ClickHouse/tests/integration/test_storage_s3_queue/test.py
Kseniia Sumarokova 752a1ec466
Merge pull request #70141 from ClickHouse/refactor-object-storage-read
Refactor reading from object storage
2024-10-03 10:14:28 +00:00

2012 lines
61 KiB
Python

import io
import json
import logging
import random
import string
import time
import uuid
import pytest
from helpers.client import QueryRuntimeException
from helpers.cluster import ClickHouseCluster, ClickHouseInstance
AVAILABLE_MODES = ["unordered", "ordered"]
DEFAULT_AUTH = ["'minio'", "'minio123'"]
NO_AUTH = ["NOSIGN"]
def prepare_public_s3_bucket(started_cluster):
def create_bucket(client, bucket_name, policy):
if client.bucket_exists(bucket_name):
client.remove_bucket(bucket_name)
client.make_bucket(bucket_name)
client.set_bucket_policy(bucket_name, json.dumps(policy))
def get_policy_with_public_access(bucket_name):
return {
"Version": "2012-10-17",
"Statement": [
{
"Sid": "",
"Effect": "Allow",
"Principal": "*",
"Action": [
"s3:GetBucketLocation",
"s3:ListBucket",
],
"Resource": f"arn:aws:s3:::{bucket_name}",
},
{
"Sid": "",
"Effect": "Allow",
"Principal": "*",
"Action": [
"s3:GetObject",
"s3:PutObject",
"s3:DeleteObject",
],
"Resource": f"arn:aws:s3:::{bucket_name}/*",
},
],
}
minio_client = started_cluster.minio_client
started_cluster.minio_public_bucket = f"{started_cluster.minio_bucket}-public"
create_bucket(
minio_client,
started_cluster.minio_public_bucket,
get_policy_with_public_access(started_cluster.minio_public_bucket),
)
@pytest.fixture(autouse=True)
def s3_queue_setup_teardown(started_cluster):
instance = started_cluster.instances["instance"]
instance_2 = started_cluster.instances["instance2"]
instance.query("DROP DATABASE IF EXISTS default; CREATE DATABASE default;")
instance_2.query("DROP DATABASE IF EXISTS default; CREATE DATABASE default;")
minio = started_cluster.minio_client
objects = list(minio.list_objects(started_cluster.minio_bucket, recursive=True))
for obj in objects:
minio.remove_object(started_cluster.minio_bucket, obj.object_name)
container_client = started_cluster.blob_service_client.get_container_client(
started_cluster.azurite_container
)
if container_client.exists():
blob_names = [b.name for b in container_client.list_blobs()]
logging.debug(f"Deleting blobs: {blob_names}")
for b in blob_names:
container_client.delete_blob(b)
yield # run test
@pytest.fixture(scope="module")
def started_cluster():
try:
cluster = ClickHouseCluster(__file__)
cluster.add_instance(
"instance",
user_configs=["configs/users.xml"],
with_minio=True,
with_azurite=True,
with_zookeeper=True,
main_configs=[
"configs/zookeeper.xml",
"configs/s3queue_log.xml",
],
stay_alive=True,
)
cluster.add_instance(
"instance2",
user_configs=["configs/users.xml"],
with_minio=True,
with_zookeeper=True,
main_configs=[
"configs/s3queue_log.xml",
],
stay_alive=True,
)
cluster.add_instance(
"old_instance",
with_zookeeper=True,
image="clickhouse/clickhouse-server",
tag="23.12",
stay_alive=True,
with_installed_binary=True,
use_old_analyzer=True,
)
cluster.add_instance(
"node1",
with_zookeeper=True,
stay_alive=True,
main_configs=[
"configs/zookeeper.xml",
"configs/s3queue_log.xml",
"configs/remote_servers.xml",
],
)
cluster.add_instance(
"node2",
with_zookeeper=True,
stay_alive=True,
main_configs=[
"configs/zookeeper.xml",
"configs/s3queue_log.xml",
"configs/remote_servers.xml",
],
)
cluster.add_instance(
"instance_too_many_parts",
user_configs=["configs/users.xml"],
with_minio=True,
with_zookeeper=True,
main_configs=[
"configs/s3queue_log.xml",
"configs/merge_tree.xml",
],
stay_alive=True,
)
cluster.add_instance(
"instance_24.5",
with_zookeeper=True,
image="clickhouse/clickhouse-server",
tag="24.5",
stay_alive=True,
user_configs=[
"configs/users.xml",
],
with_installed_binary=True,
use_old_analyzer=True,
)
logging.info("Starting cluster...")
cluster.start()
logging.info("Cluster started")
yield cluster
finally:
cluster.shutdown()
def run_query(instance, query, stdin=None, settings=None):
# type: (ClickHouseInstance, str, object, dict) -> str
logging.info("Running query '{}'...".format(query))
result = instance.query(query, stdin=stdin, settings=settings)
logging.info("Query finished")
return result
def generate_random_files(
started_cluster,
files_path,
count,
storage="s3",
column_num=3,
row_num=10,
start_ind=0,
bucket=None,
):
files = [
(f"{files_path}/test_{i}.csv", i) for i in range(start_ind, start_ind + count)
]
files.sort(key=lambda x: x[0])
print(f"Generating files: {files}")
total_values = []
for filename, i in files:
rand_values = [
[random.randint(0, 1000) for _ in range(column_num)] for _ in range(row_num)
]
total_values += rand_values
values_csv = (
"\n".join((",".join(map(str, row)) for row in rand_values)) + "\n"
).encode()
if storage == "s3":
put_s3_file_content(started_cluster, filename, values_csv, bucket)
else:
put_azure_file_content(started_cluster, filename, values_csv, bucket)
return total_values
def put_s3_file_content(started_cluster, filename, data, bucket=None):
bucket = started_cluster.minio_bucket if bucket is None else bucket
buf = io.BytesIO(data)
started_cluster.minio_client.put_object(bucket, filename, buf, len(data))
def put_azure_file_content(started_cluster, filename, data, bucket=None):
client = started_cluster.blob_service_client.get_blob_client(
started_cluster.azurite_container, filename
)
buf = io.BytesIO(data)
client.upload_blob(buf, "BlockBlob", len(data))
def create_table(
started_cluster,
node,
table_name,
mode,
files_path,
engine_name="S3Queue",
format="column1 UInt32, column2 UInt32, column3 UInt32",
additional_settings={},
file_format="CSV",
auth=DEFAULT_AUTH,
bucket=None,
expect_error=False,
database_name="default",
):
auth_params = ",".join(auth)
bucket = started_cluster.minio_bucket if bucket is None else bucket
settings = {
"s3queue_loading_retries": 0,
"after_processing": "keep",
"keeper_path": f"/clickhouse/test_{table_name}",
"mode": f"{mode}",
}
settings.update(additional_settings)
engine_def = None
if engine_name == "S3Queue":
url = f"http://{started_cluster.minio_host}:{started_cluster.minio_port}/{bucket}/{files_path}/"
engine_def = f"{engine_name}('{url}', {auth_params}, {file_format})"
else:
engine_def = f"{engine_name}('{started_cluster.env_variables['AZURITE_CONNECTION_STRING']}', '{started_cluster.azurite_container}', '{files_path}/', 'CSV')"
node.query(f"DROP TABLE IF EXISTS {table_name}")
create_query = f"""
CREATE TABLE {database_name}.{table_name} ({format})
ENGINE = {engine_def}
SETTINGS {",".join((k+"="+repr(v) for k, v in settings.items()))}
"""
if expect_error:
return node.query_and_get_error(create_query)
node.query(create_query)
def create_mv(
node,
src_table_name,
dst_table_name,
format="column1 UInt32, column2 UInt32, column3 UInt32",
):
mv_name = f"{dst_table_name}_mv"
node.query(
f"""
DROP TABLE IF EXISTS {dst_table_name};
DROP TABLE IF EXISTS {mv_name};
CREATE TABLE {dst_table_name} ({format}, _path String)
ENGINE = MergeTree()
ORDER BY column1;
CREATE MATERIALIZED VIEW {mv_name} TO {dst_table_name} AS SELECT *, _path FROM {src_table_name};
"""
)
def generate_random_string(length=6):
return "".join(random.choice(string.ascii_lowercase) for i in range(length))
@pytest.mark.parametrize("mode", ["unordered", "ordered"])
@pytest.mark.parametrize("engine_name", ["S3Queue", "AzureQueue"])
def test_delete_after_processing(started_cluster, mode, engine_name):
node = started_cluster.instances["instance"]
table_name = f"delete_after_processing_{mode}_{engine_name}"
dst_table_name = f"{table_name}_dst"
files_path = f"{table_name}_data"
files_num = 5
row_num = 10
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
if engine_name == "S3Queue":
storage = "s3"
else:
storage = "azure"
total_values = generate_random_files(
started_cluster, files_path, files_num, row_num=row_num, storage=storage
)
create_table(
started_cluster,
node,
table_name,
mode,
files_path,
additional_settings={"after_processing": "delete", "keeper_path": keeper_path},
engine_name=engine_name,
)
create_mv(node, table_name, dst_table_name)
expected_count = files_num * row_num
for _ in range(100):
count = int(node.query(f"SELECT count() FROM {dst_table_name}"))
print(f"{count}/{expected_count}")
if count == expected_count:
break
time.sleep(1)
assert int(node.query(f"SELECT count() FROM {dst_table_name}")) == expected_count
assert int(node.query(f"SELECT uniq(_path) FROM {dst_table_name}")) == files_num
assert [
list(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name} ORDER BY column1, column2, column3"
).splitlines()
] == sorted(total_values, key=lambda x: (x[0], x[1], x[2]))
if engine_name == "S3Queue":
minio = started_cluster.minio_client
objects = list(minio.list_objects(started_cluster.minio_bucket, recursive=True))
assert len(objects) == 0
else:
client = started_cluster.blob_service_client.get_container_client(
started_cluster.azurite_container
)
objects_iterator = client.list_blobs(files_path)
for objects in objects_iterator:
assert False
@pytest.mark.parametrize("mode", ["unordered", "ordered"])
@pytest.mark.parametrize("engine_name", ["S3Queue", "AzureQueue"])
def test_failed_retry(started_cluster, mode, engine_name):
node = started_cluster.instances["instance"]
table_name = f"failed_retry_{mode}_{engine_name}"
dst_table_name = f"{table_name}_dst"
files_path = f"{table_name}_data"
file_path = f"{files_path}/trash_test.csv"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
retries_num = 3
values = [
["failed", 1, 1],
]
values_csv = (
"\n".join((",".join(map(str, row)) for row in values)) + "\n"
).encode()
if engine_name == "S3Queue":
put_s3_file_content(started_cluster, file_path, values_csv)
else:
put_azure_file_content(started_cluster, file_path, values_csv)
create_table(
started_cluster,
node,
table_name,
mode,
files_path,
additional_settings={
"s3queue_loading_retries": retries_num,
"keeper_path": keeper_path,
},
engine_name=engine_name,
)
create_mv(node, table_name, dst_table_name)
failed_node_path = ""
for _ in range(20):
zk = started_cluster.get_kazoo_client("zoo1")
failed_nodes = zk.get_children(f"{keeper_path}/failed/")
if len(failed_nodes) > 0:
assert len(failed_nodes) == 1
failed_node_path = f"{keeper_path}/failed/{failed_nodes[0]}"
time.sleep(1)
assert failed_node_path != ""
retries = 0
for _ in range(20):
data, stat = zk.get(failed_node_path)
json_data = json.loads(data)
print(f"Failed node metadata: {json_data}")
assert json_data["file_path"] == file_path
retries = int(json_data["retries"])
if retries == retries_num:
break
time.sleep(1)
assert retries == retries_num
assert 0 == int(node.query(f"SELECT count() FROM {dst_table_name}"))
@pytest.mark.parametrize("mode", AVAILABLE_MODES)
def test_direct_select_file(started_cluster, mode):
node = started_cluster.instances["instance"]
table_name = f"direct_select_file_{mode}"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{mode}_{generate_random_string()}"
files_path = f"{table_name}_data"
file_path = f"{files_path}/test.csv"
values = [
[12549, 2463, 19893],
[64021, 38652, 66703],
[81611, 39650, 83516],
]
values_csv = (
"\n".join((",".join(map(str, row)) for row in values)) + "\n"
).encode()
put_s3_file_content(started_cluster, file_path, values_csv)
for i in range(3):
create_table(
started_cluster,
node,
f"{table_name}_{i + 1}",
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": 1,
},
)
assert [
list(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}_1").splitlines()
] == values
assert [
list(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}_2").splitlines()
] == []
assert [
list(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}_3").splitlines()
] == []
# New table with same zookeeper path
create_table(
started_cluster,
node,
f"{table_name}_4",
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": 1,
},
)
assert [
list(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}_4").splitlines()
] == []
# New table with different zookeeper path
keeper_path = f"{keeper_path}_2"
create_table(
started_cluster,
node,
f"{table_name}_4",
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": 1,
},
)
assert [
list(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}_4").splitlines()
] == values
values = [
[1, 1, 1],
]
values_csv = (
"\n".join((",".join(map(str, row)) for row in values)) + "\n"
).encode()
file_path = f"{files_path}/t.csv"
put_s3_file_content(started_cluster, file_path, values_csv)
if mode == "unordered":
assert [
list(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}_4").splitlines()
] == values
elif mode == "ordered":
assert [
list(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}_4").splitlines()
] == []
@pytest.mark.parametrize("mode", AVAILABLE_MODES)
def test_direct_select_multiple_files(started_cluster, mode):
node = started_cluster.instances["instance"]
table_name = f"direct_select_multiple_files_{mode}"
files_path = f"{table_name}_data"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
create_table(
started_cluster,
node,
table_name,
mode,
files_path,
additional_settings={"keeper_path": keeper_path, "processing_threads_num": 3},
)
for i in range(5):
rand_values = [[random.randint(0, 50) for _ in range(3)] for _ in range(10)]
values_csv = (
"\n".join((",".join(map(str, row)) for row in rand_values)) + "\n"
).encode()
file_path = f"{files_path}/test_{i}.csv"
put_s3_file_content(started_cluster, file_path, values_csv)
assert [
list(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}").splitlines()
] == rand_values
total_values = generate_random_files(started_cluster, files_path, 4, start_ind=5)
assert {
tuple(map(int, l.split()))
for l in node.query(f"SELECT * FROM {table_name}").splitlines()
} == set([tuple(i) for i in total_values])
@pytest.mark.parametrize("mode", AVAILABLE_MODES)
def test_streaming_to_view(started_cluster, mode):
node = started_cluster.instances["instance"]
table_name = f"streaming_to_view_{mode}"
dst_table_name = f"{table_name}_dst"
files_path = f"{table_name}_data"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
total_values = generate_random_files(started_cluster, files_path, 10)
create_table(
started_cluster,
node,
table_name,
mode,
files_path,
additional_settings={"keeper_path": keeper_path},
)
create_mv(node, table_name, dst_table_name)
expected_values = set([tuple(i) for i in total_values])
for i in range(10):
selected_values = {
tuple(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}"
).splitlines()
}
if selected_values == expected_values:
break
time.sleep(1)
assert selected_values == expected_values
@pytest.mark.parametrize("mode", AVAILABLE_MODES)
def test_streaming_to_many_views(started_cluster, mode):
node = started_cluster.instances["instance"]
table_name = f"streaming_to_many_views_{mode}"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
for i in range(3):
table = f"{table_name}_{i + 1}"
create_table(
started_cluster,
node,
table,
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
},
)
create_mv(node, table, dst_table_name)
total_values = generate_random_files(started_cluster, files_path, 5)
expected_values = set([tuple(i) for i in total_values])
def select():
return {
tuple(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}"
).splitlines()
}
for _ in range(20):
if select() == expected_values:
break
time.sleep(1)
assert select() == expected_values
def test_multiple_tables_meta_mismatch(started_cluster):
node = started_cluster.instances["instance"]
table_name = f"multiple_tables_meta_mismatch"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
create_table(
started_cluster,
node,
table_name,
"ordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
},
)
# check mode
failed = False
try:
create_table(
started_cluster,
node,
f"{table_name}_copy",
"unordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
},
)
except QueryRuntimeException as e:
assert "Existing table metadata in ZooKeeper differs in engine mode" in str(e)
failed = True
assert failed is True
# check columns
try:
create_table(
started_cluster,
node,
f"{table_name}_copy",
"ordered",
files_path,
format="column1 UInt32, column2 UInt32, column3 UInt32, column4 UInt32",
additional_settings={
"keeper_path": keeper_path,
},
)
except QueryRuntimeException as e:
assert "Existing table metadata in ZooKeeper differs in columns" in str(e)
failed = True
assert failed is True
# check format
try:
create_table(
started_cluster,
node,
f"{table_name}_copy",
"ordered",
files_path,
format="column1 UInt32, column2 UInt32, column3 UInt32, column4 UInt32",
additional_settings={
"keeper_path": keeper_path,
},
file_format="TSV",
)
except QueryRuntimeException as e:
assert "Existing table metadata in ZooKeeper differs in format name" in str(e)
failed = True
assert failed is True
# create working engine
create_table(
started_cluster,
node,
f"{table_name}_copy",
"ordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
},
)
# TODO: Update the modes for this test to include "ordered" once PR #55795 is finished.
@pytest.mark.parametrize("mode", ["unordered"])
def test_multiple_tables_streaming_sync(started_cluster, mode):
node = started_cluster.instances["instance"]
table_name = f"multiple_tables_streaming_sync_{mode}"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
files_to_generate = 300
for i in range(3):
table = f"{table_name}_{i + 1}"
dst_table = f"{dst_table_name}_{i + 1}"
create_table(
started_cluster,
node,
table,
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
},
)
create_mv(node, table, dst_table)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, row_num=1
)
def get_count(table_name):
return int(run_query(node, f"SELECT count() FROM {table_name}"))
for _ in range(100):
if (
get_count(f"{dst_table_name}_1")
+ get_count(f"{dst_table_name}_2")
+ get_count(f"{dst_table_name}_3")
) == files_to_generate:
break
time.sleep(1)
if (
get_count(f"{dst_table_name}_1")
+ get_count(f"{dst_table_name}_2")
+ get_count(f"{dst_table_name}_3")
) != files_to_generate:
info = node.query(
f"SELECT * FROM system.s3queue WHERE zookeeper_path like '%{table_name}' ORDER BY file_name FORMAT Vertical"
)
logging.debug(info)
assert False
res1 = [
list(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}_1"
).splitlines()
]
res2 = [
list(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}_2"
).splitlines()
]
res3 = [
list(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}_3"
).splitlines()
]
assert {tuple(v) for v in res1 + res2 + res3} == set(
[tuple(i) for i in total_values]
)
# Checking that all files were processed only once
time.sleep(10)
assert (
get_count(f"{dst_table_name}_1")
+ get_count(f"{dst_table_name}_2")
+ get_count(f"{dst_table_name}_3")
) == files_to_generate
@pytest.mark.parametrize("mode", AVAILABLE_MODES)
def test_multiple_tables_streaming_sync_distributed(started_cluster, mode):
node = started_cluster.instances["instance"]
node_2 = started_cluster.instances["instance2"]
# A unique table name is necessary for repeatable tests
table_name = (
f"multiple_tables_streaming_sync_distributed_{mode}_{generate_random_string()}"
)
dst_table_name = f"{table_name}_dst"
keeper_path = f"/clickhouse/test_{table_name}"
files_path = f"{table_name}_data"
files_to_generate = 300
row_num = 50
total_rows = row_num * files_to_generate
for instance in [node, node_2]:
create_table(
started_cluster,
instance,
table_name,
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_buckets": 2,
**({"s3queue_processing_threads_num": 1} if mode == "ordered" else {}),
},
)
for instance in [node, node_2]:
create_mv(instance, table_name, dst_table_name)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, row_num=row_num
)
def get_count(node, table_name):
return int(run_query(node, f"SELECT count() FROM {table_name}"))
for _ in range(150):
if (
get_count(node, dst_table_name) + get_count(node_2, dst_table_name)
) == total_rows:
break
time.sleep(1)
if (
get_count(node, dst_table_name) + get_count(node_2, dst_table_name)
) != total_rows:
info = node.query(
f"SELECT * FROM system.s3queue WHERE zookeeper_path like '%{table_name}' ORDER BY file_name FORMAT Vertical"
)
logging.debug(info)
assert False
get_query = f"SELECT column1, column2, column3 FROM {dst_table_name}"
res1 = [list(map(int, l.split())) for l in run_query(node, get_query).splitlines()]
res2 = [
list(map(int, l.split())) for l in run_query(node_2, get_query).splitlines()
]
logging.debug(
f"res1 size: {len(res1)}, res2 size: {len(res2)}, total_rows: {total_rows}"
)
assert len(res1) + len(res2) == total_rows
# Checking that all engines have made progress
assert len(res1) > 0
assert len(res2) > 0
assert {tuple(v) for v in res1 + res2} == set([tuple(i) for i in total_values])
# Checking that all files were processed only once
time.sleep(10)
assert (
get_count(node, dst_table_name) + get_count(node_2, dst_table_name)
) == total_rows
def test_max_set_age(started_cluster):
node = started_cluster.instances["instance"]
table_name = "max_set_age"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
max_age = 20
files_to_generate = 10
create_table(
started_cluster,
node,
table_name,
"unordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
"tracked_file_ttl_sec": max_age,
"cleanup_interval_min_ms": max_age / 3,
"cleanup_interval_max_ms": max_age / 3,
"loading_retries": 0,
"processing_threads_num": 1,
"loading_retries": 0,
},
)
create_mv(node, table_name, dst_table_name)
_ = generate_random_files(started_cluster, files_path, files_to_generate, row_num=1)
expected_rows = files_to_generate
node.wait_for_log_line("Checking node limits")
node.wait_for_log_line("Node limits check finished")
def get_count():
return int(node.query(f"SELECT count() FROM {dst_table_name}"))
def wait_for_condition(check_function, max_wait_time=1.5 * max_age):
before = time.time()
while time.time() - before < max_wait_time:
if check_function():
return
time.sleep(0.25)
assert False
wait_for_condition(lambda: get_count() == expected_rows)
assert files_to_generate == int(
node.query(f"SELECT uniq(_path) from {dst_table_name}")
)
expected_rows *= 2
wait_for_condition(lambda: get_count() == expected_rows)
assert files_to_generate == int(
node.query(f"SELECT uniq(_path) from {dst_table_name}")
)
paths_count = [
int(x)
for x in node.query(
f"SELECT count() from {dst_table_name} GROUP BY _path"
).splitlines()
]
assert files_to_generate == len(paths_count)
for path_count in paths_count:
assert 2 == path_count
def get_object_storage_failures():
return int(
node.query(
"SELECT value FROM system.events WHERE name = 'ObjectStorageQueueFailedFiles' SETTINGS system_events_show_zero_values=1"
)
)
failed_count = get_object_storage_failures()
values = [
["failed", 1, 1],
]
values_csv = (
"\n".join((",".join(map(str, row)) for row in values)) + "\n"
).encode()
# use a different filename for each test to allow running a bunch of them sequentially with --count
file_with_error = f"max_set_age_fail_{uuid.uuid4().hex[:8]}.csv"
put_s3_file_content(started_cluster, f"{files_path}/{file_with_error}", values_csv)
wait_for_condition(lambda: failed_count + 1 == get_object_storage_failures())
node.query("SYSTEM FLUSH LOGS")
assert "Cannot parse input" in node.query(
f"SELECT exception FROM system.s3queue WHERE file_name ilike '%{file_with_error}'"
)
assert 1 == int(
node.query(
f"SELECT count() FROM system.s3queue_log WHERE file_name ilike '%{file_with_error}' AND notEmpty(exception)"
)
)
wait_for_condition(lambda: failed_count + 2 == get_object_storage_failures())
node.query("SYSTEM FLUSH LOGS")
assert "Cannot parse input" in node.query(
f"SELECT exception FROM system.s3queue WHERE file_name ilike '%{file_with_error}' ORDER BY processing_end_time DESC LIMIT 1"
)
assert 1 < int(
node.query(
f"SELECT count() FROM system.s3queue_log WHERE file_name ilike '%{file_with_error}' AND notEmpty(exception)"
)
)
node.restart_clickhouse()
expected_rows *= 2
wait_for_condition(lambda: get_count() == expected_rows)
assert files_to_generate == int(
node.query(f"SELECT uniq(_path) from {dst_table_name}")
)
def test_max_set_size(started_cluster):
node = started_cluster.instances["instance"]
table_name = f"max_set_size"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
files_to_generate = 10
create_table(
started_cluster,
node,
table_name,
"unordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_tracked_files_limit": 9,
"s3queue_cleanup_interval_min_ms": 0,
"s3queue_cleanup_interval_max_ms": 0,
"s3queue_processing_threads_num": 1,
},
)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=1
)
get_query = f"SELECT * FROM {table_name} ORDER BY column1, column2, column3"
res1 = [list(map(int, l.split())) for l in run_query(node, get_query).splitlines()]
assert res1 == sorted(total_values, key=lambda x: (x[0], x[1], x[2]))
print(total_values)
time.sleep(10)
zk = started_cluster.get_kazoo_client("zoo1")
processed_nodes = zk.get_children(f"{keeper_path}/processed/")
assert len(processed_nodes) == 9
res1 = [list(map(int, l.split())) for l in run_query(node, get_query).splitlines()]
assert res1 == [total_values[0]]
time.sleep(10)
res1 = [list(map(int, l.split())) for l in run_query(node, get_query).splitlines()]
assert res1 == [total_values[1]]
def test_drop_table(started_cluster):
node = started_cluster.instances["instance"]
table_name = f"test_drop"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
files_to_generate = 300
create_table(
started_cluster,
node,
table_name,
"unordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": 5,
},
)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=100000
)
create_mv(node, table_name, dst_table_name)
node.wait_for_log_line(f"rows from file: test_drop_data")
node.query(f"DROP TABLE {table_name} SYNC")
assert node.contains_in_log(
f"StorageS3Queue (default.{table_name}): Table is being dropped"
) or node.contains_in_log(
f"StorageS3Queue (default.{table_name}): Shutdown was called, stopping sync"
)
def test_s3_client_reused(started_cluster):
node = started_cluster.instances["instance"]
table_name = f"test_s3_client_reused"
dst_table_name = f"{table_name}_dst"
files_path = f"{table_name}_data"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
row_num = 10
def get_created_s3_clients_count():
value = node.query(
f"SELECT value FROM system.events WHERE event='S3Clients'"
).strip()
return int(value) if value != "" else 0
def wait_all_processed(files_num):
expected_count = files_num * row_num
for _ in range(100):
count = int(node.query(f"SELECT count() FROM {dst_table_name}"))
print(f"{count}/{expected_count}")
if count == expected_count:
break
time.sleep(1)
assert (
int(node.query(f"SELECT count() FROM {dst_table_name}")) == expected_count
)
prepare_public_s3_bucket(started_cluster)
s3_clients_before = get_created_s3_clients_count()
create_table(
started_cluster,
node,
table_name,
"ordered",
files_path,
additional_settings={
"after_processing": "delete",
"s3queue_processing_threads_num": 1,
"keeper_path": keeper_path,
},
auth=NO_AUTH,
bucket=started_cluster.minio_public_bucket,
)
s3_clients_after = get_created_s3_clients_count()
assert s3_clients_before + 1 == s3_clients_after
create_mv(node, table_name, dst_table_name)
for i in range(0, 10):
s3_clients_before = get_created_s3_clients_count()
generate_random_files(
started_cluster,
files_path,
count=1,
start_ind=i,
row_num=row_num,
bucket=started_cluster.minio_public_bucket,
)
wait_all_processed(i + 1)
s3_clients_after = get_created_s3_clients_count()
assert s3_clients_before == s3_clients_after
def get_processed_files(node, table_name):
return (
node.query(
f"""
select splitByChar('/', file_name)[-1] as file
from system.s3queue where zookeeper_path ilike '%{table_name}%' and status = 'Processed' order by file
"""
)
.strip()
.split("\n")
)
def get_unprocessed_files(node, table_name):
return node.query(
f"""
select concat('test_', toString(number), '.csv') as file from numbers(300)
where file not
in (select splitByChar('/', file_name)[-1] from system.s3queue where zookeeper_path ilike '%{table_name}%' and status = 'Processed')
"""
)
@pytest.mark.parametrize("mode", ["unordered", "ordered"])
def test_processing_threads(started_cluster, mode):
node = started_cluster.instances["instance"]
table_name = f"processing_threads_{mode}"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
files_to_generate = 300
processing_threads = 32
create_table(
started_cluster,
node,
table_name,
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": processing_threads,
},
)
create_mv(node, table_name, dst_table_name)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, row_num=1
)
def get_count(table_name):
return int(run_query(node, f"SELECT count() FROM {table_name}"))
for _ in range(50):
if (get_count(f"{dst_table_name}")) == files_to_generate:
break
time.sleep(1)
if get_count(dst_table_name) != files_to_generate:
processed_files = get_processed_files(node, table_name)
unprocessed_files = get_unprocessed_files(node, table_name)
logging.debug(
f"Processed files: {len(processed_files)}/{files_to_generate}, unprocessed files: {unprocessed_files}, count: {get_count(dst_table_name)}"
)
assert False
res = [
list(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}"
).splitlines()
]
assert {tuple(v) for v in res} == set([tuple(i) for i in total_values])
if mode == "ordered":
zk = started_cluster.get_kazoo_client("zoo1")
nodes = zk.get_children(f"{keeper_path}")
print(f"Metadata nodes: {nodes}")
processed_nodes = zk.get_children(f"{keeper_path}/buckets/")
assert len(processed_nodes) == processing_threads
@pytest.mark.parametrize(
"mode, processing_threads",
[
pytest.param("unordered", 1),
pytest.param("unordered", 8),
pytest.param("ordered", 1),
pytest.param("ordered", 8),
],
)
def test_shards(started_cluster, mode, processing_threads):
node = started_cluster.instances["instance"]
table_name = f"test_shards_{mode}_{processing_threads}"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
files_to_generate = 300
shards_num = 3
for i in range(shards_num):
table = f"{table_name}_{i + 1}"
dst_table = f"{dst_table_name}_{i + 1}"
create_table(
started_cluster,
node,
table,
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": processing_threads,
"s3queue_buckets": shards_num,
},
)
create_mv(node, table, dst_table)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, row_num=1
)
def get_count(table_name):
return int(run_query(node, f"SELECT count() FROM {table_name}"))
for _ in range(30):
count = (
get_count(f"{dst_table_name}_1")
+ get_count(f"{dst_table_name}_2")
+ get_count(f"{dst_table_name}_3")
)
if count == files_to_generate:
break
print(f"Current {count}/{files_to_generate}")
time.sleep(1)
if (
get_count(f"{dst_table_name}_1")
+ get_count(f"{dst_table_name}_2")
+ get_count(f"{dst_table_name}_3")
) != files_to_generate:
processed_files = (
node.query(
f"""
select splitByChar('/', file_name)[-1] as file from system.s3queue
where zookeeper_path ilike '%{table_name}%' and status = 'Processed' and rows_processed > 0 order by file
"""
)
.strip()
.split("\n")
)
logging.debug(
f"Processed files: {len(processed_files)}/{files_to_generate}: {processed_files}"
)
count = (
get_count(f"{dst_table_name}_1")
+ get_count(f"{dst_table_name}_2")
+ get_count(f"{dst_table_name}_3")
)
logging.debug(f"Processed rows: {count}/{files_to_generate}")
info = node.query(
f"""
select concat('test_', toString(number), '.csv') as file from numbers(300)
where file not in (select splitByChar('/', file_name)[-1] from system.s3queue
where zookeeper_path ilike '%{table_name}%' and status = 'Processed' and rows_processed > 0)
"""
)
logging.debug(f"Unprocessed files: {info}")
assert False
res1 = [
list(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}_1"
).splitlines()
]
res2 = [
list(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}_2"
).splitlines()
]
res3 = [
list(map(int, l.split()))
for l in node.query(
f"SELECT column1, column2, column3 FROM {dst_table_name}_3"
).splitlines()
]
assert {tuple(v) for v in res1 + res2 + res3} == set(
[tuple(i) for i in total_values]
)
# Checking that all files were processed only once
time.sleep(10)
assert (
get_count(f"{dst_table_name}_1")
+ get_count(f"{dst_table_name}_2")
+ get_count(f"{dst_table_name}_3")
) == files_to_generate
if mode == "ordered":
zk = started_cluster.get_kazoo_client("zoo1")
processed_nodes = zk.get_children(f"{keeper_path}/buckets/")
assert len(processed_nodes) == shards_num
@pytest.mark.parametrize(
"mode, processing_threads",
[
pytest.param("unordered", 1),
pytest.param("unordered", 8),
pytest.param("ordered", 1),
pytest.param("ordered", 2),
],
)
def test_shards_distributed(started_cluster, mode, processing_threads):
node = started_cluster.instances["instance"]
node_2 = started_cluster.instances["instance2"]
table_name = f"test_shards_distributed_{mode}_{processing_threads}"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
files_to_generate = 300
row_num = 300
total_rows = row_num * files_to_generate
shards_num = 2
i = 0
for instance in [node, node_2]:
create_table(
started_cluster,
instance,
table_name,
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": processing_threads,
"s3queue_buckets": shards_num,
},
)
i += 1
for instance in [node, node_2]:
create_mv(instance, table_name, dst_table_name)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, row_num=row_num
)
def get_count(node, table_name):
return int(run_query(node, f"SELECT count() FROM {table_name}"))
def print_debug_info():
processed_files = (
node.query(
f"""
select splitByChar('/', file_name)[-1] as file from system.s3queue where zookeeper_path ilike '%{table_name}%' and status = 'Processed' and rows_processed > 0 order by file
"""
)
.strip()
.split("\n")
)
logging.debug(
f"Processed files by node 1: {len(processed_files)}/{files_to_generate}"
)
processed_files = (
node_2.query(
f"""
select splitByChar('/', file_name)[-1] as file from system.s3queue where zookeeper_path ilike '%{table_name}%' and status = 'Processed' and rows_processed > 0 order by file
"""
)
.strip()
.split("\n")
)
logging.debug(
f"Processed files by node 2: {len(processed_files)}/{files_to_generate}"
)
count = get_count(node, dst_table_name) + get_count(node_2, dst_table_name)
logging.debug(f"Processed rows: {count}/{total_rows}")
info = node.query(
f"""
select concat('test_', toString(number), '.csv') as file from numbers(300)
where file not in (select splitByChar('/', file_name)[-1] from clusterAllReplicas(default, system.s3queue)
where zookeeper_path ilike '%{table_name}%' and status = 'Processed' and rows_processed > 0)
"""
)
logging.debug(f"Unprocessed files: {info}")
files1 = (
node.query(
f"""
select splitByChar('/', file_name)[-1] from system.s3queue
where zookeeper_path ilike '%{table_name}%' and status = 'Processed' and rows_processed > 0
"""
)
.strip()
.split("\n")
)
files2 = (
node_2.query(
f"""
select splitByChar('/', file_name)[-1] from system.s3queue
where zookeeper_path ilike '%{table_name}%' and status = 'Processed' and rows_processed > 0
"""
)
.strip()
.split("\n")
)
def intersection(list_a, list_b):
return [e for e in list_a if e in list_b]
logging.debug(f"Intersecting files: {intersection(files1, files2)}")
for _ in range(30):
if (
get_count(node, dst_table_name) + get_count(node_2, dst_table_name)
) == total_rows:
break
time.sleep(1)
if (
get_count(node, dst_table_name) + get_count(node_2, dst_table_name)
) != total_rows:
print_debug_info()
assert False
get_query = f"SELECT column1, column2, column3 FROM {dst_table_name}"
res1 = [list(map(int, l.split())) for l in run_query(node, get_query).splitlines()]
res2 = [
list(map(int, l.split())) for l in run_query(node_2, get_query).splitlines()
]
if len(res1) + len(res2) != total_rows or len(res1) <= 0 or len(res2) <= 0 or True:
logging.debug(
f"res1 size: {len(res1)}, res2 size: {len(res2)}, total_rows: {total_rows}"
)
print_debug_info()
assert len(res1) + len(res2) == total_rows
# Checking that all engines have made progress
assert len(res1) > 0
assert len(res2) > 0
assert {tuple(v) for v in res1 + res2} == set([tuple(i) for i in total_values])
# Checking that all files were processed only once
time.sleep(10)
assert (
get_count(node, dst_table_name) + get_count(node_2, dst_table_name)
) == total_rows
if mode == "ordered":
zk = started_cluster.get_kazoo_client("zoo1")
processed_nodes = zk.get_children(f"{keeper_path}/buckets/")
assert len(processed_nodes) == shards_num
node.restart_clickhouse()
time.sleep(10)
assert (
get_count(node, dst_table_name) + get_count(node_2, dst_table_name)
) == total_rows
def test_settings_check(started_cluster):
node = started_cluster.instances["instance"]
node_2 = started_cluster.instances["instance2"]
table_name = f"test_settings_check"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
mode = "ordered"
create_table(
started_cluster,
node,
table_name,
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": 5,
"s3queue_buckets": 2,
},
)
assert (
"Existing table metadata in ZooKeeper differs in buckets setting. Stored in ZooKeeper: 2, local: 3"
in create_table(
started_cluster,
node_2,
table_name,
mode,
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": 5,
"s3queue_buckets": 3,
},
expect_error=True,
)
)
node.query(f"DROP TABLE {table_name} SYNC")
@pytest.mark.parametrize("processing_threads", [1, 5])
def test_processed_file_setting(started_cluster, processing_threads):
node = started_cluster.instances["instance"]
table_name = f"test_processed_file_setting_{processing_threads}"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = (
f"/clickhouse/test_{table_name}_{processing_threads}_{generate_random_string()}"
)
files_path = f"{table_name}_data"
files_to_generate = 10
create_table(
started_cluster,
node,
table_name,
"ordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": processing_threads,
"s3queue_last_processed_path": f"{files_path}/test_5.csv",
},
)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=1
)
create_mv(node, table_name, dst_table_name)
def get_count():
return int(node.query(f"SELECT count() FROM {dst_table_name}"))
expected_rows = 4
for _ in range(20):
if expected_rows == get_count():
break
time.sleep(1)
assert expected_rows == get_count()
node.restart_clickhouse()
time.sleep(10)
expected_rows = 4
for _ in range(20):
if expected_rows == get_count():
break
time.sleep(1)
assert expected_rows == get_count()
@pytest.mark.parametrize("processing_threads", [1, 5])
def test_processed_file_setting_distributed(started_cluster, processing_threads):
node = started_cluster.instances["instance"]
node_2 = started_cluster.instances["instance2"]
table_name = f"test_processed_file_setting_distributed_{processing_threads}"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = (
f"/clickhouse/test_{table_name}_{processing_threads}_{generate_random_string()}"
)
files_path = f"{table_name}_data"
files_to_generate = 10
for instance in [node, node_2]:
create_table(
started_cluster,
instance,
table_name,
"ordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": processing_threads,
"s3queue_last_processed_path": f"{files_path}/test_5.csv",
"s3queue_buckets": 2,
},
)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=1
)
for instance in [node, node_2]:
create_mv(instance, table_name, dst_table_name)
def get_count():
query = f"SELECT count() FROM {dst_table_name}"
return int(node.query(query)) + int(node_2.query(query))
expected_rows = 4
for _ in range(20):
if expected_rows == get_count():
break
time.sleep(1)
assert expected_rows == get_count()
for instance in [node, node_2]:
instance.restart_clickhouse()
time.sleep(10)
expected_rows = 4
for _ in range(20):
if expected_rows == get_count():
break
time.sleep(1)
assert expected_rows == get_count()
def test_upgrade(started_cluster):
node = started_cluster.instances["old_instance"]
table_name = f"test_upgrade"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}_{generate_random_string()}"
files_path = f"{table_name}_data"
files_to_generate = 10
create_table(
started_cluster,
node,
table_name,
"ordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
},
)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=1
)
create_mv(node, table_name, dst_table_name)
def get_count():
return int(node.query(f"SELECT count() FROM {dst_table_name}"))
expected_rows = 10
for _ in range(20):
if expected_rows == get_count():
break
time.sleep(1)
assert expected_rows == get_count()
node.restart_with_latest_version()
assert expected_rows == get_count()
def test_exception_during_insert(started_cluster):
node = started_cluster.instances["instance_too_many_parts"]
# A unique table name is necessary for repeatable tests
table_name = f"test_exception_during_insert_{generate_random_string()}"
dst_table_name = f"{table_name}_dst"
keeper_path = f"/clickhouse/test_{table_name}"
files_path = f"{table_name}_data"
files_to_generate = 10
create_table(
started_cluster,
node,
table_name,
"unordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
},
)
node.rotate_logs()
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=1
)
create_mv(node, table_name, dst_table_name)
node.wait_for_log_line(
"Failed to process data: Code: 252. DB::Exception: Too many parts"
)
time.sleep(2)
exception = node.query(
f"SELECT exception FROM system.s3queue WHERE zookeeper_path ilike '%{table_name}%' and notEmpty(exception)"
)
assert "Too many parts" in exception
original_parts_to_throw_insert = 0
modified_parts_to_throw_insert = 10
node.replace_in_config(
"/etc/clickhouse-server/config.d/merge_tree.xml",
f"parts_to_throw_insert>{original_parts_to_throw_insert}",
f"parts_to_throw_insert>{modified_parts_to_throw_insert}",
)
try:
node.restart_clickhouse()
def get_count():
return int(node.query(f"SELECT count() FROM {dst_table_name}"))
expected_rows = 10
for _ in range(20):
if expected_rows == get_count():
break
time.sleep(1)
assert expected_rows == get_count()
finally:
node.replace_in_config(
"/etc/clickhouse-server/config.d/merge_tree.xml",
f"parts_to_throw_insert>{modified_parts_to_throw_insert}",
f"parts_to_throw_insert>{original_parts_to_throw_insert}",
)
node.restart_clickhouse()
def test_commit_on_limit(started_cluster):
node = started_cluster.instances["instance"]
# A unique table name is necessary for repeatable tests
table_name = f"test_commit_on_limit_{generate_random_string()}"
dst_table_name = f"{table_name}_dst"
keeper_path = f"/clickhouse/test_{table_name}"
files_path = f"{table_name}_data"
files_to_generate = 10
failed_files_event_before = int(
node.query(
"SELECT value FROM system.events WHERE name = 'ObjectStorageQueueFailedFiles' SETTINGS system_events_show_zero_values=1"
)
)
create_table(
started_cluster,
node,
table_name,
"ordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_processing_threads_num": 1,
"s3queue_loading_retries": 0,
"s3queue_max_processed_files_before_commit": 10,
},
)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=1
)
incorrect_values = [
["failed", 1, 1],
]
incorrect_values_csv = (
"\n".join((",".join(map(str, row)) for row in incorrect_values)) + "\n"
).encode()
correct_values = [
[1, 1, 1],
]
correct_values_csv = (
"\n".join((",".join(map(str, row)) for row in correct_values)) + "\n"
).encode()
put_s3_file_content(
started_cluster, f"{files_path}/test_99.csv", correct_values_csv
)
put_s3_file_content(
started_cluster, f"{files_path}/test_999.csv", correct_values_csv
)
put_s3_file_content(
started_cluster, f"{files_path}/test_9999.csv", incorrect_values_csv
)
put_s3_file_content(
started_cluster, f"{files_path}/test_99999.csv", correct_values_csv
)
put_s3_file_content(
started_cluster, f"{files_path}/test_999999.csv", correct_values_csv
)
create_mv(node, table_name, dst_table_name)
def get_processed_files():
return (
node.query(
f"SELECT file_name FROM system.s3queue WHERE zookeeper_path ilike '%{table_name}%' and status = 'Processed' and rows_processed > 0 "
)
.strip()
.split("\n")
)
def get_failed_files():
return (
node.query(
f"SELECT file_name FROM system.s3queue WHERE zookeeper_path ilike '%{table_name}%' and status = 'Failed'"
)
.strip()
.split("\n")
)
for _ in range(30):
if "test_999999.csv" in get_processed_files():
break
time.sleep(1)
assert "test_999999.csv" in get_processed_files()
assert 1 == int(
node.count_in_log(f"Setting file {files_path}/test_9999.csv as failed")
)
assert failed_files_event_before + 1 == int(
node.query(
"SELECT value FROM system.events WHERE name = 'ObjectStorageQueueFailedFiles' SETTINGS system_events_show_zero_values=1"
)
)
expected_processed = ["test_" + str(i) + ".csv" for i in range(files_to_generate)]
processed = get_processed_files()
for value in expected_processed:
assert value in processed
expected_failed = ["test_9999.csv"]
failed = get_failed_files()
for value in expected_failed:
assert value not in processed
assert value in failed
def test_upgrade_2(started_cluster):
node = started_cluster.instances["instance_24.5"]
table_name = f"test_upgrade_2_{uuid.uuid4().hex[:8]}"
dst_table_name = f"{table_name}_dst"
# A unique path is necessary for repeatable tests
keeper_path = f"/clickhouse/test_{table_name}"
files_path = f"{table_name}_data"
files_to_generate = 10
create_table(
started_cluster,
node,
table_name,
"ordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
"s3queue_current_shard_num": 0,
"s3queue_processing_threads_num": 2,
},
)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=1
)
create_mv(node, table_name, dst_table_name)
def get_count():
return int(node.query(f"SELECT count() FROM {dst_table_name}"))
expected_rows = 10
for _ in range(20):
if expected_rows == get_count():
break
time.sleep(1)
assert expected_rows == get_count()
node.restart_with_latest_version()
assert table_name in node.query("SHOW TABLES")
def test_replicated(started_cluster):
node1 = started_cluster.instances["node1"]
node2 = started_cluster.instances["node2"]
table_name = f"test_replicated_{uuid.uuid4().hex[:8]}"
dst_table_name = f"{table_name}_dst"
keeper_path = f"/clickhouse/test_{table_name}"
files_path = f"{table_name}_data"
files_to_generate = 1000
node1.query("DROP DATABASE IF EXISTS r")
node2.query("DROP DATABASE IF EXISTS r")
node1.query(
"CREATE DATABASE r ENGINE=Replicated('/clickhouse/databases/replicateddb', 'shard1', 'node1')"
)
node2.query(
"CREATE DATABASE r ENGINE=Replicated('/clickhouse/databases/replicateddb', 'shard1', 'node2')"
)
create_table(
started_cluster,
node1,
table_name,
"ordered",
files_path,
additional_settings={
"keeper_path": keeper_path,
},
database_name="r",
)
assert '"processing_threads_num":16' in node1.query(
f"SELECT * FROM system.zookeeper WHERE path = '{keeper_path}'"
)
total_values = generate_random_files(
started_cluster, files_path, files_to_generate, start_ind=0, row_num=1
)
create_mv(node1, f"r.{table_name}", dst_table_name)
create_mv(node2, f"r.{table_name}", dst_table_name)
def get_count():
return int(
node1.query(
f"SELECT count() FROM clusterAllReplicas(cluster, default.{dst_table_name})"
)
)
expected_rows = files_to_generate
for _ in range(20):
if expected_rows == get_count():
break
time.sleep(1)
assert expected_rows == get_count()