mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-30 03:22:14 +00:00
126 lines
4.0 KiB
C++
126 lines
4.0 KiB
C++
#include "consistent_hashing.h"
|
|
|
|
#include "bitops.h"
|
|
|
|
#include "popcount.h"
|
|
|
|
#include <stdexcept>
|
|
|
|
/*
|
|
* (all numbers are written in big-endian manner: the least significant digit on the right)
|
|
* (only bit representations are used - no hex or octal, leading zeroes are omitted)
|
|
*
|
|
* Consistent hashing scheme:
|
|
*
|
|
* (sizeof(TValue) * 8, y] (y, 0]
|
|
* a = * ablock
|
|
* b = * cblock
|
|
*
|
|
* (sizeof(TValue) * 8, k] (k, 0]
|
|
* c = * cblock
|
|
*
|
|
* d = *
|
|
*
|
|
* k - is determined by 2^(k-1) < n <= 2^k inequality
|
|
* z - is number of ones in cblock
|
|
* y - number of digits after first one in cblock
|
|
*
|
|
* The cblock determines logic of using a- and b- blocks:
|
|
*
|
|
* bits of cblock | result of a function
|
|
* 0 : 0
|
|
* 1 : 1 (optimization, the next case includes this one)
|
|
* 1?..? : 1ablock (z is even) or 1bblock (z is odd) if possible (<n)
|
|
*
|
|
* If last case is not possible (>=n), than smooth moving from n=2^(k-1) to n=2^k is applied.
|
|
* Using "*" bits of a-,b-,c-,d- blocks uint64_t value is combined, modulo of which determines
|
|
* if the value should be greather than 2^(k-1) or ConsistentHashing(x, 2^(k-1)) should be used.
|
|
* The last case is optimized according to previous checks.
|
|
*/
|
|
|
|
namespace {
|
|
|
|
template<class TValue>
|
|
TValue PowerOf2(size_t k) {
|
|
return (TValue)0x1 << k;
|
|
}
|
|
|
|
template<class TValue>
|
|
TValue SelectAOrBBlock(TValue a, TValue b, TValue cBlock) {
|
|
size_t z = PopCount<uint64_t>(cBlock);
|
|
bool useABlock = z % 2 == 0;
|
|
return useABlock ? a : b;
|
|
}
|
|
|
|
// Gets the exact result for n = k2 = 2 ^ k
|
|
template<class TValue>
|
|
size_t ConsistentHashingForPowersOf2(TValue a, TValue b, TValue c, TValue k2) {
|
|
TValue cBlock = c & (k2 - 1); // (k, 0] bits of c
|
|
// Zero and one cases
|
|
if (cBlock < 2) {
|
|
// First two cases of result function table: 0 if cblock is 0, 1 if cblock is 1.
|
|
return cBlock;
|
|
}
|
|
size_t y = GetValueBitCount<uint64_t>(cBlock) - 1; // cblock = 0..01?..? (y = number of digits after 1), y > 0
|
|
TValue y2 = PowerOf2<TValue>(y); // y2 = 2^y
|
|
TValue abBlock = SelectAOrBBlock(a, b, cBlock) & (y2 - 1);
|
|
return y2 + abBlock;
|
|
}
|
|
|
|
template<class TValue>
|
|
uint64_t GetAsteriskBits(TValue a, TValue b, TValue c, TValue d, size_t k) {
|
|
size_t shift = sizeof(TValue) * 8 - k;
|
|
uint64_t res = (d << shift) | (c >> k);
|
|
++shift;
|
|
res <<= shift;
|
|
res |= b >> (k - 1);
|
|
res <<= shift;
|
|
res |= a >> (k - 1);
|
|
|
|
return res;
|
|
}
|
|
|
|
template<class TValue>
|
|
size_t ConsistentHashingImpl(TValue a, TValue b, TValue c, TValue d, size_t n) {
|
|
if (n <= 0)
|
|
throw std::runtime_error("Can't map consistently to a zero values.");
|
|
|
|
// Uninteresting case
|
|
if (n == 1) {
|
|
return 0;
|
|
}
|
|
size_t k = GetValueBitCount(n - 1); // 2^(k-1) < n <= 2^k, k >= 1
|
|
TValue k2 = PowerOf2<TValue>(k); // k2 = 2^k
|
|
size_t largeValue;
|
|
{
|
|
// Bit determined variant. Large scheme.
|
|
largeValue = ConsistentHashingForPowersOf2(a, b, c, k2);
|
|
if (largeValue < n) {
|
|
return largeValue;
|
|
}
|
|
}
|
|
// Since largeValue is not assigned yet
|
|
// Smooth moving from one bit scheme to another
|
|
TValue k21 = PowerOf2<TValue>(k - 1);
|
|
{
|
|
size_t s = GetAsteriskBits(a, b, c, d, k) % (largeValue * (largeValue + 1));
|
|
size_t largeValue2 = s / k2 + k21;
|
|
if (largeValue2 < n) {
|
|
return largeValue2;
|
|
}
|
|
}
|
|
// Bit determined variant. Short scheme.
|
|
return ConsistentHashingForPowersOf2(a, b, c, k21); // Do not apply checks. It is always less than k21 = 2^(k-1)
|
|
}
|
|
|
|
} // namespace // anonymous
|
|
|
|
std::size_t ConsistentHashing(std::uint64_t x, std::size_t n) {
|
|
uint32_t lo = LO_32(x);
|
|
uint32_t hi = HI_32(x);
|
|
return ConsistentHashingImpl<uint16_t>(LO_16(lo), HI_16(lo), LO_16(hi), HI_16(hi), n);
|
|
}
|
|
std::size_t ConsistentHashing(std::uint64_t lo, std::uint64_t hi, std::size_t n) {
|
|
return ConsistentHashingImpl<uint32_t>(LO_32(lo), HI_32(lo), LO_32(hi), HI_32(hi), n);
|
|
}
|