ClickHouse/src/Functions/multiIf.cpp

477 lines
18 KiB
C++

#include <Functions/FunctionFactory.h>
#include <Functions/FunctionIfBase.h>
#include <Columns/ColumnNullable.h>
#include <Columns/ColumnConst.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/MaskOperations.h>
#include <Interpreters/castColumn.h>
#include <Common/assert_cast.h>
#include <Common/typeid_cast.h>
#include <Interpreters/Context.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/getLeastSupertype.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int NOT_IMPLEMENTED;
extern const int LOGICAL_ERROR;
}
namespace
{
/// Function multiIf, which generalizes the function if.
///
/// Syntax: multiIf(cond_1, then_1, ..., cond_N, then_N, else)
/// where N >= 1.
///
/// For all 1 <= i <= N, "cond_i" has type UInt8.
/// Types of all the branches "then_i" and "else" have a common type.
///
/// Additionally the arguments, conditions or branches, support nullable types
/// and the NULL value, with a NULL condition treated as false.
class FunctionMultiIf final : public FunctionIfBase
{
public:
static constexpr auto name = "multiIf";
static FunctionPtr create(ContextPtr context_) { return std::make_shared<FunctionMultiIf>(context_); }
explicit FunctionMultiIf(ContextPtr context_) : context(context_) { }
String getName() const override { return name; }
bool isVariadic() const override { return true; }
bool isShortCircuit(ShortCircuitSettings & settings, size_t number_of_arguments) const override
{
settings.enable_lazy_execution_for_first_argument = false;
settings.enable_lazy_execution_for_common_descendants_of_arguments = (number_of_arguments != 3);
settings.force_enable_lazy_execution = false;
return true;
}
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
size_t getNumberOfArguments() const override { return 0; }
bool useDefaultImplementationForNulls() const override { return false; }
bool useDefaultImplementationForNothing() const override { return false; }
bool canBeExecutedOnLowCardinalityDictionary() const override { return false; }
ColumnNumbers getArgumentsThatDontImplyNullableReturnType(size_t number_of_arguments) const override
{
ColumnNumbers args;
for (size_t i = 0; i + 1 < number_of_arguments; i += 2)
args.push_back(i);
return args;
}
DataTypePtr getReturnTypeImpl(const DataTypes & args) const override
{
/// Arguments are the following: cond1, then1, cond2, then2, ... condN, thenN, else.
auto for_conditions = [&args](auto && f)
{
size_t conditions_end = args.size() - 1;
for (size_t i = 0; i < conditions_end; i += 2)
f(args[i]);
};
auto for_branches = [&args](auto && f)
{
size_t branches_end = args.size();
for (size_t i = 1; i < branches_end; i += 2)
f(args[i]);
f(args.back());
};
if (!(args.size() >= 3 && args.size() % 2 == 1))
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH, "Invalid number of arguments for function {}", getName());
for_conditions([&](const DataTypePtr & arg)
{
const IDataType * nested_type;
if (arg->isNullable())
{
if (arg->onlyNull())
return;
const DataTypeNullable & nullable_type = static_cast<const DataTypeNullable &>(*arg);
nested_type = nullable_type.getNestedType().get();
}
else
{
nested_type = arg.get();
}
if (!WhichDataType(nested_type).isUInt8())
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument (condition) of function {}. "
"Must be UInt8.", arg->getName(), getName());
});
DataTypes types_of_branches;
types_of_branches.reserve(args.size() / 2 + 1);
for_branches([&](const DataTypePtr & arg)
{
types_of_branches.emplace_back(arg);
});
return getLeastSupertype(types_of_branches);
}
struct Instruction
{
IColumn::Ptr condition = nullptr;
IColumn::Ptr source = nullptr;
bool condition_always_true = false;
bool condition_is_nullable = false;
bool source_is_constant = false;
bool condition_is_short = false;
bool source_is_short = false;
size_t condition_index = 0;
size_t source_index = 0;
};
ColumnPtr executeImpl(const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count) const override
{
ColumnsWithTypeAndName arguments = args;
executeShortCircuitArguments(arguments);
/** We will gather values from columns in branches to result column,
* depending on values of conditions.
*/
std::vector<Instruction> instructions;
instructions.reserve(arguments.size() / 2 + 1);
Columns converted_columns_holder;
converted_columns_holder.reserve(instructions.capacity());
const DataTypePtr & return_type = result_type;
for (size_t i = 0; i < arguments.size(); i += 2)
{
Instruction instruction;
size_t source_idx = i + 1;
bool last_else_branch = source_idx == arguments.size();
if (last_else_branch)
{
/// The last, "else" branch can be treated as a branch with always true condition "else if (true)".
--source_idx;
instruction.condition_always_true = true;
}
else
{
IColumn::Ptr cond_col = arguments[i].column->convertToFullColumnIfLowCardinality();
/// We skip branches that are always false.
/// If we encounter a branch that is always true, we can finish.
if (cond_col->onlyNull())
continue;
if (const auto * column_const = checkAndGetColumn<ColumnConst>(*cond_col))
{
Field value = column_const->getField();
if (value.isNull())
continue;
if (value.get<UInt64>() == 0)
continue;
instruction.condition_always_true = true;
}
else
{
instruction.condition = cond_col;
instruction.condition_is_nullable = instruction.condition->isNullable();
}
instruction.condition_is_short = cond_col->size() < arguments[0].column->size();
}
const ColumnWithTypeAndName & source_col = arguments[source_idx];
instruction.source_is_short = source_col.column->size() < arguments[0].column->size();
if (source_col.type->equals(*return_type))
{
instruction.source = source_col.column;
}
else
{
/// Cast all columns to result type.
converted_columns_holder.emplace_back(castColumn(source_col, return_type));
instruction.source = converted_columns_holder.back();
}
if (instruction.source && isColumnConst(*instruction.source))
instruction.source_is_constant = true;
instructions.emplace_back(std::move(instruction));
if (instructions.back().condition_always_true)
break;
}
/// Special case if first instruction condition is always true and source is constant
if (instructions.size() == 1 && instructions.front().source_is_constant
&& instructions.front().condition_always_true)
{
MutableColumnPtr res = return_type->createColumn();
auto & instruction = instructions.front();
res->insertFrom(assert_cast<const ColumnConst &>(*instruction.source).getDataColumn(), 0);
return ColumnConst::create(std::move(res), instruction.source->size());
}
bool contains_short = false;
for (const auto & instruction : instructions)
{
if (instruction.condition_is_short || instruction.source_is_short)
{
contains_short = true;
break;
}
}
const auto & settings = context->getSettingsRef();
const WhichDataType which(result_type);
bool execute_multiif_columnar
= settings.allow_execute_multiif_columnar && !contains_short && (which.isInt() || which.isUInt() || which.isFloat());
size_t rows = input_rows_count;
if (!execute_multiif_columnar)
{
MutableColumnPtr res = return_type->createColumn();
executeInstructions(instructions, rows, res);
return std::move(res);
}
#define EXECUTE_INSTRUCTIONS_COLUMNAR(TYPE, INDEX) \
if (which.is##TYPE()) \
{ \
MutableColumnPtr res = ColumnVector<TYPE>::create(rows); \
executeInstructionsColumnar<TYPE, INDEX>(instructions, rows, res); \
return std::move(res); \
}
#define ENUMERATE_NUMERIC_TYPES(M, INDEX) \
M(UInt8, INDEX) \
M(UInt16, INDEX) \
M(UInt32, INDEX) \
M(UInt64, INDEX) \
M(Int8, INDEX) \
M(Int16, INDEX) \
M(Int32, INDEX) \
M(Int64, INDEX) \
M(UInt128, INDEX) \
M(UInt256, INDEX) \
M(Int128, INDEX) \
M(Int256, INDEX) \
M(Float32, INDEX) \
M(Float64, INDEX) \
throw Exception( \
ErrorCodes::NOT_IMPLEMENTED, "Columnar execution of function {} not implemented for type {}", getName(), result_type->getName());
size_t num_instructions = instructions.size();
if (num_instructions <= std::numeric_limits<Int16>::max())
{
ENUMERATE_NUMERIC_TYPES(EXECUTE_INSTRUCTIONS_COLUMNAR, Int16)
}
else if (num_instructions <= std::numeric_limits<Int32>::max())
{
ENUMERATE_NUMERIC_TYPES(EXECUTE_INSTRUCTIONS_COLUMNAR, Int32)
}
else if (num_instructions <= std::numeric_limits<Int64>::max())
{
ENUMERATE_NUMERIC_TYPES(EXECUTE_INSTRUCTIONS_COLUMNAR, Int64)
}
else
throw Exception(
ErrorCodes::LOGICAL_ERROR, "Instruction size({}) of function {} is out of range", getName(), result_type->getName());
}
private:
static void executeInstructions(std::vector<Instruction> & instructions, size_t rows, const MutableColumnPtr & res)
{
for (size_t i = 0; i < rows; ++i)
{
for (auto & instruction : instructions)
{
bool insert = false;
size_t condition_index = instruction.condition_is_short ? instruction.condition_index++ : i;
if (instruction.condition_always_true)
insert = true;
else if (!instruction.condition_is_nullable)
insert = assert_cast<const ColumnUInt8 &>(*instruction.condition).getData()[condition_index];
else
{
const ColumnNullable & condition_nullable = assert_cast<const ColumnNullable &>(*instruction.condition);
const ColumnUInt8 & condition_nested = assert_cast<const ColumnUInt8 &>(condition_nullable.getNestedColumn());
const NullMap & condition_null_map = condition_nullable.getNullMapData();
insert = !condition_null_map[condition_index] && condition_nested.getData()[condition_index];
}
if (insert)
{
size_t source_index = instruction.source_is_short ? instruction.source_index++ : i;
if (!instruction.source_is_constant)
res->insertFrom(*instruction.source, source_index);
else
res->insertFrom(assert_cast<const ColumnConst &>(*instruction.source).getDataColumn(), 0);
break;
}
}
}
}
/// We should read source from which instruction on each row?
template <typename S>
static void calculateInserts(std::vector<Instruction> & instructions, size_t rows, PaddedPODArray<S> & inserts)
{
for (S i = static_cast<S>(instructions.size() - 1); i >= 0; --i)
{
auto & instruction = instructions[i];
if (instruction.condition_always_true)
{
for (size_t row_i = 0; row_i < rows; ++row_i)
inserts[row_i] = i;
}
else if (!instruction.condition_is_nullable)
{
const auto & cond_data = assert_cast<const ColumnUInt8 &>(*instruction.condition).getData();
for (size_t row_i = 0; row_i < rows; ++row_i)
{
/// Equivalent to below code. But it is able to utilize SIMD instructions.
/// if (cond_data[row_i])
/// inserts[row_i] = i;
inserts[row_i] += (!!cond_data[row_i]) * (i - inserts[row_i]);
}
}
else
{
const ColumnNullable & condition_nullable = assert_cast<const ColumnNullable &>(*instruction.condition);
const ColumnUInt8 & condition_nested = assert_cast<const ColumnUInt8 &>(condition_nullable.getNestedColumn());
const auto & condition_nested_data = condition_nested.getData();
const NullMap & condition_null_map = condition_nullable.getNullMapData();
for (size_t row_i = 0; row_i < rows; ++row_i)
{
/// Equivalent to below code. But it is able to utilize SIMD instructions.
/// if (!condition_null_map[row_i] && condition_nested_data[row_i])
/// inserts[row_i] = i;
inserts[row_i] += (~condition_null_map[row_i] & (!!condition_nested_data[row_i])) * (i - inserts[row_i]);
}
}
}
}
template <typename T, typename S>
static void executeInstructionsColumnar(std::vector<Instruction> & instructions, size_t rows, const MutableColumnPtr & res)
{
PaddedPODArray<S> inserts(rows, static_cast<S>(instructions.size()));
calculateInserts(instructions, rows, inserts);
PaddedPODArray<T> & res_data = assert_cast<ColumnVector<T> &>(*res).getData();
for (size_t row_i = 0; row_i < rows; ++row_i)
{
auto & instruction = instructions[inserts[row_i]];
auto ref = instruction.source->getDataAt(row_i);
res_data[row_i] = *reinterpret_cast<const T*>(ref.data);
}
}
static void executeShortCircuitArguments(ColumnsWithTypeAndName & arguments)
{
int last_short_circuit_argument_index = checkShortCircuitArguments(arguments);
if (last_short_circuit_argument_index < 0)
return;
executeColumnIfNeeded(arguments[0]);
/// Let's denote x_i' = maskedExecute(x_i, mask).
/// multiIf(x_0, y_0, x_1, y_1, x_2, y_2, ..., x_{n-1}, y_{n-1}, y_n)
/// We will support mask_i = !x_0 & !x_1 & ... & !x_i
/// and condition_i = !x_0 & ... & !x_{i - 1} & x_i
/// Base:
/// mask_0 and condition_0 is 1 everywhere, x_0' = x_0.
/// Iteration:
/// condition_i = extractMask(mask_{i - 1}, x_{i - 1}')
/// y_i' = maskedExecute(y_i, condition)
/// mask_i = extractMask(mask_{i - 1}, !x_{i - 1}')
/// x_i' = maskedExecute(x_i, mask)
/// Also we will treat NULL as 0 if x_i' is Nullable.
IColumn::Filter mask(arguments[0].column->size(), 1);
MaskInfo mask_info = {.has_ones = true, .has_zeros = false};
IColumn::Filter condition_mask(arguments[0].column->size());
MaskInfo condition_mask_info = {.has_ones = true, .has_zeros = false};
int i = 1;
while (i <= last_short_circuit_argument_index)
{
auto & cond_column = arguments[i - 1].column;
/// If condition is const or null and value is false, we can skip execution of expression after this condition.
if ((isColumnConst(*cond_column) || cond_column->onlyNull()) && !cond_column->empty() && !cond_column->getBool(0))
{
condition_mask_info.has_ones = false;
condition_mask_info.has_zeros = true;
}
else
{
copyMask(mask, condition_mask);
condition_mask_info = extractMask(condition_mask, cond_column);
maskedExecute(arguments[i], condition_mask, condition_mask_info);
}
/// Check if the condition is always true and we don't need to execute the rest arguments.
if (!condition_mask_info.has_zeros)
break;
++i;
if (i > last_short_circuit_argument_index)
break;
/// Extract mask only if it make sense.
if (condition_mask_info.has_ones)
mask_info = extractInvertedMask(mask, cond_column);
/// mask is a inverted disjunction of previous conditions and if it doesn't have once, we don't need to execute the rest arguments.
if (!mask_info.has_ones)
break;
maskedExecute(arguments[i], mask, mask_info);
++i;
}
/// We could skip some arguments execution, but we cannot leave them as ColumnFunction.
/// So, create an empty column with the execution result type.
for (; i <= last_short_circuit_argument_index; ++i)
executeColumnIfNeeded(arguments[i], true);
}
ContextPtr context;
};
}
REGISTER_FUNCTION(MultiIf)
{
factory.registerFunction<FunctionMultiIf>();
/// These are obsolete function names.
factory.registerFunction<FunctionMultiIf>("caseWithoutExpr");
factory.registerFunction<FunctionMultiIf>("caseWithoutExpression");
}
}