mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-11 08:52:06 +00:00
377 lines
14 KiB
C++
377 lines
14 KiB
C++
// Copyright 2007 The RE2 Authors. All Rights Reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Compiled representation of regular expressions.
|
|
// See regexp.h for the Regexp class, which represents a regular
|
|
// expression symbolically.
|
|
|
|
#ifndef RE2_PROG_H__
|
|
#define RE2_PROG_H__
|
|
|
|
#include "util/util.h"
|
|
#include "re2/re2.h"
|
|
|
|
namespace re2 {
|
|
|
|
// Simple fixed-size bitmap.
|
|
template<int Bits>
|
|
class Bitmap {
|
|
public:
|
|
Bitmap() { Reset(); }
|
|
int Size() { return Bits; }
|
|
|
|
void Reset() {
|
|
for (int i = 0; i < Words; i++)
|
|
w_[i] = 0;
|
|
}
|
|
bool Get(int k) const {
|
|
return w_[k >> WordLog] & (1<<(k & 31));
|
|
}
|
|
void Set(int k) {
|
|
w_[k >> WordLog] |= 1<<(k & 31);
|
|
}
|
|
void Clear(int k) {
|
|
w_[k >> WordLog] &= ~(1<<(k & 31));
|
|
}
|
|
uint32 Word(int i) const {
|
|
return w_[i];
|
|
}
|
|
|
|
private:
|
|
static const int WordLog = 5;
|
|
static const int Words = (Bits+31)/32;
|
|
uint32 w_[Words];
|
|
DISALLOW_EVIL_CONSTRUCTORS(Bitmap);
|
|
};
|
|
|
|
|
|
// Opcodes for Inst
|
|
enum InstOp {
|
|
kInstAlt = 0, // choose between out_ and out1_
|
|
kInstAltMatch, // Alt: out_ is [00-FF] and back, out1_ is match; or vice versa.
|
|
kInstByteRange, // next (possible case-folded) byte must be in [lo_, hi_]
|
|
kInstCapture, // capturing parenthesis number cap_
|
|
kInstEmptyWidth, // empty-width special (^ $ ...); bit(s) set in empty_
|
|
kInstMatch, // found a match!
|
|
kInstNop, // no-op; occasionally unavoidable
|
|
kInstFail, // never match; occasionally unavoidable
|
|
};
|
|
|
|
// Bit flags for empty-width specials
|
|
enum EmptyOp {
|
|
kEmptyBeginLine = 1<<0, // ^ - beginning of line
|
|
kEmptyEndLine = 1<<1, // $ - end of line
|
|
kEmptyBeginText = 1<<2, // \A - beginning of text
|
|
kEmptyEndText = 1<<3, // \z - end of text
|
|
kEmptyWordBoundary = 1<<4, // \b - word boundary
|
|
kEmptyNonWordBoundary = 1<<5, // \B - not \b
|
|
kEmptyAllFlags = (1<<6)-1,
|
|
};
|
|
|
|
class Regexp;
|
|
|
|
class DFA;
|
|
struct OneState;
|
|
|
|
// Compiled form of regexp program.
|
|
class Prog {
|
|
public:
|
|
Prog();
|
|
~Prog();
|
|
|
|
// Single instruction in regexp program.
|
|
class Inst {
|
|
public:
|
|
Inst() : out_opcode_(0), out1_(0) { }
|
|
|
|
// Constructors per opcode
|
|
void InitAlt(uint32 out, uint32 out1);
|
|
void InitByteRange(int lo, int hi, int foldcase, uint32 out);
|
|
void InitCapture(int cap, uint32 out);
|
|
void InitEmptyWidth(EmptyOp empty, uint32 out);
|
|
void InitMatch(int id);
|
|
void InitNop(uint32 out);
|
|
void InitFail();
|
|
|
|
// Getters
|
|
int id(Prog* p) { return this - p->inst_; }
|
|
InstOp opcode() { return static_cast<InstOp>(out_opcode_&7); }
|
|
int out() { return out_opcode_>>3; }
|
|
int out1() { DCHECK(opcode() == kInstAlt || opcode() == kInstAltMatch); return out1_; }
|
|
int cap() { DCHECK_EQ(opcode(), kInstCapture); return cap_; }
|
|
int lo() { DCHECK_EQ(opcode(), kInstByteRange); return lo_; }
|
|
int hi() { DCHECK_EQ(opcode(), kInstByteRange); return hi_; }
|
|
int foldcase() { DCHECK_EQ(opcode(), kInstByteRange); return foldcase_; }
|
|
int match_id() { DCHECK_EQ(opcode(), kInstMatch); return match_id_; }
|
|
EmptyOp empty() { DCHECK_EQ(opcode(), kInstEmptyWidth); return empty_; }
|
|
bool greedy(Prog *p) {
|
|
DCHECK_EQ(opcode(), kInstAltMatch);
|
|
return p->inst(out())->opcode() == kInstByteRange;
|
|
}
|
|
|
|
// Does this inst (an kInstByteRange) match c?
|
|
inline bool Matches(int c) {
|
|
DCHECK_EQ(opcode(), kInstByteRange);
|
|
if (foldcase_ && 'A' <= c && c <= 'Z')
|
|
c += 'a' - 'A';
|
|
return lo_ <= c && c <= hi_;
|
|
}
|
|
|
|
// Returns string representation for debugging.
|
|
string Dump();
|
|
|
|
// Maximum instruction id.
|
|
// (Must fit in out_opcode_, and PatchList steals another bit.)
|
|
static const int kMaxInst = (1<<28) - 1;
|
|
|
|
private:
|
|
void set_opcode(InstOp opcode) {
|
|
out_opcode_ = (out()<<3) | opcode;
|
|
}
|
|
|
|
void set_out(int out) {
|
|
out_opcode_ = (out<<3) | opcode();
|
|
}
|
|
|
|
void set_out_opcode(int out, InstOp opcode) {
|
|
out_opcode_ = (out<<3) | opcode;
|
|
}
|
|
|
|
uint32 out_opcode_; // 29 bits of out, 3 (low) bits opcode
|
|
union { // additional instruction arguments:
|
|
uint32 out1_; // opcode == kInstAlt
|
|
// alternate next instruction
|
|
|
|
int32 cap_; // opcode == kInstCapture
|
|
// Index of capture register (holds text
|
|
// position recorded by capturing parentheses).
|
|
// For \n (the submatch for the nth parentheses),
|
|
// the left parenthesis captures into register 2*n
|
|
// and the right one captures into register 2*n+1.
|
|
|
|
int32 match_id_; // opcode == kInstMatch
|
|
// Match ID to identify this match (for re2::Set).
|
|
|
|
struct { // opcode == kInstByteRange
|
|
uint8 lo_; // byte range is lo_-hi_ inclusive
|
|
uint8 hi_; //
|
|
uint8 foldcase_; // convert A-Z to a-z before checking range.
|
|
};
|
|
|
|
EmptyOp empty_; // opcode == kInstEmptyWidth
|
|
// empty_ is bitwise OR of kEmpty* flags above.
|
|
};
|
|
|
|
friend class Compiler;
|
|
friend struct PatchList;
|
|
friend class Prog;
|
|
|
|
DISALLOW_EVIL_CONSTRUCTORS(Inst);
|
|
};
|
|
|
|
// Whether to anchor the search.
|
|
enum Anchor {
|
|
kUnanchored, // match anywhere
|
|
kAnchored, // match only starting at beginning of text
|
|
};
|
|
|
|
// Kind of match to look for (for anchor != kFullMatch)
|
|
//
|
|
// kLongestMatch mode finds the overall longest
|
|
// match but still makes its submatch choices the way
|
|
// Perl would, not in the way prescribed by POSIX.
|
|
// The POSIX rules are much more expensive to implement,
|
|
// and no one has needed them.
|
|
//
|
|
// kFullMatch is not strictly necessary -- we could use
|
|
// kLongestMatch and then check the length of the match -- but
|
|
// the matching code can run faster if it knows to consider only
|
|
// full matches.
|
|
enum MatchKind {
|
|
kFirstMatch, // like Perl, PCRE
|
|
kLongestMatch, // like egrep or POSIX
|
|
kFullMatch, // match only entire text; implies anchor==kAnchored
|
|
kManyMatch // for SearchDFA, records set of matches
|
|
};
|
|
|
|
Inst *inst(int id) { return &inst_[id]; }
|
|
int start() { return start_; }
|
|
int start_unanchored() { return start_unanchored_; }
|
|
void set_start(int start) { start_ = start; }
|
|
void set_start_unanchored(int start) { start_unanchored_ = start; }
|
|
int64 size() { return size_; }
|
|
bool reversed() { return reversed_; }
|
|
void set_reversed(bool reversed) { reversed_ = reversed; }
|
|
int64 byte_inst_count() { return byte_inst_count_; }
|
|
const Bitmap<256>& byterange() { return byterange_; }
|
|
void set_dfa_mem(int64 dfa_mem) { dfa_mem_ = dfa_mem; }
|
|
int64 dfa_mem() { return dfa_mem_; }
|
|
int flags() { return flags_; }
|
|
void set_flags(int flags) { flags_ = flags; }
|
|
bool anchor_start() { return anchor_start_; }
|
|
void set_anchor_start(bool b) { anchor_start_ = b; }
|
|
bool anchor_end() { return anchor_end_; }
|
|
void set_anchor_end(bool b) { anchor_end_ = b; }
|
|
int bytemap_range() { return bytemap_range_; }
|
|
const uint8* bytemap() { return bytemap_; }
|
|
|
|
// Returns string representation of program for debugging.
|
|
string Dump();
|
|
string DumpUnanchored();
|
|
|
|
// Record that at some point in the prog, the bytes in the range
|
|
// lo-hi (inclusive) are treated as different from bytes outside the range.
|
|
// Tracking this lets the DFA collapse commonly-treated byte ranges
|
|
// when recording state pointers, greatly reducing its memory footprint.
|
|
void MarkByteRange(int lo, int hi);
|
|
|
|
// Returns the set of kEmpty flags that are in effect at
|
|
// position p within context.
|
|
static uint32 EmptyFlags(const StringPiece& context, const char* p);
|
|
|
|
// Returns whether byte c is a word character: ASCII only.
|
|
// Used by the implementation of \b and \B.
|
|
// This is not right for Unicode, but:
|
|
// - it's hard to get right in a byte-at-a-time matching world
|
|
// (the DFA has only one-byte lookahead).
|
|
// - even if the lookahead were possible, the Progs would be huge.
|
|
// This crude approximation is the same one PCRE uses.
|
|
static bool IsWordChar(uint8 c) {
|
|
return ('A' <= c && c <= 'Z') ||
|
|
('a' <= c && c <= 'z') ||
|
|
('0' <= c && c <= '9') ||
|
|
c == '_';
|
|
}
|
|
|
|
// Execution engines. They all search for the regexp (run the prog)
|
|
// in text, which is in the larger context (used for ^ $ \b etc).
|
|
// Anchor and kind control the kind of search.
|
|
// Returns true if match found, false if not.
|
|
// If match found, fills match[0..nmatch-1] with submatch info.
|
|
// match[0] is overall match, match[1] is first set of parens, etc.
|
|
// If a particular submatch is not matched during the regexp match,
|
|
// it is set to NULL.
|
|
//
|
|
// Matching text == StringPiece(NULL, 0) is treated as any other empty
|
|
// string, but note that on return, it will not be possible to distinguish
|
|
// submatches that matched that empty string from submatches that didn't
|
|
// match anything. Either way, match[i] == NULL.
|
|
|
|
// Search using NFA: can find submatches but kind of slow.
|
|
bool SearchNFA(const StringPiece& text, const StringPiece& context,
|
|
Anchor anchor, MatchKind kind,
|
|
StringPiece* match, int nmatch);
|
|
|
|
// Search using DFA: much faster than NFA but only finds
|
|
// end of match and can use a lot more memory.
|
|
// Returns whether a match was found.
|
|
// If the DFA runs out of memory, sets *failed to true and returns false.
|
|
// If matches != NULL and kind == kManyMatch and there is a match,
|
|
// SearchDFA fills matches with the match IDs of the final matching state.
|
|
bool SearchDFA(const StringPiece& text, const StringPiece& context,
|
|
Anchor anchor, MatchKind kind,
|
|
StringPiece* match0, bool* failed,
|
|
vector<int>* matches);
|
|
|
|
// Build the entire DFA for the given match kind. FOR TESTING ONLY.
|
|
// Usually the DFA is built out incrementally, as needed, which
|
|
// avoids lots of unnecessary work. This function is useful only
|
|
// for testing purposes. Returns number of states.
|
|
int BuildEntireDFA(MatchKind kind);
|
|
|
|
// Compute byte map.
|
|
void ComputeByteMap();
|
|
|
|
// Run peep-hole optimizer on program.
|
|
void Optimize();
|
|
|
|
// One-pass NFA: only correct if IsOnePass() is true,
|
|
// but much faster than NFA (competitive with PCRE)
|
|
// for those expressions.
|
|
bool IsOnePass();
|
|
bool SearchOnePass(const StringPiece& text, const StringPiece& context,
|
|
Anchor anchor, MatchKind kind,
|
|
StringPiece* match, int nmatch);
|
|
|
|
// Bit-state backtracking. Fast on small cases but uses memory
|
|
// proportional to the product of the program size and the text size.
|
|
bool SearchBitState(const StringPiece& text, const StringPiece& context,
|
|
Anchor anchor, MatchKind kind,
|
|
StringPiece* match, int nmatch);
|
|
|
|
static const int kMaxOnePassCapture = 5; // $0 through $4
|
|
|
|
// Backtracking search: the gold standard against which the other
|
|
// implementations are checked. FOR TESTING ONLY.
|
|
// It allocates a ton of memory to avoid running forever.
|
|
// It is also recursive, so can't use in production (will overflow stacks).
|
|
// The name "Unsafe" here is supposed to be a flag that
|
|
// you should not be using this function.
|
|
bool UnsafeSearchBacktrack(const StringPiece& text,
|
|
const StringPiece& context,
|
|
Anchor anchor, MatchKind kind,
|
|
StringPiece* match, int nmatch);
|
|
|
|
// Computes range for any strings matching regexp. The min and max can in
|
|
// some cases be arbitrarily precise, so the caller gets to specify the
|
|
// maximum desired length of string returned.
|
|
//
|
|
// Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
|
|
// string s that is an anchored match for this regexp satisfies
|
|
// min <= s && s <= max.
|
|
//
|
|
// Note that PossibleMatchRange() will only consider the first copy of an
|
|
// infinitely repeated element (i.e., any regexp element followed by a '*' or
|
|
// '+' operator). Regexps with "{N}" constructions are not affected, as those
|
|
// do not compile down to infinite repetitions.
|
|
//
|
|
// Returns true on success, false on error.
|
|
bool PossibleMatchRange(string* min, string* max, int maxlen);
|
|
|
|
// Compiles a collection of regexps to Prog. Each regexp will have
|
|
// its own Match instruction recording the index in the vector.
|
|
static Prog* CompileSet(const RE2::Options& options, RE2::Anchor anchor,
|
|
Regexp* re);
|
|
|
|
private:
|
|
friend class Compiler;
|
|
|
|
DFA* GetDFA(MatchKind kind);
|
|
|
|
bool anchor_start_; // regexp has explicit start anchor
|
|
bool anchor_end_; // regexp has explicit end anchor
|
|
bool reversed_; // whether program runs backward over input
|
|
bool did_onepass_; // has IsOnePass been called?
|
|
|
|
int start_; // entry point for program
|
|
int start_unanchored_; // unanchored entry point for program
|
|
int size_; // number of instructions
|
|
int byte_inst_count_; // number of kInstByteRange instructions
|
|
int bytemap_range_; // bytemap_[x] < bytemap_range_
|
|
int flags_; // regexp parse flags
|
|
int onepass_statesize_; // byte size of each OneState* node
|
|
|
|
Inst* inst_; // pointer to instruction array
|
|
|
|
Mutex dfa_mutex_; // Protects dfa_first_, dfa_longest_
|
|
DFA* volatile dfa_first_; // DFA cached for kFirstMatch
|
|
DFA* volatile dfa_longest_; // DFA cached for kLongestMatch and kFullMatch
|
|
int64 dfa_mem_; // Maximum memory for DFAs.
|
|
void (*delete_dfa_)(DFA* dfa);
|
|
|
|
Bitmap<256> byterange_; // byterange.Get(x) true if x ends a
|
|
// commonly-treated byte range.
|
|
uint8 bytemap_[256]; // map from input bytes to byte classes
|
|
uint8 *unbytemap_; // bytemap_[unbytemap_[x]] == x
|
|
|
|
uint8* onepass_nodes_; // data for OnePass nodes
|
|
OneState* onepass_start_; // start node for OnePass program
|
|
|
|
DISALLOW_EVIL_CONSTRUCTORS(Prog);
|
|
};
|
|
|
|
} // namespace re2
|
|
|
|
#endif // RE2_PROG_H__
|