ClickHouse/src/Columns/ColumnsCommon.cpp
Azat Khuzhin 767acd53fb Add ability to pass range of rows to Aggregator
v2: fix compiled aggregate functions (seek result to row_start)
v3: fix compiled aggregate functions (seek args to row_start)
v4: change signatures for JIT
Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
2022-04-29 06:57:55 +03:00

365 lines
12 KiB
C++

#include <Columns/IColumn.h>
#include <Columns/ColumnVector.h>
#include <Common/typeid_cast.h>
#include <Common/HashTable/HashSet.h>
#include "ColumnsCommon.h"
namespace DB
{
#if defined(__SSE2__) && defined(__POPCNT__)
/// Transform 64-byte mask to 64-bit mask.
static UInt64 toBits64(const Int8 * bytes64)
{
static const __m128i zero16 = _mm_setzero_si128();
UInt64 res =
static_cast<UInt64>(_mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(bytes64)), zero16)))
| (static_cast<UInt64>(_mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(bytes64 + 16)), zero16))) << 16)
| (static_cast<UInt64>(_mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(bytes64 + 32)), zero16))) << 32)
| (static_cast<UInt64>(_mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(bytes64 + 48)), zero16))) << 48);
return ~res;
}
#endif
size_t countBytesInFilter(const UInt8 * filt, size_t start, size_t end)
{
size_t count = 0;
/** NOTE: In theory, `filt` should only contain zeros and ones.
* But, just in case, here the condition > 0 (to signed bytes) is used.
* It would be better to use != 0, then this does not allow SSE2.
*/
const Int8 * pos = reinterpret_cast<const Int8 *>(filt);
pos += start;
const Int8 * end_pos = pos + (end - start);
#if defined(__SSE2__) && defined(__POPCNT__)
const Int8 * end_pos64 = pos + (end - start) / 64 * 64;
for (; pos < end_pos64; pos += 64)
count += __builtin_popcountll(toBits64(pos));
/// TODO Add duff device for tail?
#endif
for (; pos < end_pos; ++pos)
count += *pos != 0;
return count;
}
size_t countBytesInFilter(const IColumn::Filter & filt)
{
return countBytesInFilter(filt.data(), 0, filt.size());
}
size_t countBytesInFilterWithNull(const IColumn::Filter & filt, const UInt8 * null_map, size_t start, size_t end)
{
size_t count = 0;
/** NOTE: In theory, `filt` should only contain zeros and ones.
* But, just in case, here the condition > 0 (to signed bytes) is used.
* It would be better to use != 0, then this does not allow SSE2.
*/
const Int8 * pos = reinterpret_cast<const Int8 *>(filt.data()) + start;
const Int8 * pos2 = reinterpret_cast<const Int8 *>(null_map) + start;
const Int8 * end_pos = pos + (end - start);
#if defined(__SSE2__) && defined(__POPCNT__)
const Int8 * end_pos64 = pos + (end - start) / 64 * 64;
for (; pos < end_pos64; pos += 64, pos2 += 64)
count += __builtin_popcountll(toBits64(pos) & ~toBits64(pos2));
/// TODO Add duff device for tail?
#endif
for (; pos < end_pos; ++pos, ++pos2)
count += (*pos & ~*pos2) != 0;
return count;
}
std::vector<size_t> countColumnsSizeInSelector(IColumn::ColumnIndex num_columns, const IColumn::Selector & selector)
{
std::vector<size_t> counts(num_columns);
for (auto idx : selector)
++counts[idx];
return counts;
}
bool memoryIsByte(const void * data, size_t start, size_t end, uint8_t byte)
{
size_t size = end - start;
if (size == 0)
return true;
const auto * ptr = reinterpret_cast<const uint8_t *>(data) + start;
return *ptr == byte && memcmp(ptr, ptr + 1, size - 1) == 0;
}
bool memoryIsZero(const void * data, size_t start, size_t end)
{
return memoryIsByte(data, start, end, 0x0);
}
namespace ErrorCodes
{
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
}
namespace
{
/// Implementation details of filterArraysImpl function, used as template parameter.
/// Allow to build or not to build offsets array.
struct ResultOffsetsBuilder
{
IColumn::Offsets & res_offsets;
IColumn::Offset current_src_offset = 0;
explicit ResultOffsetsBuilder(IColumn::Offsets * res_offsets_) : res_offsets(*res_offsets_) {}
void reserve(ssize_t result_size_hint, size_t src_size)
{
res_offsets.reserve(result_size_hint > 0 ? result_size_hint : src_size);
}
void insertOne(size_t array_size)
{
current_src_offset += array_size;
res_offsets.push_back(current_src_offset);
}
template <size_t SIMD_BYTES>
void insertChunk(
const IColumn::Offset * src_offsets_pos,
bool first,
IColumn::Offset chunk_offset,
size_t chunk_size)
{
const auto offsets_size_old = res_offsets.size();
res_offsets.resize(offsets_size_old + SIMD_BYTES);
memcpy(&res_offsets[offsets_size_old], src_offsets_pos, SIMD_BYTES * sizeof(IColumn::Offset));
if (!first)
{
/// difference between current and actual offset
const auto diff_offset = chunk_offset - current_src_offset;
if (diff_offset > 0)
{
auto * res_offsets_pos = &res_offsets[offsets_size_old];
/// adjust offsets
for (size_t i = 0; i < SIMD_BYTES; ++i)
res_offsets_pos[i] -= diff_offset;
}
}
current_src_offset += chunk_size;
}
};
struct NoResultOffsetsBuilder
{
explicit NoResultOffsetsBuilder(IColumn::Offsets *) {}
void reserve(ssize_t, size_t) {}
void insertOne(size_t) {}
template <size_t SIMD_BYTES>
void insertChunk(
const IColumn::Offset *,
bool,
IColumn::Offset,
size_t)
{
}
};
template <typename T, typename ResultOffsetsBuilder>
void filterArraysImplGeneric(
const PaddedPODArray<T> & src_elems, const IColumn::Offsets & src_offsets,
PaddedPODArray<T> & res_elems, IColumn::Offsets * res_offsets,
const IColumn::Filter & filt, ssize_t result_size_hint)
{
const size_t size = src_offsets.size();
if (size != filt.size())
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size);
ResultOffsetsBuilder result_offsets_builder(res_offsets);
if (result_size_hint)
{
result_offsets_builder.reserve(result_size_hint, size);
if (result_size_hint < 0)
res_elems.reserve(src_elems.size());
else if (result_size_hint < 1000000000 && src_elems.size() < 1000000000) /// Avoid overflow.
res_elems.reserve((result_size_hint * src_elems.size() + size - 1) / size);
}
const UInt8 * filt_pos = filt.data();
const auto * filt_end = filt_pos + size;
const auto * offsets_pos = src_offsets.data();
const auto * offsets_begin = offsets_pos;
/// copy array ending at *end_offset_ptr
const auto copy_array = [&] (const IColumn::Offset * offset_ptr)
{
const auto arr_offset = offset_ptr == offsets_begin ? 0 : offset_ptr[-1];
const auto arr_size = *offset_ptr - arr_offset;
result_offsets_builder.insertOne(arr_size);
const auto elems_size_old = res_elems.size();
res_elems.resize(elems_size_old + arr_size);
memcpy(&res_elems[elems_size_old], &src_elems[arr_offset], arr_size * sizeof(T));
};
/** A slightly more optimized version.
* Based on the assumption that often pieces of consecutive values
* completely pass or do not pass the filter.
* Therefore, we will optimistically check the parts of `SIMD_BYTES` values.
*/
static constexpr size_t SIMD_BYTES = 64;
const auto * filt_end_aligned = filt_pos + size / SIMD_BYTES * SIMD_BYTES;
while (filt_pos < filt_end_aligned)
{
uint64_t mask = bytes64MaskToBits64Mask(filt_pos);
if (0xffffffffffffffff == mask)
{
/// SIMD_BYTES consecutive rows pass the filter
const auto first = offsets_pos == offsets_begin;
const auto chunk_offset = first ? 0 : offsets_pos[-1];
const auto chunk_size = offsets_pos[SIMD_BYTES - 1] - chunk_offset;
result_offsets_builder.template insertChunk<SIMD_BYTES>(offsets_pos, first, chunk_offset, chunk_size);
/// copy elements for SIMD_BYTES arrays at once
const auto elems_size_old = res_elems.size();
res_elems.resize(elems_size_old + chunk_size);
memcpy(&res_elems[elems_size_old], &src_elems[chunk_offset], chunk_size * sizeof(T));
}
else
{
while (mask)
{
size_t index = __builtin_ctzll(mask);
copy_array(offsets_pos + index);
#ifdef __BMI__
mask = _blsr_u64(mask);
#else
mask = mask & (mask-1);
#endif
}
}
filt_pos += SIMD_BYTES;
offsets_pos += SIMD_BYTES;
}
while (filt_pos < filt_end)
{
if (*filt_pos)
copy_array(offsets_pos);
++filt_pos;
++offsets_pos;
}
}
}
template <typename T>
void filterArraysImpl(
const PaddedPODArray<T> & src_elems, const IColumn::Offsets & src_offsets,
PaddedPODArray<T> & res_elems, IColumn::Offsets & res_offsets,
const IColumn::Filter & filt, ssize_t result_size_hint)
{
return filterArraysImplGeneric<T, ResultOffsetsBuilder>(src_elems, src_offsets, res_elems, &res_offsets, filt, result_size_hint);
}
template <typename T>
void filterArraysImplOnlyData(
const PaddedPODArray<T> & src_elems, const IColumn::Offsets & src_offsets,
PaddedPODArray<T> & res_elems,
const IColumn::Filter & filt, ssize_t result_size_hint)
{
return filterArraysImplGeneric<T, NoResultOffsetsBuilder>(src_elems, src_offsets, res_elems, nullptr, filt, result_size_hint);
}
/// Explicit instantiations - not to place the implementation of the function above in the header file.
#define INSTANTIATE(TYPE) \
template void filterArraysImpl<TYPE>( \
const PaddedPODArray<TYPE> &, const IColumn::Offsets &, \
PaddedPODArray<TYPE> &, IColumn::Offsets &, \
const IColumn::Filter &, ssize_t); \
template void filterArraysImplOnlyData<TYPE>( \
const PaddedPODArray<TYPE> &, const IColumn::Offsets &, \
PaddedPODArray<TYPE> &, \
const IColumn::Filter &, ssize_t);
INSTANTIATE(UInt8)
INSTANTIATE(UInt16)
INSTANTIATE(UInt32)
INSTANTIATE(UInt64)
INSTANTIATE(Int8)
INSTANTIATE(Int16)
INSTANTIATE(Int32)
INSTANTIATE(Int64)
INSTANTIATE(Float32)
INSTANTIATE(Float64)
#undef INSTANTIATE
namespace detail
{
template <typename T>
const PaddedPODArray<T> * getIndexesData(const IColumn & indexes)
{
auto * column = typeid_cast<const ColumnVector<T> *>(&indexes);
if (column)
return &column->getData();
return nullptr;
}
template const PaddedPODArray<UInt8> * getIndexesData<UInt8>(const IColumn & indexes);
template const PaddedPODArray<UInt16> * getIndexesData<UInt16>(const IColumn & indexes);
template const PaddedPODArray<UInt32> * getIndexesData<UInt32>(const IColumn & indexes);
template const PaddedPODArray<UInt64> * getIndexesData<UInt64>(const IColumn & indexes);
}
size_t getLimitForPermutation(size_t column_size, size_t perm_size, size_t limit)
{
if (limit == 0)
limit = column_size;
else
limit = std::min(column_size, limit);
if (perm_size < limit)
throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH,
"Size of permutation ({}) is less than required ({})", perm_size, limit);
return limit;
}
}