mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-22 23:52:03 +00:00
3809f39ddf
* CLICKHOUSE-4063: less manual html @ index.md * CLICKHOUSE-4063: recommend markdown="1" in README.md * CLICKHOUSE-4003: manually purge custom.css for now * CLICKHOUSE-4064: expand <details> before any print (including to pdf) * CLICKHOUSE-3927: rearrange interfaces/formats.md a bit * CLICKHOUSE-3306: add few http headers * Remove copy-paste introduced in #3392 * Hopefully better chinese fonts #3392 * get rid of tabs @ custom.css * Apply comments and patch from #3384 * Add jdbc.md to ToC and some translation, though it still looks badly incomplete * minor punctuation * Add some backlinks to official website from mirrors that just blindly take markdown sources * Do not make fonts extra light * find . -name '*.md' -type f | xargs -I{} perl -pi -e 's//g' {} * find . -name '*.md' -type f | xargs -I{} perl -pi -e 's/ sql/g' {} * Remove outdated stuff from roadmap.md * Not so light font on front page too * Refactor Chinese formats.md to match recent changes in other languages * Update some links on front page * Remove some outdated comment * Add twitter link to front page * More front page links tuning * Add Amsterdam meetup link * Smaller font to avoid second line * Add Amsterdam link to README.md * Proper docs nav translation * Back to 300 font-weight except Chinese * fix docs build * Update Amsterdam link * remove symlinks * more zh punctuation * apply lost comment by @zhang2014 * Apply comments by @zhang2014 from #3417 * Remove Beijing link * rm incorrect symlink * restore content of docs/zh/operations/table_engines/index.md * CLICKHOUSE-3751: stem terms while searching docs
534 lines
29 KiB
HTML
534 lines
29 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en">
|
||
<head>
|
||
<meta charset="utf-8"/>
|
||
<meta http-equiv="X-UA-Compatible" content="IE=edge"/>
|
||
|
||
<title>ClickHouse — open source distributed column-oriented DBMS</title>
|
||
|
||
<link rel="shortcut icon" href="favicon.ico"/>
|
||
|
||
<meta property="og:title" content="ClickHouse DBMS"/>
|
||
<meta property="og:description"
|
||
content="ClickHouse is an open source column-oriented database management system that allows generating analytical data reports in real time using SQL queries."/>
|
||
<meta property="og:type" content="website"/>
|
||
<meta property="og:url" content="https://clickhouse.yandex"/>
|
||
<meta property="og:image" content="https://clickhouse.yandex/images/logo.png"/>
|
||
|
||
<meta property="twitter:title" content="ClickHouse DBMS"/>
|
||
|
||
<meta name="description"
|
||
content="ClickHouse is an open source distributed column-oriented database management system that allows generating analytical data reports in real time using SQL queries. Сreated by Yandex ClickHouse manages extremely large volumes of data in a stable and sustainable manner."/>
|
||
<meta name="keywords"
|
||
content="ClickHouse, DBMS, OLAP, relational, analytics, analytical, big data, open-source, SQL, web-analytics" />
|
||
|
||
<link href="index.css" media="all" rel="stylesheet" />
|
||
</head>
|
||
<body>
|
||
<div id="navbar">
|
||
<div id="navbar-inner">
|
||
<div id="top-menu" class="desktop-only">
|
||
<a class="menu_item" href="#quick-start">Quick Start</a>
|
||
<a class="menu_item" href="#performance">Performance</a>
|
||
<a class="menu_item" href="docs/en/">Documentation</a>
|
||
<a class="menu_item" href="#contacts">Contacts</a>
|
||
</div>
|
||
|
||
<a id="logo" href="#">
|
||
<h1 id="main-title">
|
||
<svg id="title-logo" xmlns="http://www.w3.org/2000/svg" width="48" height="44" viewBox="0 0 9 8">
|
||
<path class="red" d="M0,7 h1 v1 h-1 z"></path>
|
||
<path class="orange" d="M0,0 h1 v7 h-1 z"></path>
|
||
<path class="orange" d="M2,0 h1 v8 h-1 z"></path>
|
||
<path class="orange" d="M4,0 h1 v8 h-1 z"></path>
|
||
<path class="orange" d="M6,0 h1 v8 h-1 z"></path>
|
||
<path class="orange" d="M8,3.25 h1 v1.5 h-1 z"></path>
|
||
</svg>
|
||
|
||
ClickHouse
|
||
</h1>
|
||
</a>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="hero">
|
||
<div class="page">
|
||
<div class="block-70">
|
||
<p id="short-description">ClickHouse is an <span class="orange">open source</span> column-oriented
|
||
database management system
|
||
capable of <span class="orange">real time</span> generation of analytical data reports using <span
|
||
class="orange">SQL</span> queries.</p>
|
||
<a id="call_to_action" href="#quick-start">
|
||
Quick Start
|
||
</a>
|
||
</div>
|
||
<div class="block-30">
|
||
<ul id="index_ul" class="dashed">
|
||
<li>
|
||
<a class="index_item" href="#blazing-fast">Blazing Fast</a>
|
||
</li>
|
||
<li>
|
||
<a class="index_item" href="#linearly-scalable">Linearly Scalable</a>
|
||
</li>
|
||
<li>
|
||
<a class="index_item" href="#hardware-efficient">Hardware Efficient</a>
|
||
</li>
|
||
<li>
|
||
<a class="index_item" href="#fault-tolerant">Fault Tolerant</a>
|
||
</li>
|
||
<li>
|
||
<a class="index_item" href="#key-features">Feature Rich</a>
|
||
</li>
|
||
<li>
|
||
<a class="index_item" href="#highly-reliable">Highly Reliable</a>
|
||
</li>
|
||
<li>
|
||
<a class="index_item" href="#simple-and-handy">Simple and Handy</a>
|
||
</li>
|
||
</ul>
|
||
</div>
|
||
<div class="clear"></div>
|
||
</div>
|
||
</div>
|
||
<div id="announcement" class="colored-block">
|
||
<div class="page">
|
||
Upcoming meetup in <a class="announcement-link" href="https://events.yandex.com/events/meetings/15-11-2018/" rel="external nofollow" target="_blank">Amsterdam on November 15</a>
|
||
</div>
|
||
</div>
|
||
<div class="page">
|
||
<h2 id="slogan">ClickHouse. Just makes you think faster.</h2>
|
||
|
||
<div class="block-70">
|
||
<ul class="dashed">
|
||
<li>Run more queries in the same amount of time</li>
|
||
<li>Test more hypotheses</li>
|
||
<li>Slice and dice your data in many more new ways</li>
|
||
<li>Look at your data from new angles</li>
|
||
<li>Discover new dimensions</li>
|
||
</ul>
|
||
</div>
|
||
<div class="block-30">
|
||
<svg id="placeholder" class="desktop-only" viewBox="0 0 76 76" xmlns="http://www.w3.org/2000/svg">
|
||
<defs>
|
||
<rect id="path-1" x="0" y="16" width="60" height="60" rx="1"></rect>
|
||
<mask id="mask-2" maskContentUnits="userSpaceOnUse" maskUnits="objectBoundingBox" x="0" y="0" width="60" height="60" fill="white">
|
||
<use xlink:href="#path-1"></use>
|
||
</mask>
|
||
<rect id="path-3" x="16" y="0" width="60" height="60" rx="1"></rect>
|
||
<mask id="mask-4" maskContentUnits="userSpaceOnUse" maskUnits="objectBoundingBox" x="0" y="0" width="60" height="60" fill="white">
|
||
<use xlink:href="#path-3"></use>
|
||
</mask>
|
||
<rect id="path-5" x="0" y="8" width="20" height="20" rx="1"></rect>
|
||
<mask id="mask-6" maskContentUnits="userSpaceOnUse" maskUnits="objectBoundingBox" x="0" y="0" width="20" height="20" fill="white">
|
||
<use xlink:href="#path-5"></use>
|
||
</mask>
|
||
<rect id="path-7" x="8" y="0" width="20" height="20" rx="1"></rect>
|
||
<mask id="mask-8" maskContentUnits="userSpaceOnUse" maskUnits="objectBoundingBox" x="0" y="0" width="20" height="20" fill="white">
|
||
<use xlink:href="#path-7"></use>
|
||
</mask>
|
||
</defs>
|
||
<g id="Page-1" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd" stroke-linecap="round">
|
||
<g id="Clickhouse_2" transform="translate(-558.000000, -1293.000000)">
|
||
<g id="Group-11" transform="translate(558.000000, 1293.000000)">
|
||
<use id="Rectangle-33" stroke="#FFCC00" mask="url(#mask-2)" stroke-width="4" xlink:href="#path-1"></use>
|
||
<use id="Rectangle-33" stroke="#FFCC00" mask="url(#mask-4)" stroke-width="4" xlink:href="#path-3"></use>
|
||
<path d="M0.989013672,17.017334 L16.8210449,1.16748047" id="Path-26" stroke="#FFCC00" stroke-width="2"></path>
|
||
<path d="M59.0788574,74.9973145 L74.7983398,59.2650146" id="Path-26" stroke="#FFCC00" stroke-width="2"></path>
|
||
<path d="M59.1091309,17.1687012 L74.9368896,1.10351562" id="Path-26-Copy" stroke="#FFCC00" stroke-width="2"></path>
|
||
<path d="M1.07910156,17.2504883 L26.0395508,33.4033203" id="Path-26" stroke="#FFCC00" stroke-width="2"></path>
|
||
<path d="M17.2602539,1.18457031 L34.0175781,25.1796875" id="Path-26" stroke="#FFCC00" stroke-width="2"></path>
|
||
<path d="M51.2958984,25.4736328 L58.8277588,17" id="Path-26-Copy" stroke="#FFCC00" stroke-width="2"></path>
|
||
<path d="M1.01904297,50.942627 L25.9216309,75.064209" id="Path-26" stroke="#FFCC00" stroke-width="2" transform="translate(13.470337, 63.003418) scale(-1, 1) translate(-13.470337, -63.003418) "></path>
|
||
<path d="M44.1804199,51.300293 L58.9638672,75.010498" id="Path-26" stroke="#FFCC00" stroke-width="2"></path>
|
||
<path d="M52.0131836,43.1345215 L75.0227051,58.9299316" id="Path-26" stroke="#FFCC00" stroke-width="2"></path>
|
||
<g id="Group-3" transform="translate(25.000000, 24.000000)" stroke="#444444">
|
||
<use id="Rectangle-33" mask="url(#mask-6)" stroke-width="4" xlink:href="#path-5"></use>
|
||
<use id="Rectangle-33" mask="url(#mask-8)" stroke-width="4" xlink:href="#path-7"></use>
|
||
<path d="M19.2587891,1.08825684 L26.7729492,8.8046875" id="Path-26" stroke-width="2" transform="translate(23.015869, 4.946472) scale(-1, 1) translate(-23.015869, -4.946472) "></path>
|
||
<path d="M1.05773926,1.04125977 L8.82080078,8.9654541" id="Path-26" stroke-width="2" transform="translate(4.939270, 5.003357) scale(-1, 1) translate(-4.939270, -5.003357) "></path>
|
||
<path d="M1.12487793,18.887207 L9.26220703,26.8897705" id="Path-26" stroke-width="2" transform="translate(5.193542, 22.888489) scale(-1, 1) translate(-5.193542, -22.888489) "></path>
|
||
<path d="M19.038208,19.1968994 L26.9085693,26.9760742" id="Path-26" stroke-width="2" transform="translate(22.973389, 23.086487) scale(-1, 1) translate(-22.973389, -23.086487) "></path>
|
||
</g>
|
||
</g>
|
||
</g>
|
||
</g>
|
||
</svg>
|
||
|
||
</div>
|
||
<div class="clear"></div>
|
||
|
||
|
||
<h2 id="blazing-fast">Blazing Fast</h2>
|
||
|
||
<p>ClickHouse's performance <a href="benchmark.html">exceeds</a> comparable column-oriented DBMS currently available
|
||
on the market. It processes hundreds of millions to more than a billion rows and tens of gigabytes of data
|
||
per single server per second.</p>
|
||
|
||
<p>ClickHouse uses all available hardware to its full potential to process each query as fast as possible. The peak
|
||
processing performance for a single query <span class="grey">(after decompression, only used columns)</span>
|
||
stands at more than 2 terabytes per second.</p>
|
||
</div>
|
||
<div id="performance" class="colored-block">
|
||
<div class="page">
|
||
<h2>ClickHouse works 100-1,000x faster than traditional approaches</h2>
|
||
<p>In contrast to common data management methods, where vast amounts of raw data in its native format are available as
|
||
a "data lake" for any given query,
|
||
ClickHouse offers instant results in most cases: the data is processed faster than it takes
|
||
to create a query. Follow the link below to see detailed benchmarks by Yandex of ClickHouse in comparison
|
||
with other database management systems. Also there are some links on third-party benchmarks in the following section.</p>
|
||
<a id="benchmark_learn_more" href="benchmark.html">
|
||
Learn more
|
||
</a>
|
||
<div class="clear"></div>
|
||
</div>
|
||
</div>
|
||
|
||
<div class="page">
|
||
|
||
<h2 id="independent-benchmarks">Independent Benchmarks</h2>
|
||
|
||
<ul class="dashed">
|
||
<li><a href="https://www.percona.com/blog/2017/02/13/clickhouse-new-opensource-columnar-database/"
|
||
rel="external nofollow" target="_blank">ClickHouse: New Open Source Columnar Database</a> by Percona</li>
|
||
<li><a href="https://www.percona.com/blog/2017/03/17/column-store-database-benchmarks-mariadb-columnstore-vs-clickhouse-vs-apache-spark/"
|
||
title="MariaDB ColumnStore vs. Clickhouse vs. Apache Spark"
|
||
rel="external nofollow" target="_blank">Column Store Database Benchmarks</a> by Percona</li>
|
||
<li><a href="http://tech.marksblogg.com/billion-nyc-taxi-clickhouse.html"
|
||
rel="external nofollow" target="_blank">1.1 Billion Taxi Rides on ClickHouse & an Intel Core i5</a> by Mark Litwintschik</li>
|
||
<li><a href="https://www.altinity.com/blog/2017/6/20/clickhouse-vs-redshift"
|
||
rel="external nofollow" target="_blank">ClickHouse vs Amazon RedShift Benchmark</a> by Altinity</li>
|
||
<li><a href="https://carto.com/blog/inside/geospatial-processing-with-clickhouse"
|
||
rel="external nofollow" target="_blank">Geospatial processing with Clickhouse</a> by Carto</li>
|
||
<li><a href="https://translate.yandex.com/translate?url=http%3A%2F%2Fwww.clickhouse.com.cn%2Ftopic%2F5a72e8ab9d28dfde2ddc5ea2F&lang=zh-en"
|
||
rel="external nofollow" target="_blank">ClickHouse and Vertica comparison</a> by zhtsh <span class="grey">(machine translation from Chinese)</span></li>
|
||
<li><a href="https://translate.yandex.com/translate?url=http%3A%2F%2Fverynull.com%2F2016%2F08%2F22%2Finfinidb%E4%B8%8Eclickhouse%E5%AF%B9%E6%AF%94%2F&lang=zh-en"
|
||
rel="external nofollow" target="_blank">ClickHouse and InfiniDB comparison</a> by RamboLau <span class="grey">(machine translation from Chinese)</span></li>
|
||
</ul>
|
||
|
||
<h2 id="linearly-scalable">Linearly Scalable</h2>
|
||
|
||
<p>ClickHouse allows companies to add servers to their clusters when necessary without investing time or money into
|
||
any additional DBMS modification. The system has been successfully serving
|
||
<a href="https://metrica.yandex.com/" rel="external nofollow">Yandex.Metrica</a>,
|
||
while the count of servers in it's main production cluster have grown from 60 to 394 in two years,
|
||
which are by the way located in six geographically distributed datacenters.</p>
|
||
|
||
<p>ClickHouse scales well both vertically and horizontally. ClickHouse is easily adaptable to perform either on
|
||
cluster with hundreds of nodes, or on a single server or even on a tiny virtual machine. Currently there are
|
||
installations with more than two trillion rows per single node,
|
||
as well as installations with 100Tb of storage per single node.</p>
|
||
|
||
|
||
<h2 id="hardware-efficient">Hardware Efficient</h2>
|
||
|
||
<p>ClickHouse processes typical analytical queries two to three orders of magnitude faster than traditional
|
||
row-oriented systems with the same available I/O throughput. The system's columnar storage format allows fitting
|
||
more hot data in RAM, which leads to a shorter response times.</p>
|
||
|
||
<p>ClickHouse allows to minimize the number of seeks for range queries, which increases efficiency of using rotational
|
||
disk drives, as it maintains locality of reference for continually stored data.</p>
|
||
|
||
<p>ClickHouse is CPU efficient because of it's vectorized query execution involving relevant processor instructions
|
||
and runtime code generation.</p>
|
||
|
||
<p>By minimizing data transfers for most types of queries, ClickHouse enables companies to manage their data and
|
||
create reports without using specialized networks that are aimed at high-performance computing.</p>
|
||
|
||
<h2 id="fault-tolerant">Fault Tolerant</h2>
|
||
|
||
<p>ClickHouse supports multi-master asynchronous replication and can be deployed across multiple datacenters.
|
||
Downtime of a single node or the whole datacenter won't affect the system's availability for both reads and
|
||
writes.
|
||
Distributed reads are automatically balanced to live replicas to avoid increasing latency. Replicated data
|
||
are synchronized automatically or semi-automatically after server downtime.</p>
|
||
</div>
|
||
</div>
|
||
|
||
<div id="grey-block" class="colored-block">
|
||
<div class="page">
|
||
|
||
<h2 id="key-features">Key Features</h2>
|
||
|
||
<div class="block-50">
|
||
<ul class="dashed">
|
||
<li>True column-oriented storage</li>
|
||
<li>Vectorized query execution</li>
|
||
<li>Data compression</li>
|
||
<li>Parallel and distributed query execution</li>
|
||
<li>Real time query processing</li>
|
||
<li>Real time data ingestion</li>
|
||
<li>On-disk locality of reference</li>
|
||
<li>Cross-datacenter replication</li>
|
||
<li>High availability</li>
|
||
<li>SQL support</li>
|
||
</ul>
|
||
</div>
|
||
|
||
<div class="block-50">
|
||
<ul class="dashed">
|
||
<li>Local and distributed joins</li>
|
||
<li>Pluggable external dimension tables</li>
|
||
<li>Arrays and nested data types</li>
|
||
<li>Approximate query processing</li>
|
||
<li>Probabilistic data structures</li>
|
||
<li>Full support of IPv6</li>
|
||
<li>Features for web analytics</li>
|
||
<li>State-of-the-art algorithms</li>
|
||
<li>Detailed documentation</li>
|
||
<li>Clean documented code</li>
|
||
</ul>
|
||
</div>
|
||
|
||
<div class="clear"></div>
|
||
</div>
|
||
</div>
|
||
<div class="page">
|
||
|
||
<h2 id="feature-rich">Feature Rich</h2>
|
||
|
||
<p>ClickHouse features a user-friendly SQL query dialect with a number of built-in analytics capabilities.
|
||
For example, it includes probabilistic data
|
||
structures for fast and memory-efficient calculation of cardinalities and quantiles. There are functions for
|
||
working dates, times and time zones, as well as some specialized ones like addressing URLs and IPs
|
||
(both IPv4 and IPv6) and many more.</p>
|
||
|
||
<p>Data organizing options available in ClickHouse, such as arrays, array joins, tuples and nested data structures, are
|
||
extremely efficient for managing denormalized data.</p>
|
||
|
||
<p>Using ClickHouse allows joining both distributed data and co-located data, as the system supports local joins and
|
||
distributed joins. It also offers an opportunity to use external dictionaries, dimension tables loaded from
|
||
an external source, for seamless joins with simple syntax.</p>
|
||
|
||
<p>ClickHouse supports approximate query processing – you can get results as fast as you want, which is
|
||
indispensable when dealing with terabytes and petabytes of data.</p>
|
||
|
||
<p>The system's conditional aggregate functions, calculation of totals and extremes, allow getting results with a
|
||
single query without having to run a number of them.</p>
|
||
|
||
<h2 id="success-stories">Success Stories</h2>
|
||
|
||
<ul class="dashed">
|
||
<li><a href="docs/en/introduction/ya_metrika_task/">Yandex.Metrica</a></li>
|
||
<li><a href="https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/"
|
||
rel="external nofollow" target="_blank">HTTP Analytics</a> and <a href="https://blog.cloudflare.com/how-cloudflare-analyzes-1m-dns-queries-per-second/"
|
||
rel="external nofollow" target="_blank">DNS Analytics</a> at CloudFlare</li>
|
||
<li><a href="https://www.slideshare.net/glebus/using-clickhouse-for-experimentation-104247173"
|
||
rel="external nofollow" target="_blank">ClickHouse for Experimentation</a> at Spotify</li>
|
||
<li><a href="https://translate.yandex.com/translate?url=https%3A%2F%2Fhabrahabr.ru%2Fpost%2F322620%2F&lang=ru-en"
|
||
rel="external nofollow" target="_blank">Migrating to Yandex ClickHouse</a> by LifeStreet <span class="grey">(machine translation from Russian)</span></li>
|
||
<li><a href="https://translate.yandex.com/translate?url=https%3A%2F%2Fhabrahabr.ru%2Fcompany%2Fsmi2%2Fblog%2F314558%2F&lang=ru-en"
|
||
rel="external nofollow" target="_blank">How to start ClickHouse up and win the jackpot</a> by SMI2 <span class="grey">(machine translation from Russian)</span></li>
|
||
<li><a href="https://translate.yandex.com/translate?url=http%3A%2F%2Fwww.jianshu.com%2Fp%2F4c86a2478cca&lang=zh-en"
|
||
rel="external nofollow" target="_blank">First place at Analysys OLAP algorithm contest</a> <span class="grey">(machine translation from Chinese)</span></li>
|
||
<li><a href="https://translate.yandex.com/translate?url=https%3A%2F%2Ftech.geniee.co.jp%2Fentry%2F2017%2F07%2F20%2F160100"
|
||
rel="external nofollow" target="_blank">Speeding up Report API</a> at Geniee <span class="grey">(machine translation from Japanese)</span></li>
|
||
<li><a href="https://www.yandex.com/company/press_center/press_releases/2012/2012-04-10/"
|
||
rel="external nofollow" target="_blank">LHCb experiment</a> by CERN</li>
|
||
</ul>
|
||
|
||
<h2>When to use ClickHouse</h2>
|
||
|
||
<p>For analytics over stream of clean, well structured and immutable events or logs.
|
||
It is recommended to put each such stream into a single wide fact table with pre-joined dimensions.
|
||
</p>
|
||
<p>Some examples of viable applications:</p>
|
||
|
||
<ul class="dashed">
|
||
<li>Web and App analytics</li>
|
||
<li>Advertising networks and RTB</li>
|
||
<li>Telecommunications</li>
|
||
<li>E-commerce and finance</li>
|
||
<li>Information security</li>
|
||
<li>Monitoring and telemetry</li>
|
||
<li>Time series</li>
|
||
<li>Business intelligence</li>
|
||
<li>Online games</li>
|
||
<li>Internet of Things</li>
|
||
</ul>
|
||
|
||
<h2>When <span class="red">NOT</span> to use ClickHouse</h2>
|
||
|
||
<ul class="dashed">
|
||
<li>Transactional workloads (OLTP)</li>
|
||
<li>Key-value access with high request rate</li>
|
||
<li>Blob or document storage</li>
|
||
<li>Over-normalized data</li>
|
||
</ul>
|
||
|
||
<h2 id="highly-reliable">Highly Reliable</h2>
|
||
|
||
<p>ClickHouse has been managing petabytes of data serving a number of highload mass audience services of
|
||
<a href="https://www.yandex.com/company/"
|
||
rel="external nofollow">Yandex</a>, Russia's
|
||
leading search provider and one of largest European IT companies.
|
||
Since 2012, ClickHouse has been providing robust database management for the company's <a
|
||
href="https://metrica.yandex.com/" rel="external nofollow">web analytics service</a>, comparison
|
||
e-commerce platform, public email service, online advertising platform, business intelligence tools
|
||
and infrastructure monitoring.</p>
|
||
|
||
<p>ClickHouse can be configured as purely distributed system located on independent nodes,
|
||
without any single points of failure.</p>
|
||
|
||
<p>Software and hardware failures or misconfigurations do not result in loss of data. Instead of deleting "broken"
|
||
data, ClickHouse saves it or asks you what to do before a startup. All data is checksummed before every
|
||
read or write to disk or network. It is virtually impossible to delete data by accident as there are safeguards
|
||
even for human errors.</p>
|
||
|
||
<p>ClickHouse offers flexible limits on query complexity and resource usage, which can be fine-tuned with settings.
|
||
It is possible to simultaneously serve both a number of high priority low-latency requests and some
|
||
long-running queries with background priority.</p>
|
||
|
||
<h2 id="simple-and-handy">Simple and Handy</h2>
|
||
<p>ClickHouse streamlines all your data processing. It's easy to use: ingest all your structured data into the
|
||
system, and it is instantly available for reports. New columns for new properties or dimensions can be
|
||
easily added to the system at any time without slowing it down.</p>
|
||
|
||
<p>ClickHouse is simple and works out-of-the-box. As well as performing on hundreds of node clusters, this system
|
||
can be easily installed on a single server or even a virtual machine. No development experience or code-writing
|
||
skills are required to install ClickHouse.</p>
|
||
|
||
<h2 id="quick-start">Quick Start</h2>
|
||
|
||
<p>System requirements: Linux, x86_64 with SSE 4.2.</p>
|
||
|
||
<p>Install packages for Ubuntu/Debian:</p>
|
||
|
||
<code id="packages-install">
|
||
<pre>
|
||
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E0C56BD4 # optional
|
||
|
||
echo "deb http://repo.yandex.ru/clickhouse/deb/stable/ main/" | sudo tee /etc/apt/sources.list.d/clickhouse.list
|
||
sudo apt-get update
|
||
|
||
sudo apt-get install -y clickhouse-server clickhouse-client
|
||
|
||
sudo service clickhouse-server start
|
||
clickhouse-client
|
||
</pre>
|
||
</code>
|
||
|
||
<p>For other operating systems the easiest way to get started is using
|
||
<a href="https://hub.docker.com/r/yandex/clickhouse-server/" rel="external nofollow"
|
||
target="_blank">
|
||
official Docker images of ClickHouse</a>
|
||
. Alternatively you can build ClickHouse from <a
|
||
href="https://github.com/yandex/ClickHouse" rel="external nofollow"
|
||
target="_blank">sources</a>
|
||
according to the <a
|
||
href="https://clickhouse.yandex/docs/en/development/build.html" rel="external nofollow"
|
||
target="_blank">instruction</a>.</p>
|
||
|
||
<p>After installation proceed to <strong><a href="tutorial.html">tutorial</a></strong> or <strong><a href="docs/en/">full
|
||
documentation</a></strong>.</p>
|
||
|
||
<h2 id="contacts">Contacts</h2>
|
||
<ul class="dashed">
|
||
<li>Subscribe to the <a href="https://clickhouse.yandex/blog/en" target="_blank">official ClickHouse blog</a>
|
||
and its <a href="https://clickhouse.yandex/blog/ru" target="_blank">counterpart in Russian</a>.</li>
|
||
<li>Ask any questions on <a href="https://stackoverflow.com/questions/tagged/clickhouse"
|
||
rel="external nofollow" target="_blank">Stack Overflow</a> or
|
||
<a href="https://groups.google.com/group/clickhouse"
|
||
rel="external nofollow" target="_blank">Google Group</a>.
|
||
</li>
|
||
<li>Join Telegram chat to discuss with real users in <a
|
||
href="https://telegram.me/clickhouse_en"
|
||
rel="external nofollow" target="_blank">English</a> or in
|
||
<a href="https://telegram.me/clickhouse_ru"
|
||
rel="external nofollow" target="_blank">Russian</a>.</li>
|
||
<li>Follow official <a
|
||
href="https://twitter.com/ClickHouseDB"
|
||
rel="external nofollow" target="_blank">Twitter account</a>.</li>
|
||
</ul>
|
||
|
||
<p>Or email ClickHouse team at Yandex directly:
|
||
<a id="feedback_email" href="">turn on JavaScript to see email address</a>,
|
||
for example if you are interested in commercial support.</p>
|
||
|
||
<p>Friendly reminder: check out the documentation in <a href="docs/en/">English</a> or <a href="docs/ru/">Russian</a> first — maybe your question is already covered.
|
||
</p>
|
||
|
||
<h2>Like ClickHouse?</h2>
|
||
<p>Help to spread the word about it via <a rel="external nofollow" target="_blank" href="https://www.facebook.com/sharer.php?u=https://clickhouse.yandex">Facebook</a>,
|
||
<a rel="external nofollow" target="_blank" href="https://twitter.com/intent/tweet?url=https://clickhouse.yandex">Twitter</a> and
|
||
<a rel="external nofollow" target="_blank" href="https://www.linkedin.com/shareArticle?url=https://clickhouse.yandex">LinkedIn</a>!</p>
|
||
|
||
|
||
<p class="warranty"><a href="https://github.com/yandex/ClickHouse/blob/master/LICENSE"
|
||
rel="external nofollow" target="_blank">
|
||
ClickHouse source code is published under Apache 2.0 License.</a> Software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||
KIND, either express or implied.</p>
|
||
|
||
<p id="footer">© 2016–2018 <a href="https://yandex.com/company/" rel="external nofollow">YANDEX</a> LLC</p>
|
||
|
||
</div>
|
||
|
||
<a id="github_link"
|
||
href="https://github.com/yandex/ClickHouse"
|
||
rel="external nofollow"
|
||
target="_blank"
|
||
><div id="github">Fork me on GitHub</div></a>
|
||
|
||
<script type="text/javascript" src="//yastatic.net/jquery/3.1.1/jquery.min.js"></script>
|
||
<script type="text/javascript">
|
||
$(document).ready(function () {
|
||
var name = $('#main-title').text().trim().toLowerCase();
|
||
var feedback_address = name + '-feedback' + '@yandex-team.com';
|
||
var feedback_email = $('#feedback_email');
|
||
feedback_email.attr('href', 'mailto:' + feedback_address);
|
||
feedback_email.html(feedback_address);
|
||
|
||
$("a[href^='#']").on('click', function (e) {
|
||
e.preventDefault();
|
||
var selector = $(e.target).attr('href');
|
||
var offset = 0;
|
||
|
||
if (selector) {
|
||
offset = $(selector).offset().top - $('#logo').height() * 1.5;
|
||
}
|
||
$('html, body').animate({
|
||
scrollTop: offset
|
||
}, 500);
|
||
window.history.replaceState('', document.title, window.location.href.replace(location.hash, '') + this.hash);
|
||
});
|
||
|
||
var hostParts = window.location.host.split('.');
|
||
if (hostParts.length > 2 && hostParts[0] != 'test') {
|
||
window.location.host = hostParts[0] + '.' + hostParts[1];
|
||
}
|
||
});
|
||
</script>
|
||
|
||
<!-- Yandex.Metrika counter -->
|
||
<script type="text/javascript">
|
||
(function (d, w, c) {
|
||
(w[c] = w[c] || []).push(function() {
|
||
try {
|
||
w.yaCounter18343495 = new Ya.Metrika2({
|
||
id:18343495,
|
||
clickmap:true,
|
||
trackLinks:true,
|
||
accurateTrackBounce:true,
|
||
webvisor:true
|
||
});
|
||
} catch(e) { }
|
||
});
|
||
|
||
var n = d.getElementsByTagName("script")[0],
|
||
s = d.createElement("script"),
|
||
f = function () { n.parentNode.insertBefore(s, n); };
|
||
s.type = "text/javascript";
|
||
s.async = true;
|
||
s.src = "https://mc.yandex.ru/metrika/tag.js";
|
||
|
||
if (w.opera == "[object Opera]") {
|
||
d.addEventListener("DOMContentLoaded", f, false);
|
||
} else { f(); }
|
||
})(document, window, "yandex_metrika_callbacks2");
|
||
</script>
|
||
<noscript>
|
||
<div><img src="https://mc.yandex.ru/watch/18343495" style="position:absolute; left:-9999px;" alt=""/></div>
|
||
</noscript>
|
||
<!-- /Yandex.Metrika counter -->
|
||
</body>
|
||
</html>
|