mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-15 19:02:04 +00:00
1743 lines
61 KiB
C++
1743 lines
61 KiB
C++
#pragma once
|
|
|
|
#include <city.h>
|
|
#include <farmhash.h>
|
|
#include <metrohash.h>
|
|
#include <wyhash.h>
|
|
#include <MurmurHash2.h>
|
|
#include <MurmurHash3.h>
|
|
|
|
#include "config.h"
|
|
|
|
#ifdef __clang__
|
|
# pragma clang diagnostic push
|
|
# pragma clang diagnostic ignored "-Wused-but-marked-unused"
|
|
#endif
|
|
#include <xxhash.h>
|
|
|
|
#if USE_BLAKE3
|
|
# include <blake3.h>
|
|
#endif
|
|
|
|
#include <Common/SipHash.h>
|
|
#include <Common/typeid_cast.h>
|
|
#include <Common/safe_cast.h>
|
|
#include <Common/HashTable/Hash.h>
|
|
|
|
#if USE_SSL
|
|
# include <openssl/md4.h>
|
|
# include <openssl/md5.h>
|
|
# include <openssl/sha.h>
|
|
#endif
|
|
|
|
#include <Poco/ByteOrder.h>
|
|
#include <DataTypes/DataTypesNumber.h>
|
|
#include <DataTypes/DataTypesDecimal.h>
|
|
#include <DataTypes/DataTypeString.h>
|
|
#include <DataTypes/DataTypeDate.h>
|
|
#include <DataTypes/DataTypeDateTime.h>
|
|
#include <DataTypes/DataTypeArray.h>
|
|
#include <DataTypes/DataTypeFixedString.h>
|
|
#include <DataTypes/DataTypeEnum.h>
|
|
#include <DataTypes/DataTypeTuple.h>
|
|
#include <DataTypes/DataTypeMap.h>
|
|
#include <Columns/ColumnsNumber.h>
|
|
#include <Columns/ColumnString.h>
|
|
#include <Columns/ColumnConst.h>
|
|
#include <Columns/ColumnFixedString.h>
|
|
#include <Columns/ColumnArray.h>
|
|
#include <Columns/ColumnTuple.h>
|
|
#include <Columns/ColumnMap.h>
|
|
#include <Functions/IFunction.h>
|
|
#include <Functions/FunctionHelpers.h>
|
|
#include <Functions/PerformanceAdaptors.h>
|
|
#include <Common/TargetSpecific.h>
|
|
#include <base/IPv4andIPv6.h>
|
|
#include <base/range.h>
|
|
#include <base/bit_cast.h>
|
|
#include <base/unaligned.h>
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
|
|
extern const int BAD_ARGUMENTS;
|
|
extern const int LOGICAL_ERROR;
|
|
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
|
|
extern const int NOT_IMPLEMENTED;
|
|
extern const int ILLEGAL_COLUMN;
|
|
extern const int SUPPORT_IS_DISABLED;
|
|
}
|
|
|
|
namespace impl
|
|
{
|
|
struct SipHashKey
|
|
{
|
|
UInt64 key0 = 0;
|
|
UInt64 key1 = 0;
|
|
};
|
|
|
|
static SipHashKey parseSipHashKey(const ColumnWithTypeAndName & key)
|
|
{
|
|
SipHashKey ret;
|
|
|
|
const auto * tuple = checkAndGetColumn<ColumnTuple>(key.column.get());
|
|
if (!tuple)
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "key must be a tuple");
|
|
|
|
if (tuple->tupleSize() != 2)
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "wrong tuple size: key must be a tuple of 2 UInt64");
|
|
|
|
if (const auto * key0col = checkAndGetColumn<ColumnUInt64>(&(tuple->getColumn(0))))
|
|
ret.key0 = key0col->get64(0);
|
|
else
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "first element of the key tuple is not UInt64");
|
|
|
|
if (const auto * key1col = checkAndGetColumn<ColumnUInt64>(&(tuple->getColumn(1))))
|
|
ret.key1 = key1col->get64(0);
|
|
else
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "second element of the key tuple is not UInt64");
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/** Hashing functions.
|
|
*
|
|
* halfMD5: String -> UInt64
|
|
*
|
|
* A faster cryptographic hash function:
|
|
* sipHash64: String -> UInt64
|
|
*
|
|
* Fast non-cryptographic hash function for strings:
|
|
* cityHash64: String -> UInt64
|
|
*
|
|
* A non-cryptographic hashes from a tuple of values of any types (uses respective function for strings and intHash64 for numbers):
|
|
* cityHash64: any* -> UInt64
|
|
* sipHash64: any* -> UInt64
|
|
* halfMD5: any* -> UInt64
|
|
*
|
|
* Fast non-cryptographic hash function from any integer:
|
|
* intHash32: number -> UInt32
|
|
* intHash64: number -> UInt64
|
|
*
|
|
*/
|
|
|
|
|
|
struct IntHash32Impl
|
|
{
|
|
using ReturnType = UInt32;
|
|
|
|
static UInt32 apply(UInt64 x)
|
|
{
|
|
/// seed is taken from /dev/urandom. It allows you to avoid undesirable dependencies with hashes in different data structures.
|
|
return intHash32<0x75D9543DE018BF45ULL>(x);
|
|
}
|
|
};
|
|
|
|
struct IntHash64Impl
|
|
{
|
|
using ReturnType = UInt64;
|
|
|
|
static UInt64 apply(UInt64 x)
|
|
{
|
|
return intHash64(x ^ 0x4CF2D2BAAE6DA887ULL);
|
|
}
|
|
};
|
|
|
|
template<typename T, typename HashFunction>
|
|
T combineHashesFunc(T t1, T t2)
|
|
{
|
|
T hashes[] = {t1, t2};
|
|
return HashFunction::apply(reinterpret_cast<const char *>(hashes), 2 * sizeof(T));
|
|
}
|
|
|
|
|
|
#if USE_SSL
|
|
struct HalfMD5Impl
|
|
{
|
|
static constexpr auto name = "halfMD5";
|
|
using ReturnType = UInt64;
|
|
|
|
static UInt64 apply(const char * begin, size_t size)
|
|
{
|
|
union
|
|
{
|
|
unsigned char char_data[16];
|
|
uint64_t uint64_data;
|
|
} buf;
|
|
|
|
MD5_CTX ctx;
|
|
MD5_Init(&ctx);
|
|
MD5_Update(&ctx, reinterpret_cast<const unsigned char *>(begin), size);
|
|
MD5_Final(buf.char_data, &ctx);
|
|
|
|
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
return buf.uint64_data; /// No need to flip bytes on big endian machines
|
|
#else
|
|
return Poco::ByteOrder::flipBytes(static_cast<Poco::UInt64>(buf.uint64_data)); /// Compatibility with existing code. Cast need for old poco AND macos where UInt64 != uint64_t
|
|
#endif
|
|
}
|
|
|
|
static UInt64 combineHashes(UInt64 h1, UInt64 h2)
|
|
{
|
|
UInt64 hashes[] = {h1, h2};
|
|
return apply(reinterpret_cast<const char *>(hashes), 16);
|
|
}
|
|
|
|
/// If true, it will use intHash32 or intHash64 to hash POD types. This behaviour is intended for better performance of some functions.
|
|
/// Otherwise it will hash bytes in memory as a string using corresponding hash function.
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct MD4Impl
|
|
{
|
|
static constexpr auto name = "MD4";
|
|
enum { length = MD4_DIGEST_LENGTH };
|
|
|
|
static void apply(const char * begin, const size_t size, unsigned char * out_char_data)
|
|
{
|
|
MD4_CTX ctx;
|
|
MD4_Init(&ctx);
|
|
MD4_Update(&ctx, reinterpret_cast<const unsigned char *>(begin), size);
|
|
MD4_Final(out_char_data, &ctx);
|
|
}
|
|
};
|
|
|
|
struct MD5Impl
|
|
{
|
|
static constexpr auto name = "MD5";
|
|
enum { length = MD5_DIGEST_LENGTH };
|
|
|
|
static void apply(const char * begin, const size_t size, unsigned char * out_char_data)
|
|
{
|
|
MD5_CTX ctx;
|
|
MD5_Init(&ctx);
|
|
MD5_Update(&ctx, reinterpret_cast<const unsigned char *>(begin), size);
|
|
MD5_Final(out_char_data, &ctx);
|
|
}
|
|
};
|
|
|
|
struct SHA1Impl
|
|
{
|
|
static constexpr auto name = "SHA1";
|
|
enum { length = SHA_DIGEST_LENGTH };
|
|
|
|
static void apply(const char * begin, const size_t size, unsigned char * out_char_data)
|
|
{
|
|
SHA_CTX ctx;
|
|
SHA1_Init(&ctx);
|
|
SHA1_Update(&ctx, reinterpret_cast<const unsigned char *>(begin), size);
|
|
SHA1_Final(out_char_data, &ctx);
|
|
}
|
|
};
|
|
|
|
struct SHA224Impl
|
|
{
|
|
static constexpr auto name = "SHA224";
|
|
enum { length = SHA224_DIGEST_LENGTH };
|
|
|
|
static void apply(const char * begin, const size_t size, unsigned char * out_char_data)
|
|
{
|
|
SHA256_CTX ctx;
|
|
SHA224_Init(&ctx);
|
|
SHA224_Update(&ctx, reinterpret_cast<const unsigned char *>(begin), size);
|
|
SHA224_Final(out_char_data, &ctx);
|
|
}
|
|
};
|
|
|
|
struct SHA256Impl
|
|
{
|
|
static constexpr auto name = "SHA256";
|
|
enum { length = SHA256_DIGEST_LENGTH };
|
|
|
|
static void apply(const char * begin, const size_t size, unsigned char * out_char_data)
|
|
{
|
|
SHA256_CTX ctx;
|
|
SHA256_Init(&ctx);
|
|
SHA256_Update(&ctx, reinterpret_cast<const unsigned char *>(begin), size);
|
|
SHA256_Final(out_char_data, &ctx);
|
|
}
|
|
};
|
|
|
|
struct SHA384Impl
|
|
{
|
|
static constexpr auto name = "SHA384";
|
|
enum { length = SHA384_DIGEST_LENGTH };
|
|
|
|
static void apply(const char * begin, const size_t size, unsigned char * out_char_data)
|
|
{
|
|
SHA512_CTX ctx;
|
|
SHA384_Init(&ctx);
|
|
SHA384_Update(&ctx, reinterpret_cast<const unsigned char *>(begin), size);
|
|
SHA384_Final(out_char_data, &ctx);
|
|
}
|
|
};
|
|
|
|
struct SHA512Impl
|
|
{
|
|
static constexpr auto name = "SHA512";
|
|
enum { length = 64 };
|
|
|
|
static void apply(const char * begin, const size_t size, unsigned char * out_char_data)
|
|
{
|
|
SHA512_CTX ctx;
|
|
SHA512_Init(&ctx);
|
|
SHA512_Update(&ctx, reinterpret_cast<const unsigned char *>(begin), size);
|
|
SHA512_Final(out_char_data, &ctx);
|
|
}
|
|
};
|
|
#endif
|
|
|
|
struct SipHash64Impl
|
|
{
|
|
static constexpr auto name = "sipHash64";
|
|
using ReturnType = UInt64;
|
|
|
|
static UInt64 apply(const char * begin, size_t size)
|
|
{
|
|
return sipHash64(begin, size);
|
|
}
|
|
|
|
static UInt64 combineHashes(UInt64 h1, UInt64 h2)
|
|
{
|
|
return combineHashesFunc<UInt64, SipHash64Impl>(h1, h2);
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct SipHash64KeyedImpl
|
|
{
|
|
static constexpr auto name = "sipHash64Keyed";
|
|
using ReturnType = UInt64;
|
|
using Key = impl::SipHashKey;
|
|
|
|
static Key parseKey(const ColumnWithTypeAndName & key) { return impl::parseSipHashKey(key); }
|
|
|
|
static UInt64 applyKeyed(const Key & key, const char * begin, size_t size) { return sipHash64Keyed(key.key0, key.key1, begin, size); }
|
|
|
|
static UInt64 combineHashesKeyed(const Key & key, UInt64 h1, UInt64 h2)
|
|
{
|
|
UInt64 hashes[] = {h1, h2};
|
|
return applyKeyed(key, reinterpret_cast<const char *>(hashes), 2 * sizeof(UInt64));
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct SipHash128Impl
|
|
{
|
|
static constexpr auto name = "sipHash128";
|
|
|
|
using ReturnType = UInt128;
|
|
|
|
static UInt128 combineHashes(UInt128 h1, UInt128 h2)
|
|
{
|
|
return combineHashesFunc<UInt128, SipHash128Impl>(h1, h2);
|
|
}
|
|
|
|
static UInt128 apply(const char * data, const size_t size)
|
|
{
|
|
return sipHash128(data, size);
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct SipHash128KeyedImpl
|
|
{
|
|
static constexpr auto name = "sipHash128Keyed";
|
|
using ReturnType = UInt128;
|
|
using Key = impl::SipHashKey;
|
|
|
|
static Key parseKey(const ColumnWithTypeAndName & key) { return impl::parseSipHashKey(key); }
|
|
|
|
static UInt128 applyKeyed(const Key & key, const char * begin, size_t size) { return sipHash128Keyed(key.key0, key.key1, begin, size); }
|
|
|
|
static UInt128 combineHashesKeyed(const Key & key, UInt128 h1, UInt128 h2)
|
|
{
|
|
UInt128 hashes[] = {h1, h2};
|
|
return applyKeyed(key, reinterpret_cast<const char *>(hashes), 2 * sizeof(UInt128));
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct SipHash128ReferenceImpl
|
|
{
|
|
static constexpr auto name = "sipHash128Reference";
|
|
|
|
using ReturnType = UInt128;
|
|
|
|
static UInt128 combineHashes(UInt128 h1, UInt128 h2) { return combineHashesFunc<UInt128, SipHash128Impl>(h1, h2); }
|
|
|
|
static UInt128 apply(const char * data, const size_t size) { return sipHash128Reference(data, size); }
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct SipHash128ReferenceKeyedImpl
|
|
{
|
|
static constexpr auto name = "sipHash128ReferenceKeyed";
|
|
using ReturnType = UInt128;
|
|
using Key = impl::SipHashKey;
|
|
|
|
static Key parseKey(const ColumnWithTypeAndName & key) { return impl::parseSipHashKey(key); }
|
|
|
|
static UInt128 applyKeyed(const Key & key, const char * begin, size_t size)
|
|
{
|
|
return sipHash128ReferenceKeyed(key.key0, key.key1, begin, size);
|
|
}
|
|
|
|
static UInt128 combineHashesKeyed(const Key & key, UInt128 h1, UInt128 h2)
|
|
{
|
|
UInt128 hashes[] = {h1, h2};
|
|
return applyKeyed(key, reinterpret_cast<const char *>(hashes), 2 * sizeof(UInt128));
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
/** Why we need MurmurHash2?
|
|
* MurmurHash2 is an outdated hash function, superseded by MurmurHash3 and subsequently by CityHash, xxHash, HighwayHash.
|
|
* Usually there is no reason to use MurmurHash.
|
|
* It is needed for the cases when you already have MurmurHash in some applications and you want to reproduce it
|
|
* in ClickHouse as is. For example, it is needed to reproduce the behaviour
|
|
* for NGINX a/b testing module: https://nginx.ru/en/docs/http/ngx_http_split_clients_module.html
|
|
*/
|
|
struct MurmurHash2Impl32
|
|
{
|
|
static constexpr auto name = "murmurHash2_32";
|
|
|
|
using ReturnType = UInt32;
|
|
|
|
static UInt32 apply(const char * data, const size_t size)
|
|
{
|
|
return MurmurHash2(data, size, 0);
|
|
}
|
|
|
|
static UInt32 combineHashes(UInt32 h1, UInt32 h2)
|
|
{
|
|
return IntHash32Impl::apply(h1) ^ h2;
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct MurmurHash2Impl64
|
|
{
|
|
static constexpr auto name = "murmurHash2_64";
|
|
using ReturnType = UInt64;
|
|
|
|
static UInt64 apply(const char * data, const size_t size)
|
|
{
|
|
return MurmurHash64A(data, size, 0);
|
|
}
|
|
|
|
static UInt64 combineHashes(UInt64 h1, UInt64 h2)
|
|
{
|
|
return IntHash64Impl::apply(h1) ^ h2;
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
/// To be compatible with gcc: https://github.com/gcc-mirror/gcc/blob/41d6b10e96a1de98e90a7c0378437c3255814b16/libstdc%2B%2B-v3/include/bits/functional_hash.h#L191
|
|
struct GccMurmurHashImpl
|
|
{
|
|
static constexpr auto name = "gccMurmurHash";
|
|
using ReturnType = UInt64;
|
|
|
|
static UInt64 apply(const char * data, const size_t size)
|
|
{
|
|
return MurmurHash64A(data, size, 0xc70f6907UL);
|
|
}
|
|
|
|
static UInt64 combineHashes(UInt64 h1, UInt64 h2)
|
|
{
|
|
return IntHash64Impl::apply(h1) ^ h2;
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
/// To be compatible with Default Partitioner in Kafka:
|
|
/// murmur2: https://github.com/apache/kafka/blob/461c5cfe056db0951d9b74f5adc45973670404d7/clients/src/main/java/org/apache/kafka/common/utils/Utils.java#L480
|
|
/// Default Partitioner: https://github.com/apache/kafka/blob/139f7709bd3f5926901a21e55043388728ccca78/clients/src/main/java/org/apache/kafka/clients/producer/internals/BuiltInPartitioner.java#L328
|
|
struct KafkaMurmurHashImpl
|
|
{
|
|
static constexpr auto name = "kafkaMurmurHash";
|
|
|
|
using ReturnType = UInt32;
|
|
|
|
static UInt32 apply(const char * data, const size_t size)
|
|
{
|
|
return MurmurHash2(data, size, 0x9747b28cU) & 0x7fffffff;
|
|
}
|
|
|
|
static UInt32 combineHashes(UInt32 h1, UInt32 h2)
|
|
{
|
|
return IntHash32Impl::apply(h1) ^ h2;
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct MurmurHash3Impl32
|
|
{
|
|
static constexpr auto name = "murmurHash3_32";
|
|
using ReturnType = UInt32;
|
|
|
|
static UInt32 apply(const char * data, const size_t size)
|
|
{
|
|
union
|
|
{
|
|
UInt32 h;
|
|
char bytes[sizeof(h)];
|
|
};
|
|
MurmurHash3_x86_32(data, size, 0, bytes);
|
|
return h;
|
|
}
|
|
|
|
static UInt32 combineHashes(UInt32 h1, UInt32 h2)
|
|
{
|
|
return IntHash32Impl::apply(h1) ^ h2;
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct MurmurHash3Impl64
|
|
{
|
|
static constexpr auto name = "murmurHash3_64";
|
|
using ReturnType = UInt64;
|
|
|
|
static UInt64 apply(const char * data, const size_t size)
|
|
{
|
|
union
|
|
{
|
|
UInt64 h[2];
|
|
char bytes[16];
|
|
};
|
|
MurmurHash3_x64_128(data, size, 0, bytes);
|
|
return h[0] ^ h[1];
|
|
}
|
|
|
|
static UInt64 combineHashes(UInt64 h1, UInt64 h2)
|
|
{
|
|
return IntHash64Impl::apply(h1) ^ h2;
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct MurmurHash3Impl128
|
|
{
|
|
static constexpr auto name = "murmurHash3_128";
|
|
|
|
using ReturnType = UInt128;
|
|
|
|
static UInt128 apply(const char * data, const size_t size)
|
|
{
|
|
char bytes[16];
|
|
MurmurHash3_x64_128(data, size, 0, bytes);
|
|
return *reinterpret_cast<UInt128 *>(bytes);
|
|
}
|
|
|
|
static UInt128 combineHashes(UInt128 h1, UInt128 h2)
|
|
{
|
|
return combineHashesFunc<UInt128, MurmurHash3Impl128>(h1, h2);
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
/// Care should be taken to do all calculation in unsigned integers (to avoid undefined behaviour on overflow)
|
|
/// but obtain the same result as it is done in signed integers with two's complement arithmetic.
|
|
struct JavaHashImpl
|
|
{
|
|
static constexpr auto name = "javaHash";
|
|
using ReturnType = Int32;
|
|
|
|
static ReturnType apply(int64_t x)
|
|
{
|
|
return static_cast<ReturnType>(
|
|
static_cast<uint32_t>(x) ^ static_cast<uint32_t>(static_cast<uint64_t>(x) >> 32));
|
|
}
|
|
|
|
template <class T, typename std::enable_if<std::is_same_v<T, int8_t>
|
|
|| std::is_same_v<T, int16_t>
|
|
|| std::is_same_v<T, int32_t>, T>::type * = nullptr>
|
|
static ReturnType apply(T x)
|
|
{
|
|
return x;
|
|
}
|
|
|
|
template <typename T, typename std::enable_if<!std::is_same_v<T, int8_t>
|
|
&& !std::is_same_v<T, int16_t>
|
|
&& !std::is_same_v<T, int32_t>
|
|
&& !std::is_same_v<T, int64_t>, T>::type * = nullptr>
|
|
static ReturnType apply(T x)
|
|
{
|
|
if (std::is_unsigned_v<T>)
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Unsigned types are not supported");
|
|
const size_t size = sizeof(T);
|
|
const char * data = reinterpret_cast<const char *>(&x);
|
|
return apply(data, size);
|
|
}
|
|
|
|
static ReturnType apply(const char * data, const size_t size)
|
|
{
|
|
UInt32 h = 0;
|
|
for (size_t i = 0; i < size; ++i)
|
|
h = 31 * h + static_cast<UInt32>(static_cast<Int8>(data[i]));
|
|
return static_cast<Int32>(h);
|
|
}
|
|
|
|
static ReturnType combineHashes(Int32, Int32)
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Java hash is not combineable for multiple arguments");
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct JavaHashUTF16LEImpl
|
|
{
|
|
static constexpr auto name = "javaHashUTF16LE";
|
|
using ReturnType = Int32;
|
|
|
|
static Int32 apply(const char * raw_data, const size_t raw_size)
|
|
{
|
|
char * data = const_cast<char *>(raw_data);
|
|
size_t size = raw_size;
|
|
|
|
// Remove Byte-order-mark(0xFFFE) for UTF-16LE
|
|
if (size >= 2 && data[0] == '\xFF' && data[1] == '\xFE')
|
|
{
|
|
data += 2;
|
|
size -= 2;
|
|
}
|
|
|
|
if (size % 2 != 0)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Arguments for javaHashUTF16LE must be in the form of UTF-16");
|
|
|
|
UInt32 h = 0;
|
|
for (size_t i = 0; i < size; i += 2)
|
|
h = 31 * h + static_cast<UInt16>(static_cast<UInt8>(data[i]) | static_cast<UInt8>(data[i + 1]) << 8);
|
|
|
|
return static_cast<Int32>(h);
|
|
}
|
|
|
|
static Int32 combineHashes(Int32, Int32)
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Java hash is not combineable for multiple arguments");
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
/// This is just JavaHash with zeroed out sign bit.
|
|
/// This function is used in Hive for versions before 3.0,
|
|
/// after 3.0, Hive uses murmur-hash3.
|
|
struct HiveHashImpl
|
|
{
|
|
static constexpr auto name = "hiveHash";
|
|
using ReturnType = Int32;
|
|
|
|
static Int32 apply(const char * data, const size_t size)
|
|
{
|
|
return static_cast<Int32>(0x7FFFFFFF & static_cast<UInt32>(JavaHashImpl::apply(data, size)));
|
|
}
|
|
|
|
static Int32 combineHashes(Int32, Int32)
|
|
{
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Hive hash is not combineable for multiple arguments");
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct ImplCityHash64
|
|
{
|
|
static constexpr auto name = "cityHash64";
|
|
using ReturnType = UInt64;
|
|
using uint128_t = CityHash_v1_0_2::uint128;
|
|
|
|
static auto combineHashes(UInt64 h1, UInt64 h2) { return CityHash_v1_0_2::Hash128to64(uint128_t(h1, h2)); }
|
|
static auto apply(const char * s, const size_t len) { return CityHash_v1_0_2::CityHash64(s, len); }
|
|
static constexpr bool use_int_hash_for_pods = true;
|
|
};
|
|
|
|
// see farmhash.h for definition of NAMESPACE_FOR_HASH_FUNCTIONS
|
|
struct ImplFarmFingerprint64
|
|
{
|
|
static constexpr auto name = "farmFingerprint64";
|
|
using ReturnType = UInt64;
|
|
using uint128_t = NAMESPACE_FOR_HASH_FUNCTIONS::uint128_t;
|
|
|
|
static auto combineHashes(UInt64 h1, UInt64 h2) { return NAMESPACE_FOR_HASH_FUNCTIONS::Fingerprint(uint128_t(h1, h2)); }
|
|
static auto apply(const char * s, const size_t len) { return NAMESPACE_FOR_HASH_FUNCTIONS::Fingerprint64(s, len); }
|
|
static constexpr bool use_int_hash_for_pods = true;
|
|
};
|
|
|
|
// see farmhash.h for definition of NAMESPACE_FOR_HASH_FUNCTIONS
|
|
struct ImplFarmHash64
|
|
{
|
|
static constexpr auto name = "farmHash64";
|
|
using ReturnType = UInt64;
|
|
using uint128_t = NAMESPACE_FOR_HASH_FUNCTIONS::uint128_t;
|
|
|
|
static auto combineHashes(UInt64 h1, UInt64 h2) { return NAMESPACE_FOR_HASH_FUNCTIONS::Hash128to64(uint128_t(h1, h2)); }
|
|
static auto apply(const char * s, const size_t len) { return NAMESPACE_FOR_HASH_FUNCTIONS::Hash64(s, len); }
|
|
static constexpr bool use_int_hash_for_pods = true;
|
|
};
|
|
|
|
struct ImplMetroHash64
|
|
{
|
|
static constexpr auto name = "metroHash64";
|
|
using ReturnType = UInt64;
|
|
using uint128_t = CityHash_v1_0_2::uint128;
|
|
|
|
static auto combineHashes(UInt64 h1, UInt64 h2) { return CityHash_v1_0_2::Hash128to64(uint128_t(h1, h2)); }
|
|
static auto apply(const char * s, const size_t len)
|
|
{
|
|
union
|
|
{
|
|
UInt64 u64;
|
|
uint8_t u8[sizeof(u64)];
|
|
};
|
|
|
|
metrohash64_1(reinterpret_cast<const uint8_t *>(s), len, 0, u8);
|
|
|
|
return u64;
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = true;
|
|
};
|
|
|
|
struct ImplXxHash32
|
|
{
|
|
static constexpr auto name = "xxHash32";
|
|
using ReturnType = UInt32;
|
|
|
|
static auto apply(const char * s, const size_t len) { return XXH_INLINE_XXH32(s, len, 0); }
|
|
/**
|
|
* With current implementation with more than 1 arguments it will give the results
|
|
* non-reproducible from outside of CH.
|
|
*
|
|
* Proper way of combining several input is to use streaming mode of hash function
|
|
* https://github.com/Cyan4973/xxHash/issues/114#issuecomment-334908566
|
|
*
|
|
* In common case doable by init_state / update_state / finalize_state
|
|
*/
|
|
static auto combineHashes(UInt32 h1, UInt32 h2) { return IntHash32Impl::apply(h1) ^ h2; }
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct ImplXxHash64
|
|
{
|
|
static constexpr auto name = "xxHash64";
|
|
using ReturnType = UInt64;
|
|
using uint128_t = CityHash_v1_0_2::uint128;
|
|
|
|
static auto apply(const char * s, const size_t len) { return XXH_INLINE_XXH64(s, len, 0); }
|
|
|
|
/*
|
|
With current implementation with more than 1 arguments it will give the results
|
|
non-reproducible from outside of CH. (see comment on ImplXxHash32).
|
|
*/
|
|
static auto combineHashes(UInt64 h1, UInt64 h2) { return CityHash_v1_0_2::Hash128to64(uint128_t(h1, h2)); }
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct ImplXXH3
|
|
{
|
|
static constexpr auto name = "xxh3";
|
|
using ReturnType = UInt64;
|
|
using uint128_t = CityHash_v1_0_2::uint128;
|
|
|
|
static auto apply(const char * s, const size_t len) { return XXH_INLINE_XXH3_64bits(s, len); }
|
|
|
|
/*
|
|
With current implementation with more than 1 arguments it will give the results
|
|
non-reproducible from outside of CH. (see comment on ImplXxHash32).
|
|
*/
|
|
static auto combineHashes(UInt64 h1, UInt64 h2) { return CityHash_v1_0_2::Hash128to64(uint128_t(h1, h2)); }
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct ImplBLAKE3
|
|
{
|
|
static constexpr auto name = "BLAKE3";
|
|
enum { length = 32 };
|
|
|
|
#if !USE_BLAKE3
|
|
[[noreturn]] static void apply(const char * begin, const size_t size, unsigned char* out_char_data)
|
|
{
|
|
UNUSED(begin);
|
|
UNUSED(size);
|
|
UNUSED(out_char_data);
|
|
throw Exception(ErrorCodes::SUPPORT_IS_DISABLED, "BLAKE3 is not available. Rust code or BLAKE3 itself may be disabled.");
|
|
}
|
|
#else
|
|
static void apply(const char * begin, const size_t size, unsigned char* out_char_data)
|
|
{
|
|
#if defined(MEMORY_SANITIZER)
|
|
auto err_msg = blake3_apply_shim_msan_compat(begin, safe_cast<uint32_t>(size), out_char_data);
|
|
__msan_unpoison(out_char_data, length);
|
|
#else
|
|
auto err_msg = blake3_apply_shim(begin, safe_cast<uint32_t>(size), out_char_data);
|
|
#endif
|
|
if (err_msg != nullptr)
|
|
{
|
|
auto err_st = std::string(err_msg);
|
|
blake3_free_char_pointer(err_msg);
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Function returned error message: {}", err_st);
|
|
}
|
|
}
|
|
#endif
|
|
};
|
|
|
|
template <typename Impl>
|
|
class FunctionStringHashFixedString : public IFunction
|
|
{
|
|
public:
|
|
static constexpr auto name = Impl::name;
|
|
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionStringHashFixedString>(); }
|
|
|
|
String getName() const override
|
|
{
|
|
return name;
|
|
}
|
|
|
|
size_t getNumberOfArguments() const override { return 1; }
|
|
|
|
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
|
|
{
|
|
if (!isStringOrFixedString(arguments[0]) && !isIPv6(arguments[0]))
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}",
|
|
arguments[0]->getName(), getName());
|
|
|
|
return std::make_shared<DataTypeFixedString>(Impl::length);
|
|
}
|
|
|
|
bool useDefaultImplementationForConstants() const override { return true; }
|
|
|
|
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
|
|
|
|
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/) const override
|
|
{
|
|
if (const ColumnString * col_from = checkAndGetColumn<ColumnString>(arguments[0].column.get()))
|
|
{
|
|
auto col_to = ColumnFixedString::create(Impl::length);
|
|
|
|
const typename ColumnString::Chars & data = col_from->getChars();
|
|
const typename ColumnString::Offsets & offsets = col_from->getOffsets();
|
|
auto & chars_to = col_to->getChars();
|
|
const auto size = offsets.size();
|
|
chars_to.resize(size * Impl::length);
|
|
|
|
ColumnString::Offset current_offset = 0;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
Impl::apply(
|
|
reinterpret_cast<const char *>(&data[current_offset]),
|
|
offsets[i] - current_offset - 1,
|
|
reinterpret_cast<uint8_t *>(&chars_to[i * Impl::length]));
|
|
|
|
current_offset = offsets[i];
|
|
}
|
|
|
|
return col_to;
|
|
}
|
|
else if (
|
|
const ColumnFixedString * col_from_fix = checkAndGetColumn<ColumnFixedString>(arguments[0].column.get()))
|
|
{
|
|
auto col_to = ColumnFixedString::create(Impl::length);
|
|
const typename ColumnFixedString::Chars & data = col_from_fix->getChars();
|
|
const auto size = col_from_fix->size();
|
|
auto & chars_to = col_to->getChars();
|
|
const auto length = col_from_fix->getN();
|
|
chars_to.resize(size * Impl::length);
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
Impl::apply(
|
|
reinterpret_cast<const char *>(&data[i * length]), length, reinterpret_cast<uint8_t *>(&chars_to[i * Impl::length]));
|
|
}
|
|
return col_to;
|
|
}
|
|
else if (
|
|
const ColumnIPv6 * col_from_ip = checkAndGetColumn<ColumnIPv6>(arguments[0].column.get()))
|
|
{
|
|
auto col_to = ColumnFixedString::create(Impl::length);
|
|
const typename ColumnIPv6::Container & data = col_from_ip->getData();
|
|
const auto size = col_from_ip->size();
|
|
auto & chars_to = col_to->getChars();
|
|
const auto length = IPV6_BINARY_LENGTH;
|
|
chars_to.resize(size * Impl::length);
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
Impl::apply(
|
|
reinterpret_cast<const char *>(&data[i * length]), length, reinterpret_cast<uint8_t *>(&chars_to[i * Impl::length]));
|
|
}
|
|
return col_to;
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
|
|
arguments[0].column->getName(), getName());
|
|
}
|
|
};
|
|
|
|
|
|
DECLARE_MULTITARGET_CODE(
|
|
|
|
template <typename Impl, typename Name>
|
|
class FunctionIntHash : public IFunction
|
|
{
|
|
public:
|
|
static constexpr auto name = Name::name;
|
|
|
|
private:
|
|
using ToType = typename Impl::ReturnType;
|
|
|
|
template <typename FromType>
|
|
ColumnPtr executeType(const ColumnsWithTypeAndName & arguments) const
|
|
{
|
|
using ColVecType = ColumnVectorOrDecimal<FromType>;
|
|
|
|
if (const ColVecType * col_from = checkAndGetColumn<ColVecType>(arguments[0].column.get()))
|
|
{
|
|
auto col_to = ColumnVector<ToType>::create();
|
|
|
|
const typename ColVecType::Container & vec_from = col_from->getData();
|
|
typename ColumnVector<ToType>::Container & vec_to = col_to->getData();
|
|
|
|
size_t size = vec_from.size();
|
|
vec_to.resize(size);
|
|
for (size_t i = 0; i < size; ++i)
|
|
vec_to[i] = Impl::apply(vec_from[i]);
|
|
|
|
return col_to;
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
|
|
arguments[0].column->getName(), Name::name);
|
|
}
|
|
|
|
public:
|
|
String getName() const override
|
|
{
|
|
return name;
|
|
}
|
|
|
|
size_t getNumberOfArguments() const override { return 1; }
|
|
|
|
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
|
|
{
|
|
if (!arguments[0]->isValueRepresentedByNumber())
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}",
|
|
arguments[0]->getName(), getName());
|
|
|
|
return std::make_shared<DataTypeNumber<typename Impl::ReturnType>>();
|
|
}
|
|
|
|
bool useDefaultImplementationForConstants() const override { return true; }
|
|
|
|
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
|
|
|
|
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/) const override
|
|
{
|
|
const IDataType * from_type = arguments[0].type.get();
|
|
WhichDataType which(from_type);
|
|
|
|
if (which.isUInt8())
|
|
return executeType<UInt8>(arguments);
|
|
else if (which.isUInt16())
|
|
return executeType<UInt16>(arguments);
|
|
else if (which.isUInt32())
|
|
return executeType<UInt32>(arguments);
|
|
else if (which.isUInt64())
|
|
return executeType<UInt64>(arguments);
|
|
else if (which.isInt8())
|
|
return executeType<Int8>(arguments);
|
|
else if (which.isInt16())
|
|
return executeType<Int16>(arguments);
|
|
else if (which.isInt32())
|
|
return executeType<Int32>(arguments);
|
|
else if (which.isInt64())
|
|
return executeType<Int64>(arguments);
|
|
else if (which.isDate())
|
|
return executeType<UInt16>(arguments);
|
|
else if (which.isDate32())
|
|
return executeType<Int32>(arguments);
|
|
else if (which.isDateTime())
|
|
return executeType<UInt32>(arguments);
|
|
else if (which.isDecimal32())
|
|
return executeType<Decimal32>(arguments);
|
|
else if (which.isDecimal64())
|
|
return executeType<Decimal64>(arguments);
|
|
else if (which.isIPv4())
|
|
return executeType<IPv4>(arguments);
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}",
|
|
arguments[0].type->getName(), getName());
|
|
}
|
|
};
|
|
|
|
) // DECLARE_MULTITARGET_CODE
|
|
|
|
template <typename Impl, typename Name>
|
|
class FunctionIntHash : public TargetSpecific::Default::FunctionIntHash<Impl, Name>
|
|
{
|
|
public:
|
|
explicit FunctionIntHash(ContextPtr context) : selector(context)
|
|
{
|
|
selector.registerImplementation<TargetArch::Default,
|
|
TargetSpecific::Default::FunctionIntHash<Impl, Name>>();
|
|
|
|
#if USE_MULTITARGET_CODE
|
|
selector.registerImplementation<TargetArch::AVX2,
|
|
TargetSpecific::AVX2::FunctionIntHash<Impl, Name>>();
|
|
selector.registerImplementation<TargetArch::AVX512F,
|
|
TargetSpecific::AVX512F::FunctionIntHash<Impl, Name>>();
|
|
#endif
|
|
}
|
|
|
|
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
|
|
{
|
|
return selector.selectAndExecute(arguments, result_type, input_rows_count);
|
|
}
|
|
|
|
static FunctionPtr create(ContextPtr context)
|
|
{
|
|
return std::make_shared<FunctionIntHash>(context);
|
|
}
|
|
|
|
private:
|
|
ImplementationSelector<IFunction> selector;
|
|
};
|
|
|
|
DECLARE_MULTITARGET_CODE(
|
|
|
|
template <typename Impl, bool Keyed, typename KeyType>
|
|
class FunctionAnyHash : public IFunction
|
|
{
|
|
public:
|
|
static constexpr auto name = Impl::name;
|
|
|
|
private:
|
|
using ToType = typename Impl::ReturnType;
|
|
|
|
template <typename FromType, bool first>
|
|
void executeIntType(const KeyType & key, const IColumn * column, typename ColumnVector<ToType>::Container & vec_to) const
|
|
{
|
|
using ColVecType = ColumnVectorOrDecimal<FromType>;
|
|
|
|
if (const ColVecType * col_from = checkAndGetColumn<ColVecType>(column))
|
|
{
|
|
const typename ColVecType::Container & vec_from = col_from->getData();
|
|
size_t size = vec_from.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
ToType h;
|
|
|
|
if constexpr (Impl::use_int_hash_for_pods)
|
|
{
|
|
if constexpr (std::is_same_v<ToType, UInt64>)
|
|
h = IntHash64Impl::apply(bit_cast<UInt64>(vec_from[i]));
|
|
else
|
|
h = IntHash32Impl::apply(bit_cast<UInt32>(vec_from[i]));
|
|
}
|
|
else
|
|
{
|
|
if constexpr (std::is_same_v<Impl, JavaHashImpl>)
|
|
h = JavaHashImpl::apply(vec_from[i]);
|
|
else
|
|
{
|
|
FromType v = vec_from[i];
|
|
if constexpr (std::endian::native == std::endian::big)
|
|
{
|
|
FromType tmp_v;
|
|
reverseMemcpy(&tmp_v, &v, sizeof(v));
|
|
v = tmp_v;
|
|
}
|
|
h = apply(key, reinterpret_cast<const char *>(&v), sizeof(v));
|
|
}
|
|
}
|
|
|
|
if constexpr (first)
|
|
vec_to[i] = h;
|
|
else
|
|
vec_to[i] = combineHashes(key, vec_to[i], h);
|
|
}
|
|
}
|
|
else if (auto col_from_const = checkAndGetColumnConst<ColVecType>(column))
|
|
{
|
|
auto value = col_from_const->template getValue<FromType>();
|
|
ToType hash;
|
|
if constexpr (std::is_same_v<ToType, UInt64>)
|
|
hash = IntHash64Impl::apply(bit_cast<UInt64>(value));
|
|
else
|
|
hash = IntHash32Impl::apply(bit_cast<UInt32>(value));
|
|
|
|
size_t size = vec_to.size();
|
|
if constexpr (first)
|
|
vec_to.assign(size, hash);
|
|
else
|
|
{
|
|
for (size_t i = 0; i < size; ++i)
|
|
vec_to[i] = combineHashes(key, vec_to[i], hash);
|
|
}
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of argument of function {}",
|
|
column->getName(), getName());
|
|
}
|
|
|
|
template <typename FromType, bool first>
|
|
void executeBigIntType(const KeyType & key, const IColumn * column, typename ColumnVector<ToType>::Container & vec_to) const
|
|
{
|
|
using ColVecType = ColumnVectorOrDecimal<FromType>;
|
|
|
|
if (const ColVecType * col_from = checkAndGetColumn<ColVecType>(column))
|
|
{
|
|
const typename ColVecType::Container & vec_from = col_from->getData();
|
|
size_t size = vec_from.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
ToType h;
|
|
if constexpr (std::endian::native == std::endian::little)
|
|
{
|
|
h = apply(key, reinterpret_cast<const char *>(&vec_from[i]), sizeof(vec_from[i]));
|
|
}
|
|
else
|
|
{
|
|
char tmp_buffer[sizeof(vec_from[i])];
|
|
reverseMemcpy(tmp_buffer, &vec_from[i], sizeof(vec_from[i]));
|
|
h = apply(key, reinterpret_cast<const char *>(tmp_buffer), sizeof(vec_from[i]));
|
|
}
|
|
if constexpr (first)
|
|
vec_to[i] = h;
|
|
else
|
|
vec_to[i] = combineHashes(key, vec_to[i], h);
|
|
}
|
|
}
|
|
else if (auto col_from_const = checkAndGetColumnConst<ColVecType>(column))
|
|
{
|
|
auto value = col_from_const->template getValue<FromType>();
|
|
|
|
ToType h;
|
|
if constexpr (std::endian::native == std::endian::little)
|
|
{
|
|
h = apply(key, reinterpret_cast<const char *>(&value), sizeof(value));
|
|
}
|
|
else
|
|
{
|
|
char tmp_buffer[sizeof(value)];
|
|
reverseMemcpy(tmp_buffer, &value, sizeof(value));
|
|
h = apply(key, reinterpret_cast<const char *>(tmp_buffer), sizeof(value));
|
|
}
|
|
size_t size = vec_to.size();
|
|
if constexpr (first)
|
|
vec_to.assign(size, h);
|
|
else
|
|
{
|
|
for (size_t i = 0; i < size; ++i)
|
|
vec_to[i] = combineHashes(key, vec_to[i], h);
|
|
}
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of argument of function {}",
|
|
column->getName(), getName());
|
|
}
|
|
|
|
template <bool first>
|
|
void executeGeneric(const KeyType & key, const IColumn * column, typename ColumnVector<ToType>::Container & vec_to) const
|
|
{
|
|
for (size_t i = 0, size = column->size(); i < size; ++i)
|
|
{
|
|
StringRef bytes = column->getDataAt(i);
|
|
const ToType h = apply(key, bytes.data, bytes.size);
|
|
if constexpr (first)
|
|
vec_to[i] = h;
|
|
else
|
|
vec_to[i] = combineHashes(key, vec_to[i], h);
|
|
}
|
|
}
|
|
|
|
template <bool first>
|
|
void executeString(const KeyType & key, const IColumn * column, typename ColumnVector<ToType>::Container & vec_to) const
|
|
{
|
|
if (const ColumnString * col_from = checkAndGetColumn<ColumnString>(column))
|
|
{
|
|
const typename ColumnString::Chars & data = col_from->getChars();
|
|
const typename ColumnString::Offsets & offsets = col_from->getOffsets();
|
|
size_t size = offsets.size();
|
|
|
|
ColumnString::Offset current_offset = 0;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
const ToType h = apply(key,
|
|
reinterpret_cast<const char *>(&data[current_offset]),
|
|
offsets[i] - current_offset - 1);
|
|
|
|
if constexpr (first)
|
|
vec_to[i] = h;
|
|
else
|
|
vec_to[i] = combineHashes(key, vec_to[i], h);
|
|
|
|
current_offset = offsets[i];
|
|
}
|
|
}
|
|
else if (const ColumnFixedString * col_from_fixed = checkAndGetColumn<ColumnFixedString>(column))
|
|
{
|
|
const typename ColumnString::Chars & data = col_from_fixed->getChars();
|
|
size_t n = col_from_fixed->getN();
|
|
size_t size = data.size() / n;
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
const ToType h = apply(key, reinterpret_cast<const char *>(&data[i * n]), n);
|
|
if constexpr (first)
|
|
vec_to[i] = h;
|
|
else
|
|
vec_to[i] = combineHashes(key, vec_to[i], h);
|
|
}
|
|
}
|
|
else if (const ColumnConst * col_from_const = checkAndGetColumnConstStringOrFixedString(column))
|
|
{
|
|
String value = col_from_const->getValue<String>();
|
|
const ToType hash = apply(key, value.data(), value.size());
|
|
const size_t size = vec_to.size();
|
|
|
|
if constexpr (first)
|
|
{
|
|
vec_to.assign(size, hash);
|
|
}
|
|
else
|
|
{
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
vec_to[i] = combineHashes(key, vec_to[i], hash);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
|
|
column->getName(), getName());
|
|
}
|
|
|
|
template <bool first>
|
|
void executeArray(const KeyType & key, const IDataType * type, const IColumn * column, typename ColumnVector<ToType>::Container & vec_to) const
|
|
{
|
|
const IDataType * nested_type = typeid_cast<const DataTypeArray *>(type)->getNestedType().get();
|
|
|
|
if (const ColumnArray * col_from = checkAndGetColumn<ColumnArray>(column))
|
|
{
|
|
const IColumn * nested_column = &col_from->getData();
|
|
const ColumnArray::Offsets & offsets = col_from->getOffsets();
|
|
const size_t nested_size = nested_column->size();
|
|
|
|
typename ColumnVector<ToType>::Container vec_temp(nested_size);
|
|
bool nested_is_first = true;
|
|
executeForArgument(key, nested_type, nested_column, vec_temp, nested_is_first);
|
|
|
|
const size_t size = offsets.size();
|
|
|
|
ColumnArray::Offset current_offset = 0;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
ColumnArray::Offset next_offset = offsets[i];
|
|
|
|
ToType h;
|
|
if constexpr (std::is_same_v<ToType, UInt64>)
|
|
h = IntHash64Impl::apply(next_offset - current_offset);
|
|
else
|
|
h = IntHash32Impl::apply(next_offset - current_offset);
|
|
|
|
if constexpr (first)
|
|
vec_to[i] = h;
|
|
else
|
|
vec_to[i] = combineHashes(key, vec_to[i], h);
|
|
|
|
for (size_t j = current_offset; j < next_offset; ++j)
|
|
vec_to[i] = combineHashes(key, vec_to[i], vec_temp[j]);
|
|
|
|
current_offset = offsets[i];
|
|
}
|
|
}
|
|
else if (const ColumnConst * col_from_const = checkAndGetColumnConst<ColumnArray>(column))
|
|
{
|
|
/// NOTE: here, of course, you can do without the materialization of the column.
|
|
ColumnPtr full_column = col_from_const->convertToFullColumn();
|
|
executeArray<first>(key, type, full_column.get(), vec_to);
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
|
|
column->getName(), getName());
|
|
}
|
|
|
|
template <bool first>
|
|
void executeAny(const KeyType & key, const IDataType * from_type, const IColumn * icolumn, typename ColumnVector<ToType>::Container & vec_to) const
|
|
{
|
|
WhichDataType which(from_type);
|
|
|
|
if (icolumn->size() != vec_to.size())
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "Argument column '{}' size {} doesn't match result column size {} of function {}",
|
|
icolumn->getName(), icolumn->size(), vec_to.size(), getName());
|
|
|
|
if (which.isUInt8()) executeIntType<UInt8, first>(key, icolumn, vec_to);
|
|
else if (which.isUInt16()) executeIntType<UInt16, first>(key, icolumn, vec_to);
|
|
else if (which.isUInt32()) executeIntType<UInt32, first>(key, icolumn, vec_to);
|
|
else if (which.isUInt64()) executeIntType<UInt64, first>(key, icolumn, vec_to);
|
|
else if (which.isUInt128()) executeBigIntType<UInt128, first>(key, icolumn, vec_to);
|
|
else if (which.isUInt256()) executeBigIntType<UInt256, first>(key, icolumn, vec_to);
|
|
else if (which.isInt8()) executeIntType<Int8, first>(key, icolumn, vec_to);
|
|
else if (which.isInt16()) executeIntType<Int16, first>(key, icolumn, vec_to);
|
|
else if (which.isInt32()) executeIntType<Int32, first>(key, icolumn, vec_to);
|
|
else if (which.isInt64()) executeIntType<Int64, first>(key, icolumn, vec_to);
|
|
else if (which.isInt128()) executeBigIntType<Int128, first>(key, icolumn, vec_to);
|
|
else if (which.isInt256()) executeBigIntType<Int256, first>(key, icolumn, vec_to);
|
|
else if (which.isUUID()) executeBigIntType<UUID, first>(key, icolumn, vec_to);
|
|
else if (which.isIPv4()) executeIntType<IPv4, first>(key, icolumn, vec_to);
|
|
else if (which.isIPv6()) executeBigIntType<IPv6, first>(key, icolumn, vec_to);
|
|
else if (which.isEnum8()) executeIntType<Int8, first>(key, icolumn, vec_to);
|
|
else if (which.isEnum16()) executeIntType<Int16, first>(key, icolumn, vec_to);
|
|
else if (which.isDate()) executeIntType<UInt16, first>(key, icolumn, vec_to);
|
|
else if (which.isDate32()) executeIntType<Int32, first>(key, icolumn, vec_to);
|
|
else if (which.isDateTime()) executeIntType<UInt32, first>(key, icolumn, vec_to);
|
|
/// TODO: executeIntType() for Decimal32/64 leads to incompatible result
|
|
else if (which.isDecimal32()) executeBigIntType<Decimal32, first>(key, icolumn, vec_to);
|
|
else if (which.isDecimal64()) executeBigIntType<Decimal64, first>(key, icolumn, vec_to);
|
|
else if (which.isDecimal128()) executeBigIntType<Decimal128, first>(key, icolumn, vec_to);
|
|
else if (which.isDecimal256()) executeBigIntType<Decimal256, first>(key, icolumn, vec_to);
|
|
else if (which.isFloat32()) executeIntType<Float32, first>(key, icolumn, vec_to);
|
|
else if (which.isFloat64()) executeIntType<Float64, first>(key, icolumn, vec_to);
|
|
else if (which.isString()) executeString<first>(key, icolumn, vec_to);
|
|
else if (which.isFixedString()) executeString<first>(key, icolumn, vec_to);
|
|
else if (which.isArray()) executeArray<first>(key, from_type, icolumn, vec_to);
|
|
else executeGeneric<first>(key, icolumn, vec_to);
|
|
}
|
|
|
|
void executeForArgument(const KeyType & key, const IDataType * type, const IColumn * column, typename ColumnVector<ToType>::Container & vec_to, bool & is_first) const
|
|
{
|
|
/// Flattening of tuples.
|
|
if (const ColumnTuple * tuple = typeid_cast<const ColumnTuple *>(column))
|
|
{
|
|
const auto & tuple_columns = tuple->getColumns();
|
|
const DataTypes & tuple_types = typeid_cast<const DataTypeTuple &>(*type).getElements();
|
|
size_t tuple_size = tuple_columns.size();
|
|
for (size_t i = 0; i < tuple_size; ++i)
|
|
executeForArgument(key, tuple_types[i].get(), tuple_columns[i].get(), vec_to, is_first);
|
|
}
|
|
else if (const ColumnTuple * tuple_const = checkAndGetColumnConstData<ColumnTuple>(column))
|
|
{
|
|
const auto & tuple_columns = tuple_const->getColumns();
|
|
const DataTypes & tuple_types = typeid_cast<const DataTypeTuple &>(*type).getElements();
|
|
size_t tuple_size = tuple_columns.size();
|
|
for (size_t i = 0; i < tuple_size; ++i)
|
|
{
|
|
auto tmp = ColumnConst::create(tuple_columns[i], column->size());
|
|
executeForArgument(key, tuple_types[i].get(), tmp.get(), vec_to, is_first);
|
|
}
|
|
}
|
|
else if (const auto * map = checkAndGetColumn<ColumnMap>(column))
|
|
{
|
|
const auto & type_map = assert_cast<const DataTypeMap &>(*type);
|
|
executeForArgument(key, type_map.getNestedType().get(), map->getNestedColumnPtr().get(), vec_to, is_first);
|
|
}
|
|
else if (const auto * const_map = checkAndGetColumnConst<ColumnMap>(column))
|
|
{
|
|
executeForArgument(key, type, const_map->convertToFullColumnIfConst().get(), vec_to, is_first);
|
|
}
|
|
else
|
|
{
|
|
if (is_first)
|
|
executeAny<true>(key, type, column, vec_to);
|
|
else
|
|
executeAny<false>(key, type, column, vec_to);
|
|
}
|
|
|
|
is_first = false;
|
|
}
|
|
|
|
public:
|
|
String getName() const override
|
|
{
|
|
return name;
|
|
}
|
|
|
|
bool isVariadic() const override { return true; }
|
|
size_t getNumberOfArguments() const override { return 0; }
|
|
bool useDefaultImplementationForConstants() const override { return true; }
|
|
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
|
|
|
|
DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const override
|
|
{
|
|
if constexpr (std::is_same_v<ToType, UInt128>) /// backward-compatible
|
|
{
|
|
return std::make_shared<DataTypeFixedString>(sizeof(UInt128));
|
|
}
|
|
else
|
|
return std::make_shared<DataTypeNumber<ToType>>();
|
|
}
|
|
|
|
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override
|
|
{
|
|
auto col_to = ColumnVector<ToType>::create(input_rows_count);
|
|
|
|
typename ColumnVector<ToType>::Container & vec_to = col_to->getData();
|
|
|
|
/// If using a "keyed" algorithm, the first argument is the key and
|
|
/// the data starts from the second argument.
|
|
/// Otherwise there is no key and all arguments are interpreted as data.
|
|
constexpr size_t first_data_argument = Keyed;
|
|
|
|
if (arguments.size() <= first_data_argument)
|
|
{
|
|
/// Return a fixed random-looking magic number when input is empty
|
|
vec_to.assign(input_rows_count, static_cast<ToType>(0xe28dbde7fe22e41c));
|
|
}
|
|
|
|
KeyType key{};
|
|
if constexpr (Keyed)
|
|
if (!arguments.empty())
|
|
key = Impl::parseKey(arguments[0]);
|
|
|
|
/// The function supports arbitrary number of arguments of arbitrary types.
|
|
bool is_first_argument = true;
|
|
for (size_t i = first_data_argument; i < arguments.size(); ++i)
|
|
{
|
|
const auto & col = arguments[i];
|
|
executeForArgument(key, col.type.get(), col.column.get(), vec_to, is_first_argument);
|
|
}
|
|
|
|
if constexpr (std::is_same_v<ToType, UInt128>) /// backward-compatible
|
|
{
|
|
auto col_to_fixed_string = ColumnFixedString::create(sizeof(UInt128));
|
|
col_to_fixed_string->getChars() = std::move(*reinterpret_cast<ColumnFixedString::Chars *>(&col_to->getData()));
|
|
return col_to_fixed_string;
|
|
}
|
|
|
|
return col_to;
|
|
}
|
|
|
|
static ToType apply(const KeyType & key, const char * begin, size_t size)
|
|
{
|
|
if constexpr (Keyed)
|
|
return Impl::applyKeyed(key, begin, size);
|
|
else
|
|
return Impl::apply(begin, size);
|
|
}
|
|
|
|
static ToType combineHashes(const KeyType & key, ToType h1, ToType h2)
|
|
{
|
|
if constexpr (Keyed)
|
|
return Impl::combineHashesKeyed(key, h1, h2);
|
|
else
|
|
return Impl::combineHashes(h1, h2);
|
|
}
|
|
};
|
|
|
|
) // DECLARE_MULTITARGET_CODE
|
|
|
|
template <typename Impl, bool Keyed = false, typename KeyType = char>
|
|
class FunctionAnyHash : public TargetSpecific::Default::FunctionAnyHash<Impl, Keyed, KeyType>
|
|
{
|
|
public:
|
|
explicit FunctionAnyHash(ContextPtr context) : selector(context)
|
|
{
|
|
selector.registerImplementation<TargetArch::Default, TargetSpecific::Default::FunctionAnyHash<Impl, Keyed, KeyType>>();
|
|
|
|
#if USE_MULTITARGET_CODE
|
|
selector.registerImplementation<TargetArch::AVX2, TargetSpecific::AVX2::FunctionAnyHash<Impl, Keyed, KeyType>>();
|
|
selector.registerImplementation<TargetArch::AVX512F, TargetSpecific::AVX512F::FunctionAnyHash<Impl, Keyed, KeyType>>();
|
|
#endif
|
|
}
|
|
|
|
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const override
|
|
{
|
|
return selector.selectAndExecute(arguments, result_type, input_rows_count);
|
|
}
|
|
|
|
static FunctionPtr create(ContextPtr context)
|
|
{
|
|
return std::make_shared<FunctionAnyHash>(context);
|
|
}
|
|
|
|
private:
|
|
ImplementationSelector<IFunction> selector;
|
|
};
|
|
|
|
|
|
struct URLHashImpl
|
|
{
|
|
static UInt64 apply(const char * data, const size_t size)
|
|
{
|
|
/// do not take last slash, '?' or '#' character into account
|
|
if (size > 0 && (data[size - 1] == '/' || data[size - 1] == '?' || data[size - 1] == '#'))
|
|
return CityHash_v1_0_2::CityHash64(data, size - 1);
|
|
|
|
return CityHash_v1_0_2::CityHash64(data, size);
|
|
}
|
|
};
|
|
|
|
|
|
struct URLHierarchyHashImpl
|
|
{
|
|
static size_t findLevelLength(const UInt64 level, const char * begin, const char * end)
|
|
{
|
|
const auto * pos = begin;
|
|
|
|
/// Let's parse everything that goes before the path
|
|
|
|
/// Suppose that the protocol has already been changed to lowercase.
|
|
while (pos < end && ((*pos > 'a' && *pos < 'z') || (*pos > '0' && *pos < '9')))
|
|
++pos;
|
|
|
|
/** We will calculate the hierarchy only for URLs in which there is a protocol, and after it there are two slashes.
|
|
* (http, file - fit, mailto, magnet - do not fit), and after two slashes there is still something
|
|
* For the rest, simply return the full URL as the only element of the hierarchy.
|
|
*/
|
|
if (pos == begin || pos == end || !(*pos++ == ':' && pos < end && *pos++ == '/' && pos < end && *pos++ == '/' && pos < end))
|
|
{
|
|
pos = end;
|
|
return 0 == level ? pos - begin : 0;
|
|
}
|
|
|
|
/// The domain for simplicity is everything that after the protocol and the two slashes, until the next slash or before `?` or `#`
|
|
while (pos < end && !(*pos == '/' || *pos == '?' || *pos == '#'))
|
|
++pos;
|
|
|
|
if (pos != end)
|
|
++pos;
|
|
|
|
if (0 == level)
|
|
return pos - begin;
|
|
|
|
UInt64 current_level = 0;
|
|
|
|
while (current_level != level && pos < end)
|
|
{
|
|
/// We go to the next `/` or `?` or `#`, skipping all at the beginning.
|
|
while (pos < end && (*pos == '/' || *pos == '?' || *pos == '#'))
|
|
++pos;
|
|
if (pos == end)
|
|
break;
|
|
while (pos < end && !(*pos == '/' || *pos == '?' || *pos == '#'))
|
|
++pos;
|
|
|
|
if (pos != end)
|
|
++pos;
|
|
|
|
++current_level;
|
|
}
|
|
|
|
return current_level == level ? pos - begin : 0;
|
|
}
|
|
|
|
static UInt64 apply(const UInt64 level, const char * data, const size_t size)
|
|
{
|
|
return URLHashImpl::apply(data, findLevelLength(level, data, data + size));
|
|
}
|
|
};
|
|
|
|
|
|
class FunctionURLHash : public IFunction
|
|
{
|
|
public:
|
|
static constexpr auto name = "URLHash";
|
|
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionURLHash>(); }
|
|
|
|
String getName() const override { return name; }
|
|
|
|
bool isVariadic() const override { return true; }
|
|
size_t getNumberOfArguments() const override { return 0; }
|
|
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; }
|
|
|
|
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
|
|
{
|
|
const auto arg_count = arguments.size();
|
|
if (arg_count != 1 && arg_count != 2)
|
|
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH, "Number of arguments for function {} doesn't match: "
|
|
"passed {}, should be 1 or 2.", getName(), arg_count);
|
|
|
|
const auto * first_arg = arguments.front().get();
|
|
if (!WhichDataType(first_arg).isString())
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}", first_arg->getName(), getName());
|
|
|
|
if (arg_count == 2)
|
|
{
|
|
const auto & second_arg = arguments.back();
|
|
if (!isInteger(second_arg))
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}", second_arg->getName(), getName());
|
|
}
|
|
|
|
return std::make_shared<DataTypeUInt64>();
|
|
}
|
|
|
|
bool useDefaultImplementationForConstants() const override { return true; }
|
|
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {1}; }
|
|
|
|
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t /*input_rows_count*/) const override
|
|
{
|
|
const auto arg_count = arguments.size();
|
|
|
|
if (arg_count == 1)
|
|
return executeSingleArg(arguments);
|
|
else if (arg_count == 2)
|
|
return executeTwoArgs(arguments);
|
|
else
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "got into IFunction::execute with unexpected number of arguments");
|
|
}
|
|
|
|
private:
|
|
ColumnPtr executeSingleArg(const ColumnsWithTypeAndName & arguments) const
|
|
{
|
|
const auto * col_untyped = arguments.front().column.get();
|
|
|
|
if (const auto * col_from = checkAndGetColumn<ColumnString>(col_untyped))
|
|
{
|
|
const auto size = col_from->size();
|
|
auto col_to = ColumnUInt64::create(size);
|
|
|
|
const auto & chars = col_from->getChars();
|
|
const auto & offsets = col_from->getOffsets();
|
|
auto & out = col_to->getData();
|
|
|
|
ColumnString::Offset current_offset = 0;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
out[i] = URLHashImpl::apply(
|
|
reinterpret_cast<const char *>(&chars[current_offset]),
|
|
offsets[i] - current_offset - 1);
|
|
|
|
current_offset = offsets[i];
|
|
}
|
|
|
|
return col_to;
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of argument of function {}",
|
|
arguments[0].column->getName(), getName());
|
|
}
|
|
|
|
ColumnPtr executeTwoArgs(const ColumnsWithTypeAndName & arguments) const
|
|
{
|
|
const auto * level_col = arguments.back().column.get();
|
|
if (!isColumnConst(*level_col))
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Second argument of function {} must be an integral constant", getName());
|
|
|
|
const auto level = level_col->get64(0);
|
|
|
|
const auto * col_untyped = arguments.front().column.get();
|
|
if (const auto * col_from = checkAndGetColumn<ColumnString>(col_untyped))
|
|
{
|
|
const auto size = col_from->size();
|
|
auto col_to = ColumnUInt64::create(size);
|
|
|
|
const auto & chars = col_from->getChars();
|
|
const auto & offsets = col_from->getOffsets();
|
|
auto & out = col_to->getData();
|
|
|
|
ColumnString::Offset current_offset = 0;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
out[i] = URLHierarchyHashImpl::apply(
|
|
level,
|
|
reinterpret_cast<const char *>(&chars[current_offset]),
|
|
offsets[i] - current_offset - 1);
|
|
|
|
current_offset = offsets[i];
|
|
}
|
|
|
|
return col_to;
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of argument of function {}",
|
|
arguments[0].column->getName(), getName());
|
|
}
|
|
};
|
|
|
|
struct ImplWyHash64
|
|
{
|
|
static constexpr auto name = "wyHash64";
|
|
using ReturnType = UInt64;
|
|
|
|
static UInt64 apply(const char * s, const size_t len)
|
|
{
|
|
return wyhash(s, len, 0, _wyp);
|
|
}
|
|
static UInt64 combineHashes(UInt64 h1, UInt64 h2)
|
|
{
|
|
union
|
|
{
|
|
UInt64 u64[2];
|
|
char chars[16];
|
|
};
|
|
u64[0] = h1;
|
|
u64[1] = h2;
|
|
return apply(chars, 16);
|
|
}
|
|
|
|
static constexpr bool use_int_hash_for_pods = false;
|
|
};
|
|
|
|
struct NameIntHash32 { static constexpr auto name = "intHash32"; };
|
|
struct NameIntHash64 { static constexpr auto name = "intHash64"; };
|
|
|
|
using FunctionSipHash64 = FunctionAnyHash<SipHash64Impl>;
|
|
using FunctionSipHash64Keyed = FunctionAnyHash<SipHash64KeyedImpl, true, SipHash64KeyedImpl::Key>;
|
|
using FunctionIntHash32 = FunctionIntHash<IntHash32Impl, NameIntHash32>;
|
|
using FunctionIntHash64 = FunctionIntHash<IntHash64Impl, NameIntHash64>;
|
|
#if USE_SSL
|
|
using FunctionMD4 = FunctionStringHashFixedString<MD4Impl>;
|
|
using FunctionHalfMD5 = FunctionAnyHash<HalfMD5Impl>;
|
|
using FunctionMD5 = FunctionStringHashFixedString<MD5Impl>;
|
|
using FunctionSHA1 = FunctionStringHashFixedString<SHA1Impl>;
|
|
using FunctionSHA224 = FunctionStringHashFixedString<SHA224Impl>;
|
|
using FunctionSHA256 = FunctionStringHashFixedString<SHA256Impl>;
|
|
using FunctionSHA384 = FunctionStringHashFixedString<SHA384Impl>;
|
|
using FunctionSHA512 = FunctionStringHashFixedString<SHA512Impl>;
|
|
#endif
|
|
using FunctionSipHash128 = FunctionAnyHash<SipHash128Impl>;
|
|
using FunctionSipHash128Keyed = FunctionAnyHash<SipHash128KeyedImpl, true, SipHash128KeyedImpl::Key>;
|
|
using FunctionSipHash128Reference = FunctionAnyHash<SipHash128ReferenceImpl>;
|
|
using FunctionSipHash128ReferenceKeyed = FunctionAnyHash<SipHash128ReferenceKeyedImpl, true, SipHash128ReferenceKeyedImpl::Key>;
|
|
using FunctionCityHash64 = FunctionAnyHash<ImplCityHash64>;
|
|
using FunctionFarmFingerprint64 = FunctionAnyHash<ImplFarmFingerprint64>;
|
|
using FunctionFarmHash64 = FunctionAnyHash<ImplFarmHash64>;
|
|
using FunctionMetroHash64 = FunctionAnyHash<ImplMetroHash64>;
|
|
|
|
using FunctionMurmurHash2_32 = FunctionAnyHash<MurmurHash2Impl32>;
|
|
using FunctionMurmurHash2_64 = FunctionAnyHash<MurmurHash2Impl64>;
|
|
using FunctionGccMurmurHash = FunctionAnyHash<GccMurmurHashImpl>;
|
|
using FunctionKafkaMurmurHash = FunctionAnyHash<KafkaMurmurHashImpl>;
|
|
using FunctionMurmurHash3_32 = FunctionAnyHash<MurmurHash3Impl32>;
|
|
using FunctionMurmurHash3_64 = FunctionAnyHash<MurmurHash3Impl64>;
|
|
using FunctionMurmurHash3_128 = FunctionAnyHash<MurmurHash3Impl128>;
|
|
|
|
using FunctionJavaHash = FunctionAnyHash<JavaHashImpl>;
|
|
using FunctionJavaHashUTF16LE = FunctionAnyHash<JavaHashUTF16LEImpl>;
|
|
using FunctionHiveHash = FunctionAnyHash<HiveHashImpl>;
|
|
|
|
using FunctionXxHash32 = FunctionAnyHash<ImplXxHash32>;
|
|
using FunctionXxHash64 = FunctionAnyHash<ImplXxHash64>;
|
|
using FunctionXXH3 = FunctionAnyHash<ImplXXH3>;
|
|
|
|
using FunctionWyHash64 = FunctionAnyHash<ImplWyHash64>;
|
|
using FunctionBLAKE3 = FunctionStringHashFixedString<ImplBLAKE3>;
|
|
}
|
|
|
|
#ifdef __clang__
|
|
# pragma clang diagnostic pop
|
|
#endif
|