ClickHouse/dbms/src/Dictionaries/CacheDictionary.cpp
2018-08-10 07:02:56 +03:00

993 lines
37 KiB
C++

#include <functional>
#include <sstream>
#include <memory>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnString.h>
#include <Common/BitHelpers.h>
#include <Common/randomSeed.h>
#include <Common/HashTable/Hash.h>
#include <Common/Stopwatch.h>
#include <Common/ProfilingScopedRWLock.h>
#include <Common/ProfileEvents.h>
#include <Common/CurrentMetrics.h>
#include <Common/typeid_cast.h>
#include <Dictionaries/CacheDictionary.h>
#include <Dictionaries/DictionaryBlockInputStream.h>
#include <ext/size.h>
#include <ext/range.h>
#include <ext/map.h>
namespace ProfileEvents
{
extern const Event DictCacheKeysRequested;
extern const Event DictCacheKeysRequestedMiss;
extern const Event DictCacheKeysRequestedFound;
extern const Event DictCacheKeysExpired;
extern const Event DictCacheKeysNotFound;
extern const Event DictCacheKeysHit;
extern const Event DictCacheRequestTimeNs;
extern const Event DictCacheRequests;
extern const Event DictCacheLockWriteNs;
extern const Event DictCacheLockReadNs;
}
namespace CurrentMetrics
{
extern const Metric DictCacheRequests;
}
namespace DB
{
namespace ErrorCodes
{
extern const int TYPE_MISMATCH;
extern const int BAD_ARGUMENTS;
extern const int UNSUPPORTED_METHOD;
extern const int LOGICAL_ERROR;
}
inline size_t CacheDictionary::getCellIdx(const Key id) const
{
const auto hash = intHash64(id);
const auto idx = hash & size_overlap_mask;
return idx;
}
CacheDictionary::CacheDictionary(const std::string & name, const DictionaryStructure & dict_struct,
DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime,
const size_t size)
: name{name}, dict_struct(dict_struct),
source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime),
size{roundUpToPowerOfTwoOrZero(std::max(size, size_t(max_collision_length)))},
size_overlap_mask{this->size - 1},
cells{this->size},
rnd_engine(randomSeed())
{
if (!this->source_ptr->supportsSelectiveLoad())
throw Exception{name + ": source cannot be used with CacheDictionary", ErrorCodes::UNSUPPORTED_METHOD};
createAttributes();
}
CacheDictionary::CacheDictionary(const CacheDictionary & other)
: CacheDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.size}
{}
void CacheDictionary::toParent(const PaddedPODArray<Key> & ids, PaddedPODArray<Key> & out) const
{
const auto null_value = std::get<UInt64>(hierarchical_attribute->null_values);
getItemsNumber<UInt64>(*hierarchical_attribute, ids, out, [&] (const size_t) { return null_value; });
}
/// Allow to use single value in same way as array.
static inline CacheDictionary::Key getAt(const PaddedPODArray<CacheDictionary::Key> & arr, const size_t idx) { return arr[idx]; }
static inline CacheDictionary::Key getAt(const CacheDictionary::Key & value, const size_t) { return value; }
template <typename AncestorType>
void CacheDictionary::isInImpl(
const PaddedPODArray<Key> & child_ids,
const AncestorType & ancestor_ids,
PaddedPODArray<UInt8> & out) const
{
/// Transform all children to parents until ancestor id or null_value will be reached.
size_t out_size = out.size();
memset(out.data(), 0xFF, out_size); /// 0xFF means "not calculated"
const auto null_value = std::get<UInt64>(hierarchical_attribute->null_values);
PaddedPODArray<Key> children(out_size);
PaddedPODArray<Key> parents(child_ids.begin(), child_ids.end());
while (true)
{
size_t out_idx = 0;
size_t parents_idx = 0;
size_t new_children_idx = 0;
while (out_idx < out_size)
{
/// Already calculated
if (out[out_idx] != 0xFF)
{
++out_idx;
continue;
}
/// No parent
if (parents[parents_idx] == null_value)
{
out[out_idx] = 0;
}
/// Found ancestor
else if (parents[parents_idx] == getAt(ancestor_ids, parents_idx))
{
out[out_idx] = 1;
}
/// Loop detected
else if (children[new_children_idx] == parents[parents_idx])
{
out[out_idx] = 1;
}
/// Found intermediate parent, add this value to search at next loop iteration
else
{
children[new_children_idx] = parents[parents_idx];
++new_children_idx;
}
++out_idx;
++parents_idx;
}
if (new_children_idx == 0)
break;
/// Transform all children to its parents.
children.resize(new_children_idx);
parents.resize(new_children_idx);
toParent(children, parents);
}
}
void CacheDictionary::isInVectorVector(
const PaddedPODArray<Key> & child_ids,
const PaddedPODArray<Key> & ancestor_ids,
PaddedPODArray<UInt8> & out) const
{
isInImpl(child_ids, ancestor_ids, out);
}
void CacheDictionary::isInVectorConstant(
const PaddedPODArray<Key> & child_ids,
const Key ancestor_id,
PaddedPODArray<UInt8> & out) const
{
isInImpl(child_ids, ancestor_id, out);
}
void CacheDictionary::isInConstantVector(
const Key child_id,
const PaddedPODArray<Key> & ancestor_ids,
PaddedPODArray<UInt8> & out) const
{
/// Special case with single child value.
const auto null_value = std::get<UInt64>(hierarchical_attribute->null_values);
PaddedPODArray<Key> child(1, child_id);
PaddedPODArray<Key> parent(1);
std::vector<Key> ancestors(1, child_id);
/// Iteratively find all ancestors for child.
while (true)
{
toParent(child, parent);
if (parent[0] == null_value)
break;
child[0] = parent[0];
ancestors.push_back(parent[0]);
}
/// Assuming short hierarchy, so linear search is Ok.
for (size_t i = 0, out_size = out.size(); i < out_size; ++i)
out[i] = std::find(ancestors.begin(), ancestors.end(), ancestor_ids[i]) != ancestors.end();
}
#define DECLARE(TYPE)\
void CacheDictionary::get##TYPE(const std::string & attribute_name, const PaddedPODArray<Key> & ids, PaddedPODArray<TYPE> & out) const\
{\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH};\
\
const auto null_value = std::get<TYPE>(attribute.null_values);\
\
getItemsNumber<TYPE>(attribute, ids, out, [&] (const size_t) { return null_value; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void CacheDictionary::getString(const std::string & attribute_name, const PaddedPODArray<Key> & ids, ColumnString * out) const
{
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH};
const auto null_value = StringRef{std::get<String>(attribute.null_values)};
getItemsString(attribute, ids, out, [&] (const size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void CacheDictionary::get##TYPE(\
const std::string & attribute_name, const PaddedPODArray<Key> & ids, const PaddedPODArray<TYPE> & def,\
PaddedPODArray<TYPE> & out) const\
{\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH};\
\
getItemsNumber<TYPE>(attribute, ids, out, [&] (const size_t row) { return def[row]; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void CacheDictionary::getString(
const std::string & attribute_name, const PaddedPODArray<Key> & ids, const ColumnString * const def,
ColumnString * const out) const
{
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH};
getItemsString(attribute, ids, out, [&] (const size_t row) { return def->getDataAt(row); });
}
#define DECLARE(TYPE)\
void CacheDictionary::get##TYPE(\
const std::string & attribute_name, const PaddedPODArray<Key> & ids, const TYPE def, PaddedPODArray<TYPE> & out) const\
{\
auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH};\
\
getItemsNumber<TYPE>(attribute, ids, out, [&] (const size_t) { return def; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void CacheDictionary::getString(
const std::string & attribute_name, const PaddedPODArray<Key> & ids, const String & def,
ColumnString * const out) const
{
auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH};
getItemsString(attribute, ids, out, [&] (const size_t) { return StringRef{def}; });
}
/// returns cell_idx (always valid for replacing), 'cell is valid' flag, 'cell is outdated' flag
/// true false found and valid
/// false true not found (something outdated, maybe our cell)
/// false false not found (other id stored with valid data)
/// true true impossible
///
/// todo: split this func to two: find_for_get and find_for_set
CacheDictionary::FindResult CacheDictionary::findCellIdx(const Key & id, const CellMetadata::time_point_t now) const
{
auto pos = getCellIdx(id);
auto oldest_id = pos;
auto oldest_time = CellMetadata::time_point_t::max();
const auto stop = pos + max_collision_length;
for (; pos < stop; ++pos)
{
const auto cell_idx = pos & size_overlap_mask;
const auto & cell = cells[cell_idx];
if (cell.id != id)
{
/// maybe we already found nearest expired cell (try minimize collision_length on insert)
if (oldest_time > now && oldest_time > cell.expiresAt())
{
oldest_time = cell.expiresAt();
oldest_id = cell_idx;
}
continue;
}
if (cell.expiresAt() < now)
{
return {cell_idx, false, true};
}
return {cell_idx, true, false};
}
return {oldest_id, false, false};
}
void CacheDictionary::has(const PaddedPODArray<Key> & ids, PaddedPODArray<UInt8> & out) const
{
/// Mapping: <id> -> { all indices `i` of `ids` such that `ids[i]` = <id> }
std::unordered_map<Key, std::vector<size_t>> outdated_ids;
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
const auto rows = ext::size(ids);
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows))
{
const auto id = ids[row];
const auto find_result = findCellIdx(id, now);
const auto & cell_idx = find_result.cell_idx;
if (!find_result.valid)
{
outdated_ids[id].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell = cells[cell_idx];
out[row] = !cell.isDefault();
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release);
if (outdated_ids.empty())
return;
std::vector<Key> required_ids(outdated_ids.size());
std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids),
[] (auto & pair) { return pair.first; });
/// request new values
update(required_ids,
[&] (const auto id, const auto)
{
for (const auto row : outdated_ids[id])
out[row] = true;
},
[&] (const auto id, const auto)
{
for (const auto row : outdated_ids[id])
out[row] = false;
});
}
void CacheDictionary::createAttributes()
{
const auto attributes_size = dict_struct.attributes.size();
attributes.reserve(attributes_size);
bytes_allocated += size * sizeof(CellMetadata);
bytes_allocated += attributes_size * sizeof(attributes.front());
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
{
hierarchical_attribute = &attributes.back();
if (hierarchical_attribute->type != AttributeUnderlyingType::UInt64)
throw Exception{name + ": hierarchical attribute must be UInt64.", ErrorCodes::TYPE_MISMATCH};
}
}
}
CacheDictionary::Attribute CacheDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
Attribute attr{type, {}, {}};
switch (type)
{
case AttributeUnderlyingType::UInt8:
std::get<UInt8>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt8>>(attr.arrays) = std::make_unique<ContainerType<UInt8>>(size);
bytes_allocated += size * sizeof(UInt8);
break;
case AttributeUnderlyingType::UInt16:
std::get<UInt16>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt16>>(attr.arrays) = std::make_unique<ContainerType<UInt16>>(size);
bytes_allocated += size * sizeof(UInt16);
break;
case AttributeUnderlyingType::UInt32:
std::get<UInt32>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt32>>(attr.arrays) = std::make_unique<ContainerType<UInt32>>(size);
bytes_allocated += size * sizeof(UInt32);
break;
case AttributeUnderlyingType::UInt64:
std::get<UInt64>(attr.null_values) = null_value.get<UInt64>();
std::get<ContainerPtrType<UInt64>>(attr.arrays) = std::make_unique<ContainerType<UInt64>>(size);
bytes_allocated += size * sizeof(UInt64);
break;
case AttributeUnderlyingType::UInt128:
std::get<UInt128>(attr.null_values) = null_value.get<UInt128>();
std::get<ContainerPtrType<UInt128>>(attr.arrays) = std::make_unique<ContainerType<UInt128>>(size);
bytes_allocated += size * sizeof(UInt128);
break;
case AttributeUnderlyingType::Int8:
std::get<Int8>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int8>>(attr.arrays) = std::make_unique<ContainerType<Int8>>(size);
bytes_allocated += size * sizeof(Int8);
break;
case AttributeUnderlyingType::Int16:
std::get<Int16>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int16>>(attr.arrays) = std::make_unique<ContainerType<Int16>>(size);
bytes_allocated += size * sizeof(Int16);
break;
case AttributeUnderlyingType::Int32:
std::get<Int32>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int32>>(attr.arrays) = std::make_unique<ContainerType<Int32>>(size);
bytes_allocated += size * sizeof(Int32);
break;
case AttributeUnderlyingType::Int64:
std::get<Int64>(attr.null_values) = null_value.get<Int64>();
std::get<ContainerPtrType<Int64>>(attr.arrays) = std::make_unique<ContainerType<Int64>>(size);
bytes_allocated += size * sizeof(Int64);
break;
case AttributeUnderlyingType::Float32:
std::get<Float32>(attr.null_values) = null_value.get<Float64>();
std::get<ContainerPtrType<Float32>>(attr.arrays) = std::make_unique<ContainerType<Float32>>(size);
bytes_allocated += size * sizeof(Float32);
break;
case AttributeUnderlyingType::Float64:
std::get<Float64>(attr.null_values) = null_value.get<Float64>();
std::get<ContainerPtrType<Float64>>(attr.arrays) = std::make_unique<ContainerType<Float64>>(size);
bytes_allocated += size * sizeof(Float64);
break;
case AttributeUnderlyingType::String:
std::get<String>(attr.null_values) = null_value.get<String>();
std::get<ContainerPtrType<StringRef>>(attr.arrays) = std::make_unique<ContainerType<StringRef>>(size);
bytes_allocated += size * sizeof(StringRef);
if (!string_arena)
string_arena = std::make_unique<ArenaWithFreeLists>();
break;
}
return attr;
}
template <typename OutputType, typename DefaultGetter>
void CacheDictionary::getItemsNumber(
Attribute & attribute,
const PaddedPODArray<Key> & ids,
PaddedPODArray<OutputType> & out,
DefaultGetter && get_default) const
{
if (false) {}
#define DISPATCH(TYPE) \
else if (attribute.type == AttributeUnderlyingType::TYPE) \
getItemsNumberImpl<TYPE, OutputType>(attribute, ids, out, std::forward<DefaultGetter>(get_default));
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(UInt128)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
else
throw Exception("Unexpected type of attribute: " + toString(attribute.type), ErrorCodes::LOGICAL_ERROR);
}
template <typename AttributeType, typename OutputType, typename DefaultGetter>
void CacheDictionary::getItemsNumberImpl(
Attribute & attribute,
const PaddedPODArray<Key> & ids,
PaddedPODArray<OutputType> & out,
DefaultGetter && get_default) const
{
/// Mapping: <id> -> { all indices `i` of `ids` such that `ids[i]` = <id> }
std::unordered_map<Key, std::vector<size_t>> outdated_ids;
auto & attribute_array = std::get<ContainerPtrType<AttributeType>>(attribute.arrays);
const auto rows = ext::size(ids);
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows))
{
const auto id = ids[row];
/** cell should be updated if either:
* 1. ids do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
const auto find_result = findCellIdx(id, now);
if (!find_result.valid)
{
outdated_ids[id].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
out[row] = cell.isDefault() ? get_default(row) : static_cast<OutputType>(attribute_array[cell_idx]);
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release);
if (outdated_ids.empty())
return;
std::vector<Key> required_ids(outdated_ids.size());
std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids),
[] (auto & pair) { return pair.first; });
/// request new values
update(required_ids,
[&] (const auto id, const auto cell_idx)
{
const auto attribute_value = attribute_array[cell_idx];
for (const size_t row : outdated_ids[id])
out[row] = static_cast<OutputType>(attribute_value);
},
[&] (const auto id, const auto)
{
for (const size_t row : outdated_ids[id])
out[row] = get_default(row);
});
}
template <typename DefaultGetter>
void CacheDictionary::getItemsString(
Attribute & attribute,
const PaddedPODArray<Key> & ids,
ColumnString * out,
DefaultGetter && get_default) const
{
const auto rows = ext::size(ids);
/// save on some allocations
out->getOffsets().reserve(rows);
auto & attribute_array = std::get<ContainerPtrType<StringRef>>(attribute.arrays);
auto found_outdated_values = false;
/// perform optimistic version, fallback to pessimistic if failed
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, discard on fail
for (const auto row : ext::range(0, rows))
{
const auto id = ids[row];
const auto find_result = findCellIdx(id, now);
if (!find_result.valid)
{
found_outdated_values = true;
break;
}
else
{
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
out->insertData(string_ref.data, string_ref.size);
}
}
}
/// optimistic code completed successfully
if (!found_outdated_values)
{
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows, std::memory_order_release);
return;
}
/// now onto the pessimistic one, discard possible partial results from the optimistic path
out->getChars().resize_assume_reserved(0);
out->getOffsets().resize_assume_reserved(0);
/// Mapping: <id> -> { all indices `i` of `ids` such that `ids[i]` = <id> }
std::unordered_map<Key, std::vector<size_t>> outdated_ids;
/// we are going to store every string separately
std::unordered_map<Key, String> map;
size_t total_length = 0;
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
for (const auto row : ext::range(0, ids.size()))
{
const auto id = ids[row];
const auto find_result = findCellIdx(id, now);
if (!find_result.valid)
{
outdated_ids[id].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx];
if (!cell.isDefault())
map[id] = String{string_ref};
total_length += string_ref.size + 1;
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows, std::memory_order_relaxed);
hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release);
/// request new values
if (!outdated_ids.empty())
{
std::vector<Key> required_ids(outdated_ids.size());
std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids),
[] (auto & pair) { return pair.first; });
update(required_ids,
[&] (const auto id, const auto cell_idx)
{
const auto attribute_value = attribute_array[cell_idx];
map[id] = String{attribute_value};
total_length += (attribute_value.size + 1) * outdated_ids[id].size();
},
[&] (const auto id, const auto)
{
for (const auto row : outdated_ids[id])
total_length += get_default(row).size + 1;
});
}
out->getChars().reserve(total_length);
for (const auto row : ext::range(0, ext::size(ids)))
{
const auto id = ids[row];
const auto it = map.find(id);
const auto string_ref = it != std::end(map) ? StringRef{it->second} : get_default(row);
out->insertData(string_ref.data, string_ref.size);
}
}
template <typename PresentIdHandler, typename AbsentIdHandler>
void CacheDictionary::update(
const std::vector<Key> & requested_ids,
PresentIdHandler && on_cell_updated,
AbsentIdHandler && on_id_not_found) const
{
std::unordered_map<Key, UInt8> remaining_ids{requested_ids.size()};
for (const auto id : requested_ids)
remaining_ids.insert({ id, 0 });
std::uniform_int_distribution<UInt64> distribution
{
dict_lifetime.min_sec,
dict_lifetime.max_sec
};
const ProfilingScopedWriteRWLock write_lock{rw_lock, ProfileEvents::DictCacheLockWriteNs};
{
CurrentMetrics::Increment metric_increment{CurrentMetrics::DictCacheRequests};
Stopwatch watch;
auto stream = source_ptr->loadIds(requested_ids);
stream->readPrefix();
const auto now = std::chrono::system_clock::now();
while (const auto block = stream->read())
{
const auto id_column = typeid_cast<const ColumnUInt64 *>(block.safeGetByPosition(0).column.get());
if (!id_column)
throw Exception{name + ": id column has type different from UInt64.", ErrorCodes::TYPE_MISMATCH};
const auto & ids = id_column->getData();
/// cache column pointers
const auto column_ptrs = ext::map<std::vector>(ext::range(0, attributes.size()), [&block] (size_t i)
{
return block.safeGetByPosition(i + 1).column.get();
});
for (const auto i : ext::range(0, ids.size()))
{
const auto id = ids[i];
const auto find_result = findCellIdx(id, now);
const auto & cell_idx = find_result.cell_idx;
auto & cell = cells[cell_idx];
for (const auto attribute_idx : ext::range(0, attributes.size()))
{
const auto & attribute_column = *column_ptrs[attribute_idx];
auto & attribute = attributes[attribute_idx];
setAttributeValue(attribute, cell_idx, attribute_column[i]);
}
/// if cell id is zero and zero does not map to this cell, then the cell is unused
if (cell.id == 0 && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
cell.id = id;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
/// inform caller
on_cell_updated(id, cell_idx);
/// mark corresponding id as found
remaining_ids[id] = 1;
}
}
stream->readSuffix();
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequested, requested_ids.size());
ProfileEvents::increment(ProfileEvents::DictCacheRequestTimeNs, watch.elapsed());
}
size_t not_found_num = 0, found_num = 0;
const auto now = std::chrono::system_clock::now();
/// Check which ids have not been found and require setting null_value
for (const auto & id_found_pair : remaining_ids)
{
if (id_found_pair.second)
{
++found_num;
continue;
}
++not_found_num;
const auto id = id_found_pair.first;
const auto find_result = findCellIdx(id, now);
const auto & cell_idx = find_result.cell_idx;
auto & cell = cells[cell_idx];
/// Set null_value for each attribute
for (auto & attribute : attributes)
setDefaultAttributeValue(attribute, cell_idx);
/// Check if cell had not been occupied before and increment element counter if it hadn't
if (cell.id == 0 && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
cell.id = id;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
cell.setDefault();
/// inform caller that the cell has not been found
on_id_not_found(id, cell_idx);
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, not_found_num);
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedFound, found_num);
ProfileEvents::increment(ProfileEvents::DictCacheRequests);
}
void CacheDictionary::setDefaultAttributeValue(Attribute & attribute, const Key idx) const
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: std::get<ContainerPtrType<UInt8>>(attribute.arrays)[idx] = std::get<UInt8>(attribute.null_values); break;
case AttributeUnderlyingType::UInt16: std::get<ContainerPtrType<UInt16>>(attribute.arrays)[idx] = std::get<UInt16>(attribute.null_values); break;
case AttributeUnderlyingType::UInt32: std::get<ContainerPtrType<UInt32>>(attribute.arrays)[idx] = std::get<UInt32>(attribute.null_values); break;
case AttributeUnderlyingType::UInt64: std::get<ContainerPtrType<UInt64>>(attribute.arrays)[idx] = std::get<UInt64>(attribute.null_values); break;
case AttributeUnderlyingType::UInt128: std::get<ContainerPtrType<UInt128>>(attribute.arrays)[idx] = std::get<UInt128>(attribute.null_values); break;
case AttributeUnderlyingType::Int8: std::get<ContainerPtrType<Int8>>(attribute.arrays)[idx] = std::get<Int8>(attribute.null_values); break;
case AttributeUnderlyingType::Int16: std::get<ContainerPtrType<Int16>>(attribute.arrays)[idx] = std::get<Int16>(attribute.null_values); break;
case AttributeUnderlyingType::Int32: std::get<ContainerPtrType<Int32>>(attribute.arrays)[idx] = std::get<Int32>(attribute.null_values); break;
case AttributeUnderlyingType::Int64: std::get<ContainerPtrType<Int64>>(attribute.arrays)[idx] = std::get<Int64>(attribute.null_values); break;
case AttributeUnderlyingType::Float32: std::get<ContainerPtrType<Float32>>(attribute.arrays)[idx] = std::get<Float32>(attribute.null_values); break;
case AttributeUnderlyingType::Float64: std::get<ContainerPtrType<Float64>>(attribute.arrays)[idx] = std::get<Float64>(attribute.null_values); break;
case AttributeUnderlyingType::String:
{
const auto & null_value_ref = std::get<String>(attribute.null_values);
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
if (string_ref.data != null_value_ref.data())
{
if (string_ref.data)
string_arena->free(const_cast<char *>(string_ref.data), string_ref.size);
string_ref = StringRef{null_value_ref};
}
break;
}
}
}
void CacheDictionary::setAttributeValue(Attribute & attribute, const Key idx, const Field & value) const
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: std::get<ContainerPtrType<UInt8>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt16: std::get<ContainerPtrType<UInt16>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt32: std::get<ContainerPtrType<UInt32>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt64: std::get<ContainerPtrType<UInt64>>(attribute.arrays)[idx] = value.get<UInt64>(); break;
case AttributeUnderlyingType::UInt128: std::get<ContainerPtrType<UInt128>>(attribute.arrays)[idx] = value.get<UInt128>(); break;
case AttributeUnderlyingType::Int8: std::get<ContainerPtrType<Int8>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int16: std::get<ContainerPtrType<Int16>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int32: std::get<ContainerPtrType<Int32>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Int64: std::get<ContainerPtrType<Int64>>(attribute.arrays)[idx] = value.get<Int64>(); break;
case AttributeUnderlyingType::Float32: std::get<ContainerPtrType<Float32>>(attribute.arrays)[idx] = value.get<Float64>(); break;
case AttributeUnderlyingType::Float64: std::get<ContainerPtrType<Float64>>(attribute.arrays)[idx] = value.get<Float64>(); break;
case AttributeUnderlyingType::String:
{
const auto & string = value.get<String>();
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
const auto & null_value_ref = std::get<String>(attribute.null_values);
/// free memory unless it points to a null_value
if (string_ref.data && string_ref.data != null_value_ref.data())
string_arena->free(const_cast<char *>(string_ref.data), string_ref.size);
const auto str_size = string.size();
if (str_size != 0)
{
auto string_ptr = string_arena->alloc(str_size + 1);
std::copy(string.data(), string.data() + str_size + 1, string_ptr);
string_ref = StringRef{string_ptr, str_size};
}
else
string_ref = {};
break;
}
}
}
CacheDictionary::Attribute & CacheDictionary::getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS};
return attributes[it->second];
}
bool CacheDictionary::isEmptyCell(const UInt64 idx) const
{
return (idx != zero_cell_idx && cells[idx].id == 0) || (cells[idx].data
== ext::safe_bit_cast<CellMetadata::time_point_urep_t>(CellMetadata::time_point_t()));
}
PaddedPODArray<CacheDictionary::Key> CacheDictionary::getCachedIds() const
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
PaddedPODArray<Key> array;
for (size_t idx = 0; idx < cells.size(); ++idx)
{
auto & cell = cells[idx];
if (!isEmptyCell(idx) && !cells[idx].isDefault())
{
array.push_back(cell.id);
}
}
return array;
}
BlockInputStreamPtr CacheDictionary::getBlockInputStream(const Names & column_names, size_t max_block_size) const
{
using BlockInputStreamType = DictionaryBlockInputStream<CacheDictionary, Key>;
return std::make_shared<BlockInputStreamType>(shared_from_this(), max_block_size, getCachedIds(), column_names);
}
}