ClickHouse/dbms/src/Interpreters/InterpreterSelectQuery.h
2018-08-21 19:08:45 +03:00

234 lines
8.7 KiB
C++

#pragma once
#include <memory>
#include <Core/QueryProcessingStage.h>
#include <Interpreters/Context.h>
#include <Interpreters/IInterpreter.h>
#include <Interpreters/ExpressionAnalyzer.h>
#include <Interpreters/ExpressionActions.h>
#include <DataStreams/IBlockInputStream.h>
namespace Poco { class Logger; }
namespace DB
{
class ExpressionAnalyzer;
class ASTSelectQuery;
struct SubqueryForSet;
class InterpreterSelectWithUnionQuery;
/** Interprets the SELECT query. Returns the stream of blocks with the results of the query before `to_stage` stage.
*/
class InterpreterSelectQuery : public IInterpreter
{
public:
/**
* query_ptr
* - A query AST to interpret.
*
* to_stage
* - the stage to which the query is to be executed. By default - till to the end.
* You can perform till the intermediate aggregation state, which are combined from different servers for distributed query processing.
*
* subquery_depth
* - to control the limit on the depth of nesting of subqueries. For subqueries, a value that is incremented by one is passed;
* for INSERT SELECT, a value 1 is passed instead of 0.
*
* required_result_column_names
* - don't calculate all columns except the specified ones from the query
* - it is used to remove calculation (and reading) of unnecessary columns from subqueries.
* empty means - use all columns.
*/
InterpreterSelectQuery(
const ASTPtr & query_ptr_,
const Context & context_,
const Names & required_result_column_names = Names{},
QueryProcessingStage::Enum to_stage_ = QueryProcessingStage::Complete,
size_t subquery_depth_ = 0,
bool only_analyze_ = false);
/// Read data not from the table specified in the query, but from the prepared source `input`.
InterpreterSelectQuery(
const ASTPtr & query_ptr_,
const Context & context_,
const BlockInputStreamPtr & input_,
QueryProcessingStage::Enum to_stage_ = QueryProcessingStage::Complete,
bool only_analyze_ = false);
/// Read data not from the table specified in the query, but from the specified `storage_`.
InterpreterSelectQuery(
const ASTPtr & query_ptr_,
const Context & context_,
const StoragePtr & storage_,
QueryProcessingStage::Enum to_stage_ = QueryProcessingStage::Complete,
bool only_analyze_ = false);
~InterpreterSelectQuery() override;
/// Execute a query. Get the stream of blocks to read.
BlockIO execute() override;
/// Execute the query and return multuple streams for parallel processing.
BlockInputStreams executeWithMultipleStreams();
Block getSampleBlock();
void ignoreWithTotals();
private:
InterpreterSelectQuery(
const ASTPtr & query_ptr_,
const Context & context_,
const BlockInputStreamPtr & input_,
const StoragePtr & storage_,
const Names & required_result_column_names,
QueryProcessingStage::Enum to_stage_,
size_t subquery_depth_,
bool only_analyze_);
struct Pipeline
{
/** Streams of data.
* The source data streams are produced in the executeFetchColumns function.
* Then they are converted (wrapped in other streams) using the `execute*` functions,
* to get the whole pipeline running the query.
*/
BlockInputStreams streams;
/** When executing FULL or RIGHT JOIN, there will be a data stream from which you can read "not joined" rows.
* It has a special meaning, since reading from it should be done after reading from the main streams.
* It is appended to the main streams in UnionBlockInputStream or ParallelAggregatingBlockInputStream.
*/
BlockInputStreamPtr stream_with_non_joined_data;
BlockInputStreamPtr & firstStream() { return streams.at(0); }
template <typename Transform>
void transform(Transform && transform)
{
for (auto & stream : streams)
transform(stream);
if (stream_with_non_joined_data)
transform(stream_with_non_joined_data);
}
bool hasMoreThanOneStream() const
{
return streams.size() + (stream_with_non_joined_data ? 1 : 0) > 1;
}
};
void executeImpl(Pipeline & pipeline, const BlockInputStreamPtr & input, bool dry_run);
struct AnalysisResult
{
bool has_join = false;
bool has_where = false;
bool need_aggregate = false;
bool has_having = false;
bool has_order_by = false;
bool has_limit_by = false;
ExpressionActionsPtr before_join; /// including JOIN
ExpressionActionsPtr before_where;
ExpressionActionsPtr before_aggregation;
ExpressionActionsPtr before_having;
ExpressionActionsPtr before_order_and_select;
ExpressionActionsPtr before_limit_by;
ExpressionActionsPtr final_projection;
/// Columns from the SELECT list, before renaming them to aliases.
Names selected_columns;
/// Do I need to perform the first part of the pipeline - running on remote servers during distributed processing.
bool first_stage = false;
/// Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing.
bool second_stage = false;
SubqueriesForSets subqueries_for_sets;
};
AnalysisResult analyzeExpressions(QueryProcessingStage::Enum from_stage, bool dry_run);
/** From which table to read. With JOIN, the "left" table is returned.
*/
void getDatabaseAndTableNames(String & database_name, String & table_name);
/// Different stages of query execution.
/// dry_run - don't read from table, use empty header block instead.
void executeWithMultipleStreamsImpl(Pipeline & pipeline, const BlockInputStreamPtr & input, bool dry_run);
/// Fetch data from the table. Returns the stage to which the query was processed in Storage.
QueryProcessingStage::Enum executeFetchColumns(Pipeline & pipeline);
void executeWhere(Pipeline & pipeline, const ExpressionActionsPtr & expression);
void executeAggregation(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final);
void executeMergeAggregated(Pipeline & pipeline, bool overflow_row, bool final);
void executeTotalsAndHaving(Pipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row);
void executeHaving(Pipeline & pipeline, const ExpressionActionsPtr & expression);
void executeExpression(Pipeline & pipeline, const ExpressionActionsPtr & expression);
void executeOrder(Pipeline & pipeline);
void executeMergeSorted(Pipeline & pipeline);
void executePreLimit(Pipeline & pipeline);
void executeUnion(Pipeline & pipeline);
void executeLimitBy(Pipeline & pipeline);
void executeLimit(Pipeline & pipeline);
void executeProjection(Pipeline & pipeline, const ExpressionActionsPtr & expression);
void executeDistinct(Pipeline & pipeline, bool before_order, Names columns);
void executeExtremes(Pipeline & pipeline);
void executeSubqueriesInSetsAndJoins(Pipeline & pipeline, std::unordered_map<String, SubqueryForSet> & subqueries_for_sets);
void executeRollup(Pipeline & pipeline);
/** If there is a SETTINGS section in the SELECT query, then apply settings from it.
*
* Section SETTINGS - settings for a specific query.
* Normally, the settings can be passed in other ways, not inside the query.
* But the use of this section is justified if you need to set the settings for one subquery.
*/
void initSettings();
ASTPtr query_ptr;
ASTSelectQuery & query;
Context context;
QueryProcessingStage::Enum to_stage;
size_t subquery_depth = 0;
std::unique_ptr<ExpressionAnalyzer> query_analyzer;
/// How many streams we ask for storage to produce, and in how many threads we will do further processing.
size_t max_streams = 1;
/// The object was created only for query analysis.
bool only_analyze = false;
/// List of columns to read to execute the query.
Names required_columns;
/// Structure of query source (table, subquery, etc).
Block source_header;
/// Structure of query result.
Block result_header;
/// The subquery interpreter, if the subquery
std::unique_ptr<InterpreterSelectWithUnionQuery> interpreter_subquery;
/// Table from where to read data, if not subquery.
StoragePtr storage;
TableStructureReadLockPtr table_lock;
/// Used when we read from prepared input, not table or subquery.
BlockInputStreamPtr input;
Poco::Logger * log;
};
}