mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-11 08:52:06 +00:00
930 lines
24 KiB
C++
930 lines
24 KiB
C++
// Copyright 2006 The RE2 Authors. All Rights Reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Regular expression representation.
|
|
// Tested by parse_test.cc
|
|
|
|
#include "util/util.h"
|
|
#include "re2/regexp.h"
|
|
#include "re2/stringpiece.h"
|
|
#include "re2/walker-inl.h"
|
|
|
|
namespace re2 {
|
|
|
|
// Constructor. Allocates vectors as appropriate for operator.
|
|
Regexp::Regexp(RegexpOp op, ParseFlags parse_flags)
|
|
: op_(op),
|
|
simple_(false),
|
|
parse_flags_(static_cast<uint16>(parse_flags)),
|
|
ref_(1),
|
|
nsub_(0),
|
|
down_(NULL) {
|
|
subone_ = NULL;
|
|
memset(the_union_, 0, sizeof the_union_);
|
|
}
|
|
|
|
// Destructor. Assumes already cleaned up children.
|
|
// Private: use Decref() instead of delete to destroy Regexps.
|
|
// Can't call Decref on the sub-Regexps here because
|
|
// that could cause arbitrarily deep recursion, so
|
|
// required Decref() to have handled them for us.
|
|
Regexp::~Regexp() {
|
|
if (nsub_ > 0)
|
|
LOG(DFATAL) << "Regexp not destroyed.";
|
|
|
|
switch (op_) {
|
|
default:
|
|
break;
|
|
case kRegexpCapture:
|
|
delete name_;
|
|
break;
|
|
case kRegexpLiteralString:
|
|
delete[] runes_;
|
|
break;
|
|
case kRegexpCharClass:
|
|
cc_->Delete();
|
|
delete ccb_;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If it's possible to destroy this regexp without recurring,
|
|
// do so and return true. Else return false.
|
|
bool Regexp::QuickDestroy() {
|
|
if (nsub_ == 0) {
|
|
delete this;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static map<Regexp*, int> *ref_map;
|
|
GLOBAL_MUTEX(ref_mutex);
|
|
|
|
int Regexp::Ref() {
|
|
if (ref_ < kMaxRef)
|
|
return ref_;
|
|
|
|
GLOBAL_MUTEX_LOCK(ref_mutex);
|
|
int r = 0;
|
|
if (ref_map != NULL) {
|
|
r = (*ref_map)[this];
|
|
}
|
|
GLOBAL_MUTEX_UNLOCK(ref_mutex);
|
|
return r;
|
|
}
|
|
|
|
// Increments reference count, returns object as convenience.
|
|
Regexp* Regexp::Incref() {
|
|
if (ref_ >= kMaxRef-1) {
|
|
// Store ref count in overflow map.
|
|
GLOBAL_MUTEX_LOCK(ref_mutex);
|
|
if (ref_map == NULL) {
|
|
ref_map = new map<Regexp*, int>;
|
|
}
|
|
if (ref_ == kMaxRef) {
|
|
// already overflowed
|
|
(*ref_map)[this]++;
|
|
} else {
|
|
// overflowing now
|
|
(*ref_map)[this] = kMaxRef;
|
|
ref_ = kMaxRef;
|
|
}
|
|
GLOBAL_MUTEX_UNLOCK(ref_mutex);
|
|
return this;
|
|
}
|
|
|
|
ref_++;
|
|
return this;
|
|
}
|
|
|
|
// Decrements reference count and deletes this object if count reaches 0.
|
|
void Regexp::Decref() {
|
|
if (ref_ == kMaxRef) {
|
|
// Ref count is stored in overflow map.
|
|
GLOBAL_MUTEX_LOCK(ref_mutex);
|
|
int r = (*ref_map)[this] - 1;
|
|
if (r < kMaxRef) {
|
|
ref_ = r;
|
|
ref_map->erase(this);
|
|
} else {
|
|
(*ref_map)[this] = r;
|
|
}
|
|
GLOBAL_MUTEX_UNLOCK(ref_mutex);
|
|
return;
|
|
}
|
|
ref_--;
|
|
if (ref_ == 0)
|
|
Destroy();
|
|
}
|
|
|
|
// Deletes this object; ref count has count reached 0.
|
|
void Regexp::Destroy() {
|
|
if (QuickDestroy())
|
|
return;
|
|
|
|
// Handle recursive Destroy with explicit stack
|
|
// to avoid arbitrarily deep recursion on process stack [sigh].
|
|
down_ = NULL;
|
|
Regexp* stack = this;
|
|
while (stack != NULL) {
|
|
Regexp* re = stack;
|
|
stack = re->down_;
|
|
if (re->ref_ != 0)
|
|
LOG(DFATAL) << "Bad reference count " << re->ref_;
|
|
if (re->nsub_ > 0) {
|
|
Regexp** subs = re->sub();
|
|
for (int i = 0; i < re->nsub_; i++) {
|
|
Regexp* sub = subs[i];
|
|
if (sub == NULL)
|
|
continue;
|
|
if (sub->ref_ == kMaxRef)
|
|
sub->Decref();
|
|
else
|
|
--sub->ref_;
|
|
if (sub->ref_ == 0 && !sub->QuickDestroy()) {
|
|
sub->down_ = stack;
|
|
stack = sub;
|
|
}
|
|
}
|
|
if (re->nsub_ > 1)
|
|
delete[] subs;
|
|
re->nsub_ = 0;
|
|
}
|
|
delete re;
|
|
}
|
|
}
|
|
|
|
void Regexp::AddRuneToString(Rune r) {
|
|
DCHECK(op_ == kRegexpLiteralString);
|
|
if (nrunes_ == 0) {
|
|
// start with 8
|
|
runes_ = new Rune[8];
|
|
} else if (nrunes_ >= 8 && (nrunes_ & (nrunes_ - 1)) == 0) {
|
|
// double on powers of two
|
|
Rune *old = runes_;
|
|
runes_ = new Rune[nrunes_ * 2];
|
|
for (int i = 0; i < nrunes_; i++)
|
|
runes_[i] = old[i];
|
|
delete[] old;
|
|
}
|
|
|
|
runes_[nrunes_++] = r;
|
|
}
|
|
|
|
Regexp* Regexp::HaveMatch(int match_id, ParseFlags flags) {
|
|
Regexp* re = new Regexp(kRegexpHaveMatch, flags);
|
|
re->match_id_ = match_id;
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::Plus(Regexp* sub, ParseFlags flags) {
|
|
if (sub->op() == kRegexpPlus && sub->parse_flags() == flags)
|
|
return sub;
|
|
Regexp* re = new Regexp(kRegexpPlus, flags);
|
|
re->AllocSub(1);
|
|
re->sub()[0] = sub;
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::Star(Regexp* sub, ParseFlags flags) {
|
|
if (sub->op() == kRegexpStar && sub->parse_flags() == flags)
|
|
return sub;
|
|
Regexp* re = new Regexp(kRegexpStar, flags);
|
|
re->AllocSub(1);
|
|
re->sub()[0] = sub;
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::Quest(Regexp* sub, ParseFlags flags) {
|
|
if (sub->op() == kRegexpQuest && sub->parse_flags() == flags)
|
|
return sub;
|
|
Regexp* re = new Regexp(kRegexpQuest, flags);
|
|
re->AllocSub(1);
|
|
re->sub()[0] = sub;
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::ConcatOrAlternate(RegexpOp op, Regexp** sub, int nsub,
|
|
ParseFlags flags, bool can_factor) {
|
|
if (nsub == 1)
|
|
return sub[0];
|
|
|
|
Regexp** subcopy = NULL;
|
|
if (op == kRegexpAlternate && can_factor) {
|
|
// Going to edit sub; make a copy so we don't step on caller.
|
|
subcopy = new Regexp*[nsub];
|
|
memmove(subcopy, sub, nsub * sizeof sub[0]);
|
|
sub = subcopy;
|
|
nsub = FactorAlternation(sub, nsub, flags);
|
|
if (nsub == 1) {
|
|
Regexp* re = sub[0];
|
|
delete[] subcopy;
|
|
return re;
|
|
}
|
|
}
|
|
|
|
if (nsub > kMaxNsub) {
|
|
// Too many subexpressions to fit in a single Regexp.
|
|
// Make a two-level tree. Two levels gets us to 65535^2.
|
|
int nbigsub = (nsub+kMaxNsub-1)/kMaxNsub;
|
|
Regexp* re = new Regexp(op, flags);
|
|
re->AllocSub(nbigsub);
|
|
Regexp** subs = re->sub();
|
|
for (int i = 0; i < nbigsub - 1; i++)
|
|
subs[i] = ConcatOrAlternate(op, sub+i*kMaxNsub, kMaxNsub, flags, false);
|
|
subs[nbigsub - 1] = ConcatOrAlternate(op, sub+(nbigsub-1)*kMaxNsub,
|
|
nsub - (nbigsub-1)*kMaxNsub, flags,
|
|
false);
|
|
delete[] subcopy;
|
|
return re;
|
|
}
|
|
|
|
Regexp* re = new Regexp(op, flags);
|
|
re->AllocSub(nsub);
|
|
Regexp** subs = re->sub();
|
|
for (int i = 0; i < nsub; i++)
|
|
subs[i] = sub[i];
|
|
|
|
delete[] subcopy;
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::Concat(Regexp** sub, int nsub, ParseFlags flags) {
|
|
return ConcatOrAlternate(kRegexpConcat, sub, nsub, flags, false);
|
|
}
|
|
|
|
Regexp* Regexp::Alternate(Regexp** sub, int nsub, ParseFlags flags) {
|
|
return ConcatOrAlternate(kRegexpAlternate, sub, nsub, flags, true);
|
|
}
|
|
|
|
Regexp* Regexp::AlternateNoFactor(Regexp** sub, int nsub, ParseFlags flags) {
|
|
return ConcatOrAlternate(kRegexpAlternate, sub, nsub, flags, false);
|
|
}
|
|
|
|
Regexp* Regexp::Capture(Regexp* sub, ParseFlags flags, int cap) {
|
|
Regexp* re = new Regexp(kRegexpCapture, flags);
|
|
re->AllocSub(1);
|
|
re->sub()[0] = sub;
|
|
re->cap_ = cap;
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::Repeat(Regexp* sub, ParseFlags flags, int min, int max) {
|
|
Regexp* re = new Regexp(kRegexpRepeat, flags);
|
|
re->AllocSub(1);
|
|
re->sub()[0] = sub;
|
|
re->min_ = min;
|
|
re->max_ = max;
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::NewLiteral(Rune rune, ParseFlags flags) {
|
|
Regexp* re = new Regexp(kRegexpLiteral, flags);
|
|
re->rune_ = rune;
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::LiteralString(Rune* runes, int nrunes, ParseFlags flags) {
|
|
if (nrunes <= 0)
|
|
return new Regexp(kRegexpEmptyMatch, flags);
|
|
if (nrunes == 1)
|
|
return NewLiteral(runes[0], flags);
|
|
Regexp* re = new Regexp(kRegexpLiteralString, flags);
|
|
for (int i = 0; i < nrunes; i++)
|
|
re->AddRuneToString(runes[i]);
|
|
return re;
|
|
}
|
|
|
|
Regexp* Regexp::NewCharClass(CharClass* cc, ParseFlags flags) {
|
|
Regexp* re = new Regexp(kRegexpCharClass, flags);
|
|
re->cc_ = cc;
|
|
return re;
|
|
}
|
|
|
|
// Swaps this and that in place.
|
|
void Regexp::Swap(Regexp* that) {
|
|
// Can use memmove because Regexp is just a struct (no vtable).
|
|
char tmp[sizeof *this];
|
|
memmove(tmp, this, sizeof tmp);
|
|
memmove(this, that, sizeof tmp);
|
|
memmove(that, tmp, sizeof tmp);
|
|
}
|
|
|
|
// Tests equality of all top-level structure but not subregexps.
|
|
static bool TopEqual(Regexp* a, Regexp* b) {
|
|
if (a->op() != b->op())
|
|
return false;
|
|
|
|
switch (a->op()) {
|
|
case kRegexpNoMatch:
|
|
case kRegexpEmptyMatch:
|
|
case kRegexpAnyChar:
|
|
case kRegexpAnyByte:
|
|
case kRegexpBeginLine:
|
|
case kRegexpEndLine:
|
|
case kRegexpWordBoundary:
|
|
case kRegexpNoWordBoundary:
|
|
case kRegexpBeginText:
|
|
return true;
|
|
|
|
case kRegexpEndText:
|
|
// The parse flags remember whether it's \z or (?-m:$),
|
|
// which matters when testing against PCRE.
|
|
return ((a->parse_flags() ^ b->parse_flags()) & Regexp::WasDollar) == 0;
|
|
|
|
case kRegexpLiteral:
|
|
return a->rune() == b->rune() &&
|
|
((a->parse_flags() ^ b->parse_flags()) & Regexp::FoldCase) == 0;
|
|
|
|
case kRegexpLiteralString:
|
|
return a->nrunes() == b->nrunes() &&
|
|
((a->parse_flags() ^ b->parse_flags()) & Regexp::FoldCase) == 0 &&
|
|
memcmp(a->runes(), b->runes(),
|
|
a->nrunes() * sizeof a->runes()[0]) == 0;
|
|
|
|
case kRegexpAlternate:
|
|
case kRegexpConcat:
|
|
return a->nsub() == b->nsub();
|
|
|
|
case kRegexpStar:
|
|
case kRegexpPlus:
|
|
case kRegexpQuest:
|
|
return ((a->parse_flags() ^ b->parse_flags()) & Regexp::NonGreedy) == 0;
|
|
|
|
case kRegexpRepeat:
|
|
return ((a->parse_flags() ^ b->parse_flags()) & Regexp::NonGreedy) == 0 &&
|
|
a->min() == b->min() &&
|
|
a->max() == b->max();
|
|
|
|
case kRegexpCapture:
|
|
return a->cap() == b->cap() && a->name() == b->name();
|
|
|
|
case kRegexpHaveMatch:
|
|
return a->match_id() == b->match_id();
|
|
|
|
case kRegexpCharClass: {
|
|
CharClass* acc = a->cc();
|
|
CharClass* bcc = b->cc();
|
|
return acc->size() == bcc->size() &&
|
|
acc->end() - acc->begin() == bcc->end() - bcc->begin() &&
|
|
memcmp(acc->begin(), bcc->begin(),
|
|
(acc->end() - acc->begin()) * sizeof acc->begin()[0]) == 0;
|
|
}
|
|
}
|
|
|
|
LOG(DFATAL) << "Unexpected op in Regexp::Equal: " << a->op();
|
|
return 0;
|
|
}
|
|
|
|
bool Regexp::Equal(Regexp* a, Regexp* b) {
|
|
if (a == NULL || b == NULL)
|
|
return a == b;
|
|
|
|
if (!TopEqual(a, b))
|
|
return false;
|
|
|
|
// Fast path:
|
|
// return without allocating vector if there are no subregexps.
|
|
switch (a->op()) {
|
|
case kRegexpAlternate:
|
|
case kRegexpConcat:
|
|
case kRegexpStar:
|
|
case kRegexpPlus:
|
|
case kRegexpQuest:
|
|
case kRegexpRepeat:
|
|
case kRegexpCapture:
|
|
break;
|
|
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
// Committed to doing real work.
|
|
// The stack (vector) has pairs of regexps waiting to
|
|
// be compared. The regexps are only equal if
|
|
// all the pairs end up being equal.
|
|
vector<Regexp*> stk;
|
|
|
|
for (;;) {
|
|
// Invariant: TopEqual(a, b) == true.
|
|
Regexp* a2;
|
|
Regexp* b2;
|
|
switch (a->op()) {
|
|
default:
|
|
break;
|
|
case kRegexpAlternate:
|
|
case kRegexpConcat:
|
|
for (int i = 0; i < a->nsub(); i++) {
|
|
a2 = a->sub()[i];
|
|
b2 = b->sub()[i];
|
|
if (!TopEqual(a2, b2))
|
|
return false;
|
|
stk.push_back(a2);
|
|
stk.push_back(b2);
|
|
}
|
|
break;
|
|
|
|
case kRegexpStar:
|
|
case kRegexpPlus:
|
|
case kRegexpQuest:
|
|
case kRegexpRepeat:
|
|
case kRegexpCapture:
|
|
a2 = a->sub()[0];
|
|
b2 = b->sub()[0];
|
|
if (!TopEqual(a2, b2))
|
|
return false;
|
|
// Really:
|
|
// stk.push_back(a2);
|
|
// stk.push_back(b2);
|
|
// break;
|
|
// but faster to assign directly and loop.
|
|
a = a2;
|
|
b = b2;
|
|
continue;
|
|
}
|
|
|
|
int n = stk.size();
|
|
if (n == 0)
|
|
break;
|
|
|
|
a = stk[n-2];
|
|
b = stk[n-1];
|
|
stk.resize(n-2);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Keep in sync with enum RegexpStatusCode in regexp.h
|
|
static const char *kErrorStrings[] = {
|
|
"no error",
|
|
"unexpected error",
|
|
"invalid escape sequence",
|
|
"invalid character class",
|
|
"invalid character class range",
|
|
"missing ]",
|
|
"missing )",
|
|
"trailing \\",
|
|
"no argument for repetition operator",
|
|
"invalid repetition size",
|
|
"bad repetition operator",
|
|
"invalid perl operator",
|
|
"invalid UTF-8",
|
|
"invalid named capture group",
|
|
};
|
|
|
|
string RegexpStatus::CodeText(enum RegexpStatusCode code) {
|
|
if (code < 0 || code >= arraysize(kErrorStrings))
|
|
code = kRegexpInternalError;
|
|
return kErrorStrings[code];
|
|
}
|
|
|
|
string RegexpStatus::Text() const {
|
|
if (error_arg_.empty())
|
|
return CodeText(code_);
|
|
string s;
|
|
s.append(CodeText(code_));
|
|
s.append(": ");
|
|
s.append(error_arg_.data(), error_arg_.size());
|
|
return s;
|
|
}
|
|
|
|
void RegexpStatus::Copy(const RegexpStatus& status) {
|
|
code_ = status.code_;
|
|
error_arg_ = status.error_arg_;
|
|
}
|
|
|
|
typedef int Ignored; // Walker<void> doesn't exist
|
|
|
|
// Walker subclass to count capturing parens in regexp.
|
|
class NumCapturesWalker : public Regexp::Walker<Ignored> {
|
|
public:
|
|
NumCapturesWalker() : ncapture_(0) {}
|
|
int ncapture() { return ncapture_; }
|
|
|
|
virtual Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
|
if (re->op() == kRegexpCapture)
|
|
ncapture_++;
|
|
return ignored;
|
|
}
|
|
virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
|
// Should never be called: we use Walk not WalkExponential.
|
|
LOG(DFATAL) << "NumCapturesWalker::ShortVisit called";
|
|
return ignored;
|
|
}
|
|
|
|
private:
|
|
int ncapture_;
|
|
DISALLOW_EVIL_CONSTRUCTORS(NumCapturesWalker);
|
|
};
|
|
|
|
int Regexp::NumCaptures() {
|
|
NumCapturesWalker w;
|
|
w.Walk(this, 0);
|
|
return w.ncapture();
|
|
}
|
|
|
|
// Walker class to build map of named capture groups and their indices.
|
|
class NamedCapturesWalker : public Regexp::Walker<Ignored> {
|
|
public:
|
|
NamedCapturesWalker() : map_(NULL) {}
|
|
~NamedCapturesWalker() { delete map_; }
|
|
|
|
map<string, int>* TakeMap() {
|
|
map<string, int>* m = map_;
|
|
map_ = NULL;
|
|
return m;
|
|
}
|
|
|
|
Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
|
if (re->op() == kRegexpCapture && re->name() != NULL) {
|
|
// Allocate map once we find a name.
|
|
if (map_ == NULL)
|
|
map_ = new map<string, int>;
|
|
|
|
// Record first occurrence of each name.
|
|
// (The rule is that if you have the same name
|
|
// multiple times, only the leftmost one counts.)
|
|
if (map_->find(*re->name()) == map_->end())
|
|
(*map_)[*re->name()] = re->cap();
|
|
}
|
|
return ignored;
|
|
}
|
|
|
|
virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
|
// Should never be called: we use Walk not WalkExponential.
|
|
LOG(DFATAL) << "NamedCapturesWalker::ShortVisit called";
|
|
return ignored;
|
|
}
|
|
|
|
private:
|
|
map<string, int>* map_;
|
|
DISALLOW_EVIL_CONSTRUCTORS(NamedCapturesWalker);
|
|
};
|
|
|
|
map<string, int>* Regexp::NamedCaptures() {
|
|
NamedCapturesWalker w;
|
|
w.Walk(this, 0);
|
|
return w.TakeMap();
|
|
}
|
|
|
|
// Walker class to build map from capture group indices to their names.
|
|
class CaptureNamesWalker : public Regexp::Walker<Ignored> {
|
|
public:
|
|
CaptureNamesWalker() : map_(NULL) {}
|
|
~CaptureNamesWalker() { delete map_; }
|
|
|
|
map<int, string>* TakeMap() {
|
|
map<int, string>* m = map_;
|
|
map_ = NULL;
|
|
return m;
|
|
}
|
|
|
|
Ignored PreVisit(Regexp* re, Ignored ignored, bool* stop) {
|
|
if (re->op() == kRegexpCapture && re->name() != NULL) {
|
|
// Allocate map once we find a name.
|
|
if (map_ == NULL)
|
|
map_ = new map<int, string>;
|
|
|
|
(*map_)[re->cap()] = *re->name();
|
|
}
|
|
return ignored;
|
|
}
|
|
|
|
virtual Ignored ShortVisit(Regexp* re, Ignored ignored) {
|
|
// Should never be called: we use Walk not WalkExponential.
|
|
LOG(DFATAL) << "CaptureNamesWalker::ShortVisit called";
|
|
return ignored;
|
|
}
|
|
|
|
private:
|
|
map<int, string>* map_;
|
|
DISALLOW_EVIL_CONSTRUCTORS(CaptureNamesWalker);
|
|
};
|
|
|
|
map<int, string>* Regexp::CaptureNames() {
|
|
CaptureNamesWalker w;
|
|
w.Walk(this, 0);
|
|
return w.TakeMap();
|
|
}
|
|
|
|
// Determines whether regexp matches must be anchored
|
|
// with a fixed string prefix. If so, returns the prefix and
|
|
// the regexp that remains after the prefix. The prefix might
|
|
// be ASCII case-insensitive.
|
|
bool Regexp::RequiredPrefix(string *prefix, bool *foldcase, Regexp** suffix) {
|
|
// No need for a walker: the regexp must be of the form
|
|
// 1. some number of ^ anchors
|
|
// 2. a literal char or string
|
|
// 3. the rest
|
|
prefix->clear();
|
|
*foldcase = false;
|
|
*suffix = NULL;
|
|
if (op_ != kRegexpConcat)
|
|
return false;
|
|
|
|
// Some number of anchors, then a literal or concatenation.
|
|
int i = 0;
|
|
Regexp** sub = this->sub();
|
|
while (i < nsub_ && sub[i]->op_ == kRegexpBeginText)
|
|
i++;
|
|
if (i == 0 || i >= nsub_)
|
|
return false;
|
|
|
|
Regexp* re = sub[i];
|
|
switch (re->op_) {
|
|
default:
|
|
return false;
|
|
|
|
case kRegexpLiteralString:
|
|
// Convert to string in proper encoding.
|
|
if (re->parse_flags() & Latin1) {
|
|
prefix->resize(re->nrunes_);
|
|
for (int j = 0; j < re->nrunes_; j++)
|
|
(*prefix)[j] = re->runes_[j];
|
|
} else {
|
|
// Convert to UTF-8 in place.
|
|
// Assume worst-case space and then trim.
|
|
prefix->resize(re->nrunes_ * UTFmax);
|
|
char *p = &(*prefix)[0];
|
|
for (int j = 0; j < re->nrunes_; j++) {
|
|
Rune r = re->runes_[j];
|
|
if (r < Runeself)
|
|
*p++ = r;
|
|
else
|
|
p += runetochar(p, &r);
|
|
}
|
|
prefix->resize(p - &(*prefix)[0]);
|
|
}
|
|
break;
|
|
|
|
case kRegexpLiteral:
|
|
if ((re->parse_flags() & Latin1) || re->rune_ < Runeself) {
|
|
prefix->append(1, re->rune_);
|
|
} else {
|
|
char buf[UTFmax];
|
|
prefix->append(buf, runetochar(buf, &re->rune_));
|
|
}
|
|
break;
|
|
}
|
|
*foldcase = (sub[i]->parse_flags() & FoldCase);
|
|
i++;
|
|
|
|
// The rest.
|
|
if (i < nsub_) {
|
|
for (int j = i; j < nsub_; j++)
|
|
sub[j]->Incref();
|
|
re = Concat(sub + i, nsub_ - i, parse_flags());
|
|
} else {
|
|
re = new Regexp(kRegexpEmptyMatch, parse_flags());
|
|
}
|
|
*suffix = re;
|
|
return true;
|
|
}
|
|
|
|
// Character class builder is a balanced binary tree (STL set)
|
|
// containing non-overlapping, non-abutting RuneRanges.
|
|
// The less-than operator used in the tree treats two
|
|
// ranges as equal if they overlap at all, so that
|
|
// lookups for a particular Rune are possible.
|
|
|
|
CharClassBuilder::CharClassBuilder() {
|
|
nrunes_ = 0;
|
|
upper_ = 0;
|
|
lower_ = 0;
|
|
}
|
|
|
|
// Add lo-hi to the class; return whether class got bigger.
|
|
bool CharClassBuilder::AddRange(Rune lo, Rune hi) {
|
|
if (hi < lo)
|
|
return false;
|
|
|
|
if (lo <= 'z' && hi >= 'A') {
|
|
// Overlaps some alpha, maybe not all.
|
|
// Update bitmaps telling which ASCII letters are in the set.
|
|
Rune lo1 = max<Rune>(lo, 'A');
|
|
Rune hi1 = min<Rune>(hi, 'Z');
|
|
if (lo1 <= hi1)
|
|
upper_ |= ((1 << (hi1 - lo1 + 1)) - 1) << (lo1 - 'A');
|
|
|
|
lo1 = max<Rune>(lo, 'a');
|
|
hi1 = min<Rune>(hi, 'z');
|
|
if (lo1 <= hi1)
|
|
lower_ |= ((1 << (hi1 - lo1 + 1)) - 1) << (lo1 - 'a');
|
|
}
|
|
|
|
{ // Check whether lo, hi is already in the class.
|
|
iterator it = ranges_.find(RuneRange(lo, lo));
|
|
if (it != end() && it->lo <= lo && hi <= it->hi)
|
|
return false;
|
|
}
|
|
|
|
// Look for a range abutting lo on the left.
|
|
// If it exists, take it out and increase our range.
|
|
if (lo > 0) {
|
|
iterator it = ranges_.find(RuneRange(lo-1, lo-1));
|
|
if (it != end()) {
|
|
lo = it->lo;
|
|
if (it->hi > hi)
|
|
hi = it->hi;
|
|
nrunes_ -= it->hi - it->lo + 1;
|
|
ranges_.erase(it);
|
|
}
|
|
}
|
|
|
|
// Look for a range abutting hi on the right.
|
|
// If it exists, take it out and increase our range.
|
|
if (hi < Runemax) {
|
|
iterator it = ranges_.find(RuneRange(hi+1, hi+1));
|
|
if (it != end()) {
|
|
hi = it->hi;
|
|
nrunes_ -= it->hi - it->lo + 1;
|
|
ranges_.erase(it);
|
|
}
|
|
}
|
|
|
|
// Look for ranges between lo and hi. Take them out.
|
|
// This is only safe because the set has no overlapping ranges.
|
|
// We've already removed any ranges abutting lo and hi, so
|
|
// any that overlap [lo, hi] must be contained within it.
|
|
for (;;) {
|
|
iterator it = ranges_.find(RuneRange(lo, hi));
|
|
if (it == end())
|
|
break;
|
|
nrunes_ -= it->hi - it->lo + 1;
|
|
ranges_.erase(it);
|
|
}
|
|
|
|
// Finally, add [lo, hi].
|
|
nrunes_ += hi - lo + 1;
|
|
ranges_.insert(RuneRange(lo, hi));
|
|
return true;
|
|
}
|
|
|
|
void CharClassBuilder::AddCharClass(CharClassBuilder *cc) {
|
|
for (iterator it = cc->begin(); it != cc->end(); ++it)
|
|
AddRange(it->lo, it->hi);
|
|
}
|
|
|
|
bool CharClassBuilder::Contains(Rune r) {
|
|
return ranges_.find(RuneRange(r, r)) != end();
|
|
}
|
|
|
|
// Does the character class behave the same on A-Z as on a-z?
|
|
bool CharClassBuilder::FoldsASCII() {
|
|
return ((upper_ ^ lower_) & AlphaMask) == 0;
|
|
}
|
|
|
|
CharClassBuilder* CharClassBuilder::Copy() {
|
|
CharClassBuilder* cc = new CharClassBuilder;
|
|
for (iterator it = begin(); it != end(); ++it)
|
|
cc->ranges_.insert(RuneRange(it->lo, it->hi));
|
|
cc->upper_ = upper_;
|
|
cc->lower_ = lower_;
|
|
cc->nrunes_ = nrunes_;
|
|
return cc;
|
|
}
|
|
|
|
|
|
|
|
void CharClassBuilder::RemoveAbove(Rune r) {
|
|
if (r >= Runemax)
|
|
return;
|
|
|
|
if (r < 'z') {
|
|
if (r < 'a')
|
|
lower_ = 0;
|
|
else
|
|
lower_ &= AlphaMask >> ('z' - r);
|
|
}
|
|
|
|
if (r < 'Z') {
|
|
if (r < 'A')
|
|
upper_ = 0;
|
|
else
|
|
upper_ &= AlphaMask >> ('Z' - r);
|
|
}
|
|
|
|
for (;;) {
|
|
|
|
iterator it = ranges_.find(RuneRange(r + 1, Runemax));
|
|
if (it == end())
|
|
break;
|
|
RuneRange rr = *it;
|
|
ranges_.erase(it);
|
|
nrunes_ -= rr.hi - rr.lo + 1;
|
|
if (rr.lo <= r) {
|
|
rr.hi = r;
|
|
ranges_.insert(rr);
|
|
nrunes_ += rr.hi - rr.lo + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CharClassBuilder::Negate() {
|
|
// Build up negation and then copy in.
|
|
// Could edit ranges in place, but C++ won't let me.
|
|
vector<RuneRange> v;
|
|
v.reserve(ranges_.size() + 1);
|
|
|
|
// In negation, first range begins at 0, unless
|
|
// the current class begins at 0.
|
|
iterator it = begin();
|
|
if (it == end()) {
|
|
v.push_back(RuneRange(0, Runemax));
|
|
} else {
|
|
int nextlo = 0;
|
|
if (it->lo == 0) {
|
|
nextlo = it->hi + 1;
|
|
++it;
|
|
}
|
|
for (; it != end(); ++it) {
|
|
v.push_back(RuneRange(nextlo, it->lo - 1));
|
|
nextlo = it->hi + 1;
|
|
}
|
|
if (nextlo <= Runemax)
|
|
v.push_back(RuneRange(nextlo, Runemax));
|
|
}
|
|
|
|
ranges_.clear();
|
|
for (size_t i = 0; i < v.size(); i++)
|
|
ranges_.insert(v[i]);
|
|
|
|
upper_ = AlphaMask & ~upper_;
|
|
lower_ = AlphaMask & ~lower_;
|
|
nrunes_ = Runemax+1 - nrunes_;
|
|
}
|
|
|
|
// Character class is a sorted list of ranges.
|
|
// The ranges are allocated in the same block as the header,
|
|
// necessitating a special allocator and Delete method.
|
|
|
|
CharClass* CharClass::New(int maxranges) {
|
|
CharClass* cc;
|
|
uint8* data = new uint8[sizeof *cc + maxranges*sizeof cc->ranges_[0]];
|
|
cc = reinterpret_cast<CharClass*>(data);
|
|
cc->ranges_ = reinterpret_cast<RuneRange*>(data + sizeof *cc);
|
|
cc->nranges_ = 0;
|
|
cc->folds_ascii_ = false;
|
|
cc->nrunes_ = 0;
|
|
return cc;
|
|
}
|
|
|
|
void CharClass::Delete() {
|
|
uint8 *data = reinterpret_cast<uint8*>(this);
|
|
delete[] data;
|
|
}
|
|
|
|
CharClass* CharClass::Negate() {
|
|
CharClass* cc = CharClass::New(nranges_+1);
|
|
cc->folds_ascii_ = folds_ascii_;
|
|
cc->nrunes_ = Runemax + 1 - nrunes_;
|
|
int n = 0;
|
|
int nextlo = 0;
|
|
for (CharClass::iterator it = begin(); it != end(); ++it) {
|
|
if (it->lo == nextlo) {
|
|
nextlo = it->hi + 1;
|
|
} else {
|
|
cc->ranges_[n++] = RuneRange(nextlo, it->lo - 1);
|
|
nextlo = it->hi + 1;
|
|
}
|
|
}
|
|
if (nextlo <= Runemax)
|
|
cc->ranges_[n++] = RuneRange(nextlo, Runemax);
|
|
cc->nranges_ = n;
|
|
return cc;
|
|
}
|
|
|
|
bool CharClass::Contains(Rune r) {
|
|
RuneRange* rr = ranges_;
|
|
int n = nranges_;
|
|
while (n > 0) {
|
|
int m = n/2;
|
|
if (rr[m].hi < r) {
|
|
rr += m+1;
|
|
n -= m+1;
|
|
} else if (r < rr[m].lo) {
|
|
n = m;
|
|
} else { // rr[m].lo <= r && r <= rr[m].hi
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
CharClass* CharClassBuilder::GetCharClass() {
|
|
CharClass* cc = CharClass::New(ranges_.size());
|
|
int n = 0;
|
|
for (iterator it = begin(); it != end(); ++it)
|
|
cc->ranges_[n++] = *it;
|
|
cc->nranges_ = n;
|
|
DCHECK_LE(n, static_cast<int>(ranges_.size()));
|
|
cc->nrunes_ = nrunes_;
|
|
cc->folds_ascii_ = FoldsASCII();
|
|
return cc;
|
|
}
|
|
|
|
} // namespace re2
|