ClickHouse/dbms/src/Dictionaries/CacheDictionary.cpp
Vladimir Smirnov d36f52502e Make it compilable on OS X
It's still hackish and dirty, but server and client compies.

Server starts, but throwes meaningless exception on any query.

Client seems to be working fine.

Linux compilation might (but shouldn't) be broken (not tested).
2016-11-01 17:59:21 +01:00

694 lines
24 KiB
C++

#include <DB/Columns/ColumnsNumber.h>
#include <DB/Dictionaries/CacheDictionary.h>
#include <DB/Common/BitHelpers.h>
#include <DB/Common/randomSeed.h>
namespace DB
{
namespace ErrorCodes
{
extern const int TYPE_MISMATCH;
extern const int BAD_ARGUMENTS;
extern const int UNSUPPORTED_METHOD;
}
inline UInt64 CacheDictionary::getCellIdx(const Key id) const
{
const auto hash = intHash64(id);
const auto idx = hash & (size - 1);
return idx;
}
CacheDictionary::CacheDictionary(const std::string & name, const DictionaryStructure & dict_struct,
DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime,
const std::size_t size)
: name{name}, dict_struct(dict_struct),
source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime),
size{roundUpToPowerOfTwoOrZero(size)},
cells{this->size},
rnd_engine{randomSeed()}
{
if (!this->source_ptr->supportsSelectiveLoad())
throw Exception{
name + ": source cannot be used with CacheDictionary",
ErrorCodes::UNSUPPORTED_METHOD};
createAttributes();
}
CacheDictionary::CacheDictionary(const CacheDictionary & other)
: CacheDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.size}
{}
void CacheDictionary::toParent(const PaddedPODArray<Key> & ids, PaddedPODArray<Key> & out) const
{
const auto null_value = std::get<UInt64>(hierarchical_attribute->null_values);
getItemsNumber<UInt64>(*hierarchical_attribute, ids, out, [&] (const std::size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void CacheDictionary::get##TYPE(const std::string & attribute_name, const PaddedPODArray<Key> & ids, PaddedPODArray<TYPE> & out) const\
{\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
const auto null_value = std::get<TYPE>(attribute.null_values);\
\
getItemsNumber<TYPE>(attribute, ids, out, [&] (const std::size_t) { return null_value; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void CacheDictionary::getString(const std::string & attribute_name, const PaddedPODArray<Key> & ids, ColumnString * out) const
{
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
const auto null_value = StringRef{std::get<String>(attribute.null_values)};
getItemsString(attribute, ids, out, [&] (const std::size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void CacheDictionary::get##TYPE(\
const std::string & attribute_name, const PaddedPODArray<Key> & ids, const PaddedPODArray<TYPE> & def,\
PaddedPODArray<TYPE> & out) const\
{\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
getItemsNumber<TYPE>(attribute, ids, out, [&] (const std::size_t row) { return def[row]; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void CacheDictionary::getString(
const std::string & attribute_name, const PaddedPODArray<Key> & ids, const ColumnString * const def,
ColumnString * const out) const
{
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
getItemsString(attribute, ids, out, [&] (const std::size_t row) { return def->getDataAt(row); });
}
#define DECLARE(TYPE)\
void CacheDictionary::get##TYPE(\
const std::string & attribute_name, const PaddedPODArray<Key> & ids, const TYPE def, PaddedPODArray<TYPE> & out) const\
{\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
getItemsNumber<TYPE>(attribute, ids, out, [&] (const std::size_t) { return def; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void CacheDictionary::getString(
const std::string & attribute_name, const PaddedPODArray<Key> & ids, const String & def,
ColumnString * const out) const
{
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
getItemsString(attribute, ids, out, [&] (const std::size_t) { return StringRef{def}; });
}
void CacheDictionary::has(const PaddedPODArray<Key> & ids, PaddedPODArray<UInt8> & out) const
{
/// Mapping: <id> -> { all indices `i` of `ids` such that `ids[i]` = <id> }
MapType<std::vector<std::size_t>> outdated_ids;
const auto rows = ext::size(ids);
{
const Poco::ScopedReadRWLock read_lock{rw_lock};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows))
{
const auto id = ids[row];
const auto cell_idx = getCellIdx(id);
const auto & cell = cells[cell_idx];
/** cell should be updated if either:
* 1. ids do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (cell.id != id || cell.expiresAt() < now)
outdated_ids[id].push_back(row);
else
out[row] = !cell.isDefault();
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release);
if (outdated_ids.empty())
return;
std::vector<Key> required_ids(outdated_ids.size());
std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids),
[] (auto & pair) { return pair.first; });
/// request new values
update(required_ids, [&] (const auto id, const auto) {
for (const auto row : outdated_ids[id])
out[row] = true;
}, [&] (const auto id, const auto) {
for (const auto row : outdated_ids[id])
out[row] = false;
});
}
void CacheDictionary::createAttributes()
{
const auto size = dict_struct.attributes.size();
attributes.reserve(size);
bytes_allocated += size * sizeof(CellMetadata);
bytes_allocated += size * sizeof(attributes.front());
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
{
hierarchical_attribute = &attributes.back();
if (hierarchical_attribute->type != AttributeUnderlyingType::UInt64)
throw Exception{
name + ": hierarchical attribute must be UInt64.",
ErrorCodes::TYPE_MISMATCH};
}
}
}
CacheDictionary::Attribute CacheDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
Attribute attr{type};
switch (type)
{
case AttributeUnderlyingType::UInt8:
std::get<UInt8>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt8>>(attr.arrays) = std::make_unique<ContainerType<UInt8>>(size);
bytes_allocated += size * sizeof(UInt8);
break;
case AttributeUnderlyingType::UInt16:
std::get<UInt16>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt16>>(attr.arrays) = std::make_unique<ContainerType<UInt16>>(size);
bytes_allocated += size * sizeof(UInt16);
break;
case AttributeUnderlyingType::UInt32:
std::get<UInt32>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt32>>(attr.arrays) = std::make_unique<ContainerType<UInt32>>(size);
bytes_allocated += size * sizeof(UInt32);
break;
case AttributeUnderlyingType::UInt64:
std::get<UInt64>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt64>>(attr.arrays) = std::make_unique<ContainerType<UInt64>>(size);
bytes_allocated += size * sizeof(UInt64);
break;
case AttributeUnderlyingType::Int8:
std::get<Int8>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int8>>(attr.arrays) = std::make_unique<ContainerType<Int8>>(size);
bytes_allocated += size * sizeof(Int8);
break;
case AttributeUnderlyingType::Int16:
std::get<Int16>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int16>>(attr.arrays) = std::make_unique<ContainerType<Int16>>(size);
bytes_allocated += size * sizeof(Int16);
break;
case AttributeUnderlyingType::Int32:
std::get<Int32>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int32>>(attr.arrays) = std::make_unique<ContainerType<Int32>>(size);
bytes_allocated += size * sizeof(Int32);
break;
case AttributeUnderlyingType::Int64:
std::get<Int64>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int64>>(attr.arrays) = std::make_unique<ContainerType<Int64>>(size);
bytes_allocated += size * sizeof(Int64);
break;
case AttributeUnderlyingType::Float32:
std::get<Float32>(attr.null_values) = null_value.get<Float64>();
std::get<ContainerPtrType<Float32>>(attr.arrays) = std::make_unique<ContainerType<Float32>>(size);
bytes_allocated += size * sizeof(Float32);
break;
case AttributeUnderlyingType::Float64:
std::get<Float64>(attr.null_values) = null_value.get<Float64>();
std::get<ContainerPtrType<Float64>>(attr.arrays) = std::make_unique<ContainerType<Float64>>(size);
bytes_allocated += size * sizeof(Float64);
break;
case AttributeUnderlyingType::String:
std::get<String>(attr.null_values) = null_value.get<String>();
std::get<ContainerPtrType<StringRef>>(attr.arrays) = std::make_unique<ContainerType<StringRef>>(size);
bytes_allocated += size * sizeof(StringRef);
if (!string_arena)
string_arena = std::make_unique<ArenaWithFreeLists>();
break;
}
return attr;
}
template <typename OutputType, typename DefaultGetter>
void CacheDictionary::getItemsNumber(
Attribute & attribute,
const PaddedPODArray<Key> & ids,
PaddedPODArray<OutputType> & out,
DefaultGetter && get_default) const
{
if (false) {}
#define DISPATCH(TYPE) \
else if (attribute.type == AttributeUnderlyingType::TYPE) \
getItemsNumberImpl<TYPE, OutputType>(attribute, ids, out, std::forward<DefaultGetter>(get_default));
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
else
throw Exception("Unexpected type of attribute: " + toString(attribute.type), ErrorCodes::LOGICAL_ERROR);
}
template <typename AttributeType, typename OutputType, typename DefaultGetter>
void CacheDictionary::getItemsNumberImpl(
Attribute & attribute,
const PaddedPODArray<Key> & ids,
PaddedPODArray<OutputType> & out,
DefaultGetter && get_default) const
{
/// Mapping: <id> -> { all indices `i` of `ids` such that `ids[i]` = <id> }
MapType<std::vector<std::size_t>> outdated_ids;
auto & attribute_array = std::get<ContainerPtrType<AttributeType>>(attribute.arrays);
const auto rows = ext::size(ids);
{
const Poco::ScopedReadRWLock read_lock{rw_lock};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows))
{
const auto id = ids[row];
const auto cell_idx = getCellIdx(id);
const auto & cell = cells[cell_idx];
/** cell should be updated if either:
* 1. ids do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (cell.id != id || cell.expiresAt() < now)
outdated_ids[id].push_back(row);
else
out[row] = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release);
if (outdated_ids.empty())
return;
std::vector<Key> required_ids(outdated_ids.size());
std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids),
[] (auto & pair) { return pair.first; });
/// request new values
update(required_ids, [&] (const auto id, const auto cell_idx) {
const auto attribute_value = attribute_array[cell_idx];
for (const auto row : outdated_ids[id])
out[row] = attribute_value;
}, [&] (const auto id, const auto cell_idx) {
for (const auto row : outdated_ids[id])
out[row] = get_default(row);
});
}
template <typename DefaultGetter>
void CacheDictionary::getItemsString(
Attribute & attribute,
const PaddedPODArray<Key> & ids,
ColumnString * out,
DefaultGetter && get_default) const
{
const auto rows = ext::size(ids);
/// save on some allocations
out->getOffsets().reserve(rows);
auto & attribute_array = std::get<ContainerPtrType<StringRef>>(attribute.arrays);
auto found_outdated_values = false;
/// perform optimistic version, fallback to pessimistic if failed
{
const Poco::ScopedReadRWLock read_lock{rw_lock};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, discard on fail
for (const auto row : ext::range(0, rows))
{
const auto id = ids[row];
const auto cell_idx = getCellIdx(id);
const auto & cell = cells[cell_idx];
if (cell.id != id || cell.expiresAt() < now)
{
found_outdated_values = true;
break;
}
else
{
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
out->insertData(string_ref.data, string_ref.size);
}
}
}
/// optimistic code completed successfully
if (!found_outdated_values)
{
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows, std::memory_order_release);
return;
}
/// now onto the pessimistic one, discard possible partial results from the optimistic path
out->getChars().resize_assume_reserved(0);
out->getOffsets().resize_assume_reserved(0);
/// Mapping: <id> -> { all indices `i` of `ids` such that `ids[i]` = <id> }
MapType<std::vector<std::size_t>> outdated_ids;
/// we are going to store every string separately
MapType<String> map;
std::size_t total_length = 0;
{
const Poco::ScopedReadRWLock read_lock{rw_lock};
const auto now = std::chrono::system_clock::now();
for (const auto row : ext::range(0, ids.size()))
{
const auto id = ids[row];
const auto cell_idx = getCellIdx(id);
const auto & cell = cells[cell_idx];
if (cell.id != id || cell.expiresAt() < now)
outdated_ids[id].push_back(row);
else
{
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
if (!cell.isDefault())
map[id] = String{string_ref};
total_length += string_ref.size + 1;
}
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release);
/// request new values
if (!outdated_ids.empty())
{
std::vector<Key> required_ids(outdated_ids.size());
std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids),
[] (auto & pair) { return pair.first; });
update(required_ids, [&] (const auto id, const auto cell_idx) {
const auto attribute_value = attribute_array[cell_idx];
map[id] = String{attribute_value};
total_length += (attribute_value.size + 1) * outdated_ids[id].size();
}, [&] (const auto id, const auto cell_idx) {
for (const auto row : outdated_ids[id])
total_length += get_default(row).size + 1;
});
}
out->getChars().reserve(total_length);
for (const auto row : ext::range(0, ext::size(ids)))
{
const auto id = ids[row];
const auto it = map.find(id);
const auto string_ref = it != std::end(map) ? StringRef{it->second} : get_default(row);
out->insertData(string_ref.data, string_ref.size);
}
}
template <typename PresentIdHandler, typename AbsentIdHandler>
void CacheDictionary::update(
const std::vector<Key> & requested_ids, PresentIdHandler && on_cell_updated,
AbsentIdHandler && on_id_not_found) const
{
MapType<UInt8> remaining_ids{requested_ids.size()};
for (const auto id : requested_ids)
remaining_ids.insert({ id, 0 });
std::uniform_int_distribution<UInt64> distribution{
dict_lifetime.min_sec,
dict_lifetime.max_sec
};
const Poco::ScopedWriteRWLock write_lock{rw_lock};
auto stream = source_ptr->loadIds(requested_ids);
stream->readPrefix();
while (const auto block = stream->read())
{
const auto id_column = typeid_cast<const ColumnUInt64 *>(block.getByPosition(0).column.get());
if (!id_column)
throw Exception{
name + ": id column has type different from UInt64.",
ErrorCodes::TYPE_MISMATCH};
const auto & ids = id_column->getData();
/// cache column pointers
const auto column_ptrs = ext::map<std::vector>(ext::range(0, attributes.size()), [&block] (const auto & i) {
return block.getByPosition(i + 1).column.get();
});
for (const auto i : ext::range(0, ids.size()))
{
const auto id = ids[i];
const auto cell_idx = getCellIdx(id);
auto & cell = cells[cell_idx];
for (const auto attribute_idx : ext::range(0, attributes.size()))
{
const auto & attribute_column = *column_ptrs[attribute_idx];
auto & attribute = attributes[attribute_idx];
setAttributeValue(attribute, cell_idx, attribute_column[i]);
}
/// if cell id is zero and zero does not map to this cell, then the cell is unused
if (cell.id == 0 && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
cell.id = id;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
/// inform caller
on_cell_updated(id, cell_idx);
/// mark corresponding id as found
remaining_ids[id] = 1;
}
}
stream->readSuffix();
/// Check which ids have not been found and require setting null_value
for (const auto id_found_pair : remaining_ids)
{
if (id_found_pair.second)
continue;
const auto id = id_found_pair.first;
const auto cell_idx = getCellIdx(id);
auto & cell = cells[cell_idx];
/// Set null_value for each attribute
for (auto & attribute : attributes)
setDefaultAttributeValue(attribute, cell_idx);
/// Check if cell had not been occupied before and increment element counter if it hadn't
if (cell.id == 0 && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
cell.id = id;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
cell.setDefault();
/// inform caller that the cell has not been found
on_id_not_found(id, cell_idx);
}
}
void CacheDictionary::setDefaultAttributeValue(Attribute & attribute, const Key idx) const
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: std::get<ContainerPtrType<UInt8>>(attribute.arrays)[idx] = std::get<UInt8>(attribute.null_values); break;
case AttributeUnderlyingType::UInt16: std::get<ContainerPtrType<UInt16>>(attribute.arrays)[idx] = std::get<UInt16>(attribute.null_values); break;
case AttributeUnderlyingType::UInt32: std::get<ContainerPtrType<UInt32>>(attribute.arrays)[idx] = std::get<UInt32>(attribute.null_values); break;
case AttributeUnderlyingType::UInt64: std::get<ContainerPtrType<UInt64>>(attribute.arrays)[idx] = std::get<UInt64>(attribute.null_values); break;
case AttributeUnderlyingType::Int8: std::get<ContainerPtrType<Int8>>(attribute.arrays)[idx] = std::get<Int8>(attribute.null_values); break;
case AttributeUnderlyingType::Int16: std::get<ContainerPtrType<Int16>>(attribute.arrays)[idx] = std::get<Int16>(attribute.null_values); break;
case AttributeUnderlyingType::Int32: std::get<ContainerPtrType<Int32>>(attribute.arrays)[idx] = std::get<Int32>(attribute.null_values); break;
case AttributeUnderlyingType::Int64: std::get<ContainerPtrType<Int64>>(attribute.arrays)[idx] = std::get<Int64>(attribute.null_values); break;
case AttributeUnderlyingType::Float32: std::get<ContainerPtrType<Float32>>(attribute.arrays)[idx] = std::get<Float32>(attribute.null_values); break;
case AttributeUnderlyingType::Float64: std::get<ContainerPtrType<Float64>>(attribute.arrays)[idx] = std::get<Float64>(attribute.null_values); break;
case AttributeUnderlyingType::String:
{
const auto & null_value_ref = std::get<String>(attribute.null_values);
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
if (string_ref.data != null_value_ref.data())
{
if (string_ref.data)
string_arena->free(const_cast<char *>(string_ref.data), string_ref.size);
string_ref = StringRef{null_value_ref};
}
break;
}
}
}
void CacheDictionary::setAttributeValue(Attribute & attribute, const Key idx, const Field & value) const
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: std::get<ContainerPtrType<UInt8>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt16: std::get<ContainerPtrType<UInt16>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt32: std::get<ContainerPtrType<UInt32>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt64: std::get<ContainerPtrType<UInt64>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::Int8: std::get<ContainerPtrType<Int8>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int16: std::get<ContainerPtrType<Int16>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int32: std::get<ContainerPtrType<Int32>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int64: std::get<ContainerPtrType<Int64>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Float32: std::get<ContainerPtrType<Float32>>(attribute.arrays)[idx] = value.get<Float64>(); break;
case AttributeUnderlyingType::Float64: std::get<ContainerPtrType<Float64>>(attribute.arrays)[idx] = value.get<Float64>(); break;
case AttributeUnderlyingType::String:
{
const auto & string = value.get<String>();
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
const auto & null_value_ref = std::get<String>(attribute.null_values);
/// free memory unless it points to a null_value
if (string_ref.data && string_ref.data != null_value_ref.data())
string_arena->free(const_cast<char *>(string_ref.data), string_ref.size);
const auto size = string.size();
if (size != 0)
{
auto string_ptr = string_arena->alloc(size + 1);
std::copy(string.data(), string.data() + size + 1, string_ptr);
string_ref = StringRef{string_ptr, size};
}
else
string_ref = {};
break;
}
}
}
CacheDictionary::Attribute & CacheDictionary::getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{
name + ": no such attribute '" + attribute_name + "'",
ErrorCodes::BAD_ARGUMENTS
};
return attributes[it->second];
}
}