mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-13 19:14:30 +00:00
444 lines
16 KiB
C++
444 lines
16 KiB
C++
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <Common/RadixSort.h>
|
|
#include <Common/PODArray.h>
|
|
#include <IO/WriteBuffer.h>
|
|
#include <IO/ReadBuffer.h>
|
|
#include <IO/VarInt.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
struct Settings;
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int TOO_LARGE_ARRAY_SIZE;
|
|
extern const int CANNOT_PARSE_INPUT_ASSERTION_FAILED;
|
|
}
|
|
|
|
|
|
/** The algorithm was implemented by Alexei Borzenkov https://github.com/snaury
|
|
* He owns the authorship of the code and half the comments in this namespace,
|
|
* except for merging, serialization, and sorting, as well as selecting types and other changes.
|
|
* We thank Alexei Borzenkov for writing the original code.
|
|
*/
|
|
|
|
/** Implementation of t-digest algorithm (https://github.com/tdunning/t-digest).
|
|
* This option is very similar to MergingDigest on java, however the decision about
|
|
* the union is accepted based on the original condition from the article
|
|
* (via a size constraint, using the approximation of the quantile of each
|
|
* centroid, not the distance on the curve of the position of their boundaries). MergingDigest
|
|
* on java gives significantly fewer centroids than this variant, that
|
|
* negatively affects accuracy with the same compression factor, but gives
|
|
* size guarantees. The author himself on the proposal for this variant said that
|
|
* the size of the digest grows like O(log(n)), while the version on java
|
|
* does not depend on the expected number of points. Also an variant on java
|
|
* uses asin, which slows down the algorithm a bit.
|
|
*/
|
|
template <typename T>
|
|
class QuantileTDigest
|
|
{
|
|
using Value = Float32;
|
|
using Count = Float32;
|
|
using BetterFloat = Float64; // For intermediate results and sum(Count). Must have better precision, than Count
|
|
|
|
/** The centroid stores the weight of points around their mean value
|
|
*/
|
|
struct Centroid
|
|
{
|
|
Value mean;
|
|
Count count;
|
|
|
|
Centroid() = default;
|
|
|
|
explicit Centroid(Value mean_, Count count_)
|
|
: mean(mean_)
|
|
, count(count_)
|
|
{}
|
|
|
|
bool operator<(const Centroid & other) const
|
|
{
|
|
return mean < other.mean;
|
|
}
|
|
};
|
|
|
|
|
|
/** :param epsilon: value \delta from the article - error in the range
|
|
* quantile 0.5 (default is 0.01, i.e. 1%)
|
|
* if you change epsilon, you must also change max_centroids
|
|
* :param max_centroids: depends on epsilon, the better accuracy, the more centroids you need
|
|
* to describe data with this accuracy. Read article before changing.
|
|
* :param max_unmerged: when accumulating count of new points beyond this
|
|
* value centroid compression is triggered
|
|
* (default is 2048, the higher the value - the
|
|
* more memory is required, but amortization of execution time increases)
|
|
* Change freely anytime.
|
|
*/
|
|
struct Params
|
|
{
|
|
Value epsilon = 0.01;
|
|
size_t max_centroids = 2048;
|
|
size_t max_unmerged = 2048;
|
|
};
|
|
/** max_centroids_deserialize should be >= all max_centroids ever used in production.
|
|
* This is security parameter, preventing allocation of too much centroids in deserialize, so can be relatively large.
|
|
*/
|
|
static constexpr size_t max_centroids_deserialize = 65536;
|
|
|
|
static constexpr Params params{};
|
|
|
|
static constexpr size_t bytes_in_arena = 128 - sizeof(PODArray<Centroid>) - sizeof(BetterFloat) - sizeof(size_t); // If alignment is imperfect, sizeof(TDigest) will be more than naively expected
|
|
using Centroids = PODArrayWithStackMemory<Centroid, bytes_in_arena>;
|
|
|
|
Centroids centroids;
|
|
BetterFloat count = 0;
|
|
size_t unmerged = 0;
|
|
|
|
/** Linear interpolation at the point x on the line (x1, y1)..(x2, y2)
|
|
*/
|
|
static Value interpolate(Value x, Value x1, Value y1, Value x2, Value y2)
|
|
{
|
|
double k = (x - x1) / (x2 - x1);
|
|
return y1 + k * (y2 - y1);
|
|
}
|
|
|
|
struct RadixSortTraits
|
|
{
|
|
using Element = Centroid;
|
|
using Result = Element;
|
|
using Key = Value;
|
|
using CountType = UInt32;
|
|
using KeyBits = UInt32;
|
|
|
|
static constexpr size_t PART_SIZE_BITS = 8;
|
|
|
|
using Transform = RadixSortFloatTransform<KeyBits>;
|
|
using Allocator = RadixSortAllocator;
|
|
|
|
/// The function to get the key from an array element.
|
|
static Key & extractKey(Element & elem) { return elem.mean; }
|
|
static Result & extractResult(Element & elem) { return elem; }
|
|
};
|
|
|
|
/** Adds a centroid `c` to the digest
|
|
* centroid must be valid, validity is checked in add(), deserialize() and is maintained by compress()
|
|
*/
|
|
void addCentroid(const Centroid & c)
|
|
{
|
|
centroids.push_back(c);
|
|
count += c.count;
|
|
++unmerged;
|
|
if (unmerged > params.max_unmerged)
|
|
compress();
|
|
}
|
|
|
|
void compressBrute()
|
|
{
|
|
if (centroids.size() <= params.max_centroids)
|
|
return;
|
|
const size_t batch_size = (centroids.size() + params.max_centroids - 1) / params.max_centroids; // at least 2
|
|
|
|
auto l = centroids.begin();
|
|
auto r = std::next(l);
|
|
BetterFloat sum = 0;
|
|
BetterFloat l_mean = l->mean; // We have high-precision temporaries for numeric stability
|
|
BetterFloat l_count = l->count;
|
|
size_t batch_pos = 0;
|
|
for (;r != centroids.end(); ++r)
|
|
{
|
|
if (batch_pos < batch_size - 1)
|
|
{
|
|
/// The left column "eats" the right. Middle of the batch
|
|
l_count += r->count;
|
|
l_mean += r->count * (r->mean - l_mean) / l_count; // Symmetric algo (M1*C1 + M2*C2)/(C1+C2) is numerically better, but slower
|
|
l->mean = l_mean;
|
|
l->count = l_count;
|
|
batch_pos += 1;
|
|
}
|
|
else
|
|
{
|
|
// End of the batch, start the next one
|
|
sum += l->count; // Not l_count, otherwise actual sum of elements will be different
|
|
++l;
|
|
|
|
/// We skip all the values "eaten" earlier.
|
|
*l = *r;
|
|
l_mean = l->mean;
|
|
l_count = l->count;
|
|
batch_pos = 0;
|
|
}
|
|
}
|
|
count = sum + l_count; // Update count, it might be different due to += inaccuracy
|
|
centroids.resize(l - centroids.begin() + 1);
|
|
// Here centroids.size() <= params.max_centroids
|
|
}
|
|
|
|
public:
|
|
/** Performs compression of accumulated centroids
|
|
* When merging, the invariant is retained to the maximum size of each
|
|
* centroid that does not exceed `4 q (1 - q) \ delta N`.
|
|
*/
|
|
void compress()
|
|
{
|
|
if (unmerged > 0 || centroids.size() > params.max_centroids)
|
|
{
|
|
// unmerged > 0 implies centroids.size() > 0, hence *l is valid below
|
|
RadixSort<RadixSortTraits>::executeLSD(centroids.data(), centroids.size());
|
|
|
|
/// A pair of consecutive bars of the histogram.
|
|
auto l = centroids.begin();
|
|
auto r = std::next(l);
|
|
|
|
const BetterFloat count_epsilon_4 = count * params.epsilon * 4; // Compiler is unable to do this optimization
|
|
BetterFloat sum = 0;
|
|
BetterFloat l_mean = l->mean; // We have high-precision temporaries for numeric stability
|
|
BetterFloat l_count = l->count;
|
|
while (r != centroids.end())
|
|
{
|
|
/// N.B. Piece of logic which compresses the same singleton centroids into one centroid is removed
|
|
/// because: 1) singleton centroids are being processed in unusual way in recent version of algorithm
|
|
/// and such compression would break this logic;
|
|
/// 2) we shall not compress centroids further than `max_centroids` parameter requires because
|
|
/// this will lead to uneven compression.
|
|
/// For more information see: https://arxiv.org/abs/1902.04023
|
|
|
|
/// The ratio of the part of the histogram to l, including the half l to the entire histogram. That is, what level quantile in position l.
|
|
BetterFloat ql = (sum + l_count * 0.5) / count;
|
|
BetterFloat err = ql * (1 - ql);
|
|
|
|
/// The ratio of the portion of the histogram to l, including l and half r to the entire histogram. That is, what level is the quantile in position r.
|
|
BetterFloat qr = (sum + l_count + r->count * 0.5) / count;
|
|
BetterFloat err2 = qr * (1 - qr);
|
|
|
|
if (err > err2)
|
|
err = err2;
|
|
|
|
BetterFloat k = count_epsilon_4 * err;
|
|
|
|
/** The ratio of the weight of the glued column pair to all values is not greater,
|
|
* than epsilon multiply by a certain quadratic coefficient, which in the median is 1 (4 * 1/2 * 1/2),
|
|
* and at the edges decreases and is approximately equal to the distance to the edge * 4.
|
|
*/
|
|
|
|
if (l_count + r->count <= k)
|
|
{
|
|
// it is possible to merge left and right
|
|
/// The left column "eats" the right.
|
|
l_count += r->count;
|
|
l_mean += r->count * (r->mean - l_mean) / l_count; // Symmetric algo (M1*C1 + M2*C2)/(C1+C2) is numerically better, but slower
|
|
l->mean = l_mean;
|
|
l->count = l_count;
|
|
}
|
|
else
|
|
{
|
|
// not enough capacity, check the next pair
|
|
sum += l->count; // Not l_count, otherwise actual sum of elements will be different
|
|
++l;
|
|
|
|
/// We skip all the values "eaten" earlier.
|
|
if (l != r)
|
|
*l = *r;
|
|
l_mean = l->mean;
|
|
l_count = l->count;
|
|
}
|
|
++r;
|
|
}
|
|
count = sum + l_count; // Update count, it might be different due to += inaccuracy
|
|
|
|
/// At the end of the loop, all values to the right of l were "eaten".
|
|
centroids.resize(l - centroids.begin() + 1);
|
|
unmerged = 0;
|
|
}
|
|
// Ensures centroids.size() < max_centroids, independent of unprovable floating point blackbox above
|
|
compressBrute();
|
|
}
|
|
|
|
/** Adds to the digest a change in `x` with a weight of `cnt` (default 1)
|
|
*/
|
|
void add(T x, UInt64 cnt = 1)
|
|
{
|
|
auto vx = static_cast<Value>(x);
|
|
if (cnt == 0 || std::isnan(vx))
|
|
return; // Count 0 breaks compress() assumptions, Nan breaks sort(). We treat them as no sample.
|
|
addCentroid(Centroid{vx, static_cast<Count>(cnt)});
|
|
}
|
|
|
|
void merge(const QuantileTDigest & other)
|
|
{
|
|
for (const auto & c : other.centroids)
|
|
addCentroid(c);
|
|
}
|
|
|
|
void serialize(WriteBuffer & buf)
|
|
{
|
|
compress();
|
|
writeVarUInt(centroids.size(), buf);
|
|
buf.write(reinterpret_cast<const char *>(centroids.data()), centroids.size() * sizeof(centroids[0]));
|
|
}
|
|
|
|
void deserialize(ReadBuffer & buf)
|
|
{
|
|
size_t size = 0;
|
|
readVarUInt(size, buf);
|
|
|
|
if (size > max_centroids_deserialize)
|
|
throw Exception("Too large t-digest centroids size", ErrorCodes::TOO_LARGE_ARRAY_SIZE);
|
|
|
|
count = 0;
|
|
unmerged = 0;
|
|
|
|
centroids.resize(size);
|
|
// From now, TDigest will be in invalid state if exception is thrown.
|
|
buf.read(reinterpret_cast<char *>(centroids.data()), size * sizeof(centroids[0]));
|
|
|
|
for (const auto & c : centroids)
|
|
{
|
|
if (c.count <= 0 || std::isnan(c.count) || std::isnan(c.mean)) // invalid count breaks compress(), invalid mean breaks sort()
|
|
throw Exception("Invalid centroid " + std::to_string(c.count) + ":" + std::to_string(c.mean), ErrorCodes::CANNOT_PARSE_INPUT_ASSERTION_FAILED);
|
|
count += c.count;
|
|
}
|
|
compress(); // Allows reading/writing TDigests with different epsilon/max_centroids params
|
|
}
|
|
|
|
/** Calculates the quantile q [0, 1] based on the digest.
|
|
* For an empty digest returns NaN.
|
|
*/
|
|
template <typename ResultType>
|
|
ResultType getImpl(Float64 level)
|
|
{
|
|
if (centroids.empty())
|
|
return std::is_floating_point_v<ResultType> ? NAN : 0;
|
|
|
|
compress();
|
|
|
|
if (centroids.size() == 1)
|
|
return centroids.front().mean;
|
|
|
|
Float64 x = level * count;
|
|
Float64 prev_x = 0;
|
|
Count sum = 0;
|
|
Value prev_mean = centroids.front().mean;
|
|
Count prev_count = centroids.front().count;
|
|
|
|
for (const auto & c : centroids)
|
|
{
|
|
Float64 current_x = sum + c.count * 0.5;
|
|
|
|
if (current_x >= x)
|
|
{
|
|
/// Special handling of singletons.
|
|
Float64 left = prev_x + 0.5 * (prev_count == 1);
|
|
Float64 right = current_x - 0.5 * (c.count == 1);
|
|
|
|
if (x <= left)
|
|
return prev_mean;
|
|
else if (x >= right)
|
|
return c.mean;
|
|
else
|
|
return interpolate(x, left, prev_mean, right, c.mean);
|
|
}
|
|
|
|
sum += c.count;
|
|
prev_mean = c.mean;
|
|
prev_count = c.count;
|
|
prev_x = current_x;
|
|
}
|
|
|
|
return centroids.back().mean;
|
|
}
|
|
|
|
/** Get multiple quantiles (`size` parts).
|
|
* levels - an array of levels of the desired quantiles. They are in a random order.
|
|
* levels_permutation - array-permutation levels. The i-th position will be the index of the i-th ascending level in the `levels` array.
|
|
* result - the array where the results are added, in order of `levels`,
|
|
*/
|
|
template <typename ResultType>
|
|
void getManyImpl(const Float64 * levels, const size_t * levels_permutation, size_t size, ResultType * result)
|
|
{
|
|
if (centroids.empty())
|
|
{
|
|
for (size_t result_num = 0; result_num < size; ++result_num)
|
|
result[result_num] = std::is_floating_point_v<ResultType> ? NAN : 0;
|
|
return;
|
|
}
|
|
|
|
compress();
|
|
|
|
if (centroids.size() == 1)
|
|
{
|
|
for (size_t result_num = 0; result_num < size; ++result_num)
|
|
result[result_num] = centroids.front().mean;
|
|
return;
|
|
}
|
|
|
|
Float64 x = levels[levels_permutation[0]] * count;
|
|
Float64 prev_x = 0;
|
|
Count sum = 0;
|
|
Value prev_mean = centroids.front().mean;
|
|
Count prev_count = centroids.front().count;
|
|
|
|
size_t result_num = 0;
|
|
for (const auto & c : centroids)
|
|
{
|
|
Float64 current_x = sum + c.count * 0.5;
|
|
|
|
if (current_x >= x)
|
|
{
|
|
/// Special handling of singletons.
|
|
Float64 left = prev_x + 0.5 * (prev_count == 1);
|
|
Float64 right = current_x - 0.5 * (c.count == 1);
|
|
|
|
while (current_x >= x)
|
|
{
|
|
|
|
if (x <= left)
|
|
result[levels_permutation[result_num]] = prev_mean;
|
|
else if (x >= right)
|
|
result[levels_permutation[result_num]] = c.mean;
|
|
else
|
|
result[levels_permutation[result_num]] = interpolate(x, left, prev_mean, right, c.mean);
|
|
|
|
++result_num;
|
|
if (result_num >= size)
|
|
return;
|
|
|
|
x = levels[levels_permutation[result_num]] * count;
|
|
}
|
|
}
|
|
|
|
sum += c.count;
|
|
prev_mean = c.mean;
|
|
prev_count = c.count;
|
|
prev_x = current_x;
|
|
}
|
|
|
|
auto rest_of_results = centroids.back().mean;
|
|
for (; result_num < size; ++result_num)
|
|
result[levels_permutation[result_num]] = rest_of_results;
|
|
}
|
|
|
|
T get(Float64 level)
|
|
{
|
|
return getImpl<T>(level);
|
|
}
|
|
|
|
Float32 getFloat(Float64 level)
|
|
{
|
|
return getImpl<Float32>(level);
|
|
}
|
|
|
|
void getMany(const Float64 * levels, const size_t * indices, size_t size, T * result)
|
|
{
|
|
getManyImpl(levels, indices, size, result);
|
|
}
|
|
|
|
void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float32 * result)
|
|
{
|
|
getManyImpl(levels, indices, size, result);
|
|
}
|
|
};
|
|
|
|
}
|