}
public:
/// Copy from immutable ptr: ok.
immutable_ptr(const immutable_ptr &) = default;
immutable_ptr & operator=(const immutable_ptr &) = default;
template <typename U>
immutable_ptr(const immutable_ptr<U> & other) : Base(other) {}
/// Move: ok.
immutable_ptr(immutable_ptr &&) = default;
immutable_ptr & operator=(immutable_ptr &&) = default;
/// Initializing from temporary of compatible type.
template <typename U>
immutable_ptr(immutable_ptr<U> && other) : Base(std::move(other)) {}
/// Move from mutable ptr: ok.
template <typename U>
immutable_ptr(mutable_ptr<U> && other) : Base(std::move(other)) {}
/// Copy from mutable ptr: not possible.
template <typename U>
immutable_ptr(const mutable_ptr<U> &) = delete;
immutable_ptr() = default;
immutable_ptr(std::nullptr_t) {}
};
public:
using Ptr = immutable_ptr<Derived>;
template <typename... Args>
static MutablePtr create(Args &&... args) { return MutablePtr(new Derived(std::forward<Args>(args)...)); }
template <typename T>
static MutablePtr create(std::initializer_list<T> && arg) { return create(std::forward<std::initializer_list<T>>(arg)); }
public:
Ptr getPtr() const { return static_cast<Ptr>(derived()); }
MutablePtr getPtr() { return static_cast<MutablePtr>(derived()); }
protected:
MutablePtr shallowMutate() const
{
if (this->use_count() > 1)
return derived()->clone();
else
return assumeMutable();
}
public:
MutablePtr mutate() const &&
{
return shallowMutate();
}
MutablePtr assumeMutable() const
{
return const_cast<COW*>(this)->getPtr();
}
Derived & assumeMutableRef() const
{
return const_cast<Derived &>(*derived());
}
protected:
/// It works as immutable_ptr if it is const and as mutable_ptr if it is non const.
template <typename T>
class chameleon_ptr
{
private:
immutable_ptr<T> value;
public:
template <typename... Args>
chameleon_ptr(Args &&... args) : value(std::forward<Args>(args)...) {}
template <typename U>
chameleon_ptr(std::initializer_list<U> && arg) : value(std::forward<std::initializer_list<U>>(arg)) {}
const T * get() const { return value.get(); }
T * get() { return &value->assumeMutableRef(); }
const T * operator->() const { return get(); }
T * operator->() { return get(); }
const T & operator*() const { return *value; }
T & operator*() { return value->assumeMutableRef(); }
operator const immutable_ptr<T> & () const { return value; }
operator immutable_ptr<T> & () { return value; }
operator bool() const { return value != nullptr; }
bool operator! () const { return value == nullptr; }
bool operator== (const chameleon_ptr & rhs) const { return value == rhs.value; }
bool operator!= (const chameleon_ptr & rhs) const { return value != rhs.value; }
};
public:
/** Use this type in class members for compositions.
*
* NOTE:
* For classes with WrappedPtr members,
* you must reimplement 'mutate' method, so it will call 'mutate' of all subobjects (do deep mutate).
* It will guarantee, that mutable object have all subobjects unshared.
*
* NOTE:
* If you override 'mutate' method in inherited classes, don't forget to make it virtual in base class or to make it call a virtual method.
* (COW itself doesn't force any methods to be virtual).
*
* See example in "cow_compositions.cpp".
*/
using WrappedPtr = chameleon_ptr<Derived>;
};
/** Helper class to support inheritance.
* Example:
*
* class IColumn : public COW<IColumn>
* {
* friend class COW<IColumn>;
* virtual MutablePtr clone() const = 0;
* virtual ~IColumn() {}
* };
*
* class ConcreteColumn : public COWHelper<IColumn, ConcreteColumn>
* {
* friend class COWHelper<IColumn, ConcreteColumn>;
* };
*
* Here is complete inheritance diagram:
*
* ConcreteColumn
* COWHelper<IColumn, ConcreteColumn>
* IColumn
* CowPtr<IColumn>
* boost::intrusive_ref_counter<IColumn>
*
* See example in "cow_columns.cpp".
*/
template <typename Base, typename Derived>
class COWHelper : public Base
{
private:
Derived * derived() { return static_cast<Derived *>(this); }
const Derived * derived() const { return static_cast<const Derived *>(this); }
public:
using Ptr = typename Base::template immutable_ptr<Derived>;
using MutablePtr = typename Base::template mutable_ptr<Derived>;
template <typename... Args>
static MutablePtr create(Args &&... args) { return MutablePtr(new Derived(std::forward<Args>(args)...)); }
template <typename T>
static MutablePtr create(std::initializer_list<T> && arg) { return create(std::forward<std::initializer_list<T>>(arg)); }
typename Base::MutablePtr clone() const override { return typename Base::MutablePtr(new Derived(*derived())); }
protected:
MutablePtr shallowMutate() const { return MutablePtr(static_cast<Derived *>(Base::shallowMutate().get())); }
};