mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-16 11:22:12 +00:00
00fdfa115f
NgramDistanceImpl::unrollLowering() relies on the fact that PODArray has padding and it is OK to access more items. Here is an MSan report: ==656==WARNING: MemorySanitizer: use-of-uninitialized-value 0 0x557fd825485f in DB::NgramDistanceImpl<4ul, char8_t, false, true, false>::vectorConstant(DB::PODArray<char8_t, 4096ul, Allocator<false, false>, 63ul, 64ul> const&, DB::PODArray<unsigned long, 4096ul, Allocator<false, false>, 63ul, 64ul> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, DB::PODArray<float, 4096ul, Allocator<false, false>, 63ul, 64ul>&) (/usr/bin/clickhouse+0x124d885f) (BuildId: 76773125d8739591c75d4f4d263a2ffe7ca96855) 1 0x557fd824eb83 in DB::FunctionsStringSimilarity<DB::NgramDistanceImpl<4ul, char8_t, false, true, false>, DB::NameNgramSearchCaseInsensitive>::executeImpl(std::__1::vector<DB::ColumnWithTypeAndName, std::__1::allocator<DB::ColumnWithTypeAndName>> const&, std::__1::shared_ptr<DB::IDataType const> const&, unsigned long) const (/usr/bin/clickhouse+0x124d2b83) (BuildId: 76773125d8739591c75d4f4d263a2ffe7ca96855) 2 0x557fd50023b7 in DB::FunctionToExecutableFunctionAdaptor::executeImpl() const (/usr/bin/clickhouse+0xf2863b7) (BuildId: 76773125d8739591c75d4f4d263a2ffe7ca96855) Uninitialized value was stored to memory at 0 0x557fd4f8da5a in __msan_memcpy (/usr/bin/clickhouse+0xf211a5a) (BuildId: 76773125d8739591c75d4f4d263a2ffe7ca96855) 1 0x557fd8253803 in DB::NgramDistanceImpl<4ul, char8_t, false, true, false>::vectorConstant(DB::PODArray<char8_t, 4096ul, Allocator<false, false>, 63ul, 64ul> const&, DB::PODArray<unsigned long, 4096ul, Allocator<false, false>, 63ul, 64ul> const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char>>, DB::PODArray<float, 4096ul, Allocator<false, false>, 63ul, 64ul>&) (/usr/bin/clickhouse+0x124d7803) (BuildId: 76773125d8739591c75d4f4d263a2ffe7ca96855) 2 0x557fd824eb83 in DB::FunctionsStringSimilarity<DB::NgramDistanceImpl<4ul, char8_t, false, true, false>, DB::NameNgramSearchCaseInsensitive>::executeImpl(std::__1::vector<DB::ColumnWithTypeAndName, std::__1::allocator<DB::ColumnWithTypeAndName>> const&, std::__1::shared_ptr<DB::IDataType const> const&, unsigned long) const (/usr/bin/clickhouse+0x124d2b83) (BuildId: 76773125d8739591c75d4f4d263a2ffe7ca96855) 3 0x557fd50023b7 in DB::FunctionToExecutableFunctionAdaptor::executeImpl() const (/usr/bin/clickhouse+0xf2863b7) (BuildId: 76773125d8739591c75d4f4d263a2ffe7ca96855) Uninitialized value was stored to memory at 0 0x557fd4f8da5a in __msan_memcpy (/usr/bin/clickhouse+0xf211a5a) (BuildId: 76773125d8739591c75d4f4d263a2ffe7ca96855) 1 0x5580061699f5 in detail::memcpySmallAllowReadWriteOverflow15Impl(char*, char const*, long) build_docker/./src/Common/memcpySmall.h:42:13 2 0x5580061699f5 in memcpySmallAllowReadWriteOverflow15(void*, void const*, unsigned long) build_docker/./src/Common/memcpySmall.h:57:5 3 0x5580061699f5 in DB::ColumnString::replicate(DB::PODArray<unsigned long, 4096ul, Allocator<false, false>, 63ul, 64ul> const&) const build_docker/./src/Columns/ColumnString.cpp:462:13 4 0x558005d3fae4 in DB::ColumnConst::convertToFullColumn() const build_docker/./src/Columns/ColumnConst.cpp:48:18 Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
559 lines
22 KiB
C++
559 lines
22 KiB
C++
#include <Functions/FunctionsStringSimilarity.h>
|
|
#include <Functions/FunctionFactory.h>
|
|
#include <Functions/FunctionsHashing.h>
|
|
#include <Common/HashTable/ClearableHashMap.h>
|
|
#include <Common/HashTable/Hash.h>
|
|
#include <Common/UTF8Helpers.h>
|
|
|
|
#include <Core/Defines.h>
|
|
|
|
#include <base/unaligned.h>
|
|
|
|
#include <algorithm>
|
|
#include <climits>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
#ifdef __SSE4_2__
|
|
# include <nmmintrin.h>
|
|
#endif
|
|
|
|
#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
# include <arm_acle.h>
|
|
#endif
|
|
|
|
#if (defined(__PPC64__) || defined(__powerpc64__)) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
#include "vec_crc32.h"
|
|
#endif
|
|
|
|
namespace DB
|
|
{
|
|
/** Distance function implementation.
|
|
* We calculate all the n-grams from left string and count by the index of
|
|
* 16 bits hash of them in the map.
|
|
* Then calculate all the n-grams from the right string and calculate
|
|
* the n-gram distance on the flight by adding and subtracting from the hashmap.
|
|
* Then return the map into the condition of which it was after the left string
|
|
* calculation. If the right string size is big (more than 2**15 bytes),
|
|
* the strings are not similar at all and we return 1.
|
|
*/
|
|
template <size_t N, class CodePoint, bool UTF8, bool case_insensitive, bool symmetric>
|
|
struct NgramDistanceImpl
|
|
{
|
|
using ResultType = Float32;
|
|
|
|
/// map_size for ngram difference.
|
|
static constexpr size_t map_size = 1u << 16;
|
|
|
|
/// If the haystack size is bigger than this, behaviour is unspecified for this function.
|
|
static constexpr size_t max_string_size = 1u << 15;
|
|
|
|
/// Default padding to read safely.
|
|
static constexpr size_t default_padding = 16;
|
|
|
|
/// Max codepoints to store at once. 16 is for batching usage and PODArray has this padding.
|
|
static constexpr size_t simultaneously_codepoints_num = default_padding + N - 1;
|
|
|
|
/** map_size of this fits mostly in L2 cache all the time.
|
|
* Actually use UInt16 as addings and subtractions do not UB overflow. But think of it as a signed
|
|
* integer array.
|
|
*/
|
|
using NgramCount = UInt16;
|
|
|
|
static ALWAYS_INLINE UInt16 calculateASCIIHash(const CodePoint * code_points)
|
|
{
|
|
return intHashCRC32(unalignedLoad<UInt32>(code_points)) & 0xFFFFu;
|
|
}
|
|
|
|
static ALWAYS_INLINE UInt16 calculateUTF8Hash(const CodePoint * code_points)
|
|
{
|
|
UInt64 combined = (static_cast<UInt64>(code_points[0]) << 32) | code_points[1];
|
|
#ifdef __SSE4_2__
|
|
return _mm_crc32_u64(code_points[2], combined) & 0xFFFFu;
|
|
#elif defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
|
|
return __crc32cd(code_points[2], combined) & 0xFFFFu;
|
|
#elif (defined(__PPC64__) || defined(__powerpc64__)) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
|
|
return crc32_ppc(code_points[2], reinterpret_cast<const unsigned char *>(&combined), sizeof(combined)) & 0xFFFFu;
|
|
#elif defined(__s390x__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
return s390x_crc32(code_points[2], combined) & 0xFFFFu;
|
|
#else
|
|
return (intHashCRC32(combined) ^ intHashCRC32(code_points[2])) & 0xFFFFu;
|
|
#endif
|
|
}
|
|
|
|
template <size_t Offset, class Container, size_t... I>
|
|
static ALWAYS_INLINE inline void unrollLowering(Container & cont, const std::index_sequence<I...> &)
|
|
{
|
|
((cont[Offset + I] = std::tolower(cont[Offset + I])), ...);
|
|
}
|
|
|
|
static ALWAYS_INLINE size_t readASCIICodePoints(CodePoint * code_points, const char *& pos, const char * end)
|
|
{
|
|
/// Offset before which we copy some data.
|
|
constexpr size_t padding_offset = default_padding - N + 1;
|
|
/// We have an array like this for ASCII (N == 4, other cases are similar)
|
|
/// |a0|a1|a2|a3|a4|a5|a6|a7|a8|a9|a10|a11|a12|a13|a14|a15|a16|a17|a18|
|
|
/// And we copy ^^^^^^^^^^^^^^^ these bytes to the start
|
|
/// Actually it is enough to copy 3 bytes, but memcpy for 4 bytes translates into 1 instruction
|
|
memcpy(code_points, code_points + padding_offset, roundUpToPowerOfTwoOrZero(N - 1) * sizeof(CodePoint));
|
|
/// Now we have an array
|
|
/// |a13|a14|a15|a16|a4|a5|a6|a7|a8|a9|a10|a11|a12|a13|a14|a15|a16|a17|a18|
|
|
/// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
/// Doing unaligned read of 16 bytes and copy them like above
|
|
/// 16 is also chosen to do two `movups`.
|
|
/// Such copying allow us to have 3 codepoints from the previous read to produce the 4-grams with them.
|
|
memcpy(code_points + (N - 1), pos, default_padding * sizeof(CodePoint));
|
|
|
|
if constexpr (case_insensitive)
|
|
{
|
|
#if defined(MEMORY_SANITIZER)
|
|
/// Due to PODArray padding accessing more elements should be OK
|
|
__msan_unpoison(code_points + (N - 1), padding_offset * sizeof(CodePoint));
|
|
#endif
|
|
/// We really need template lambdas with C++20 to do it inline
|
|
unrollLowering<N - 1>(code_points, std::make_index_sequence<padding_offset>());
|
|
}
|
|
pos += padding_offset;
|
|
if (pos > end)
|
|
return default_padding - (pos - end);
|
|
return default_padding;
|
|
}
|
|
|
|
static ALWAYS_INLINE size_t readUTF8CodePoints(CodePoint * code_points, const char *& pos, const char * end)
|
|
{
|
|
/// The same copying as described in the function above.
|
|
memcpy(code_points, code_points + default_padding - N + 1, roundUpToPowerOfTwoOrZero(N - 1) * sizeof(CodePoint));
|
|
|
|
size_t num = N - 1;
|
|
while (num < default_padding && pos < end)
|
|
{
|
|
size_t length = UTF8::seqLength(*pos);
|
|
|
|
if (pos + length > end)
|
|
length = end - pos;
|
|
|
|
CodePoint res;
|
|
/// This is faster than just memcpy because of compiler optimizations with moving bytes.
|
|
switch (length)
|
|
{
|
|
case 1:
|
|
res = 0;
|
|
memcpy(&res, pos, 1);
|
|
break;
|
|
case 2:
|
|
res = 0;
|
|
memcpy(&res, pos, 2);
|
|
break;
|
|
case 3:
|
|
res = 0;
|
|
memcpy(&res, pos, 3);
|
|
break;
|
|
default:
|
|
memcpy(&res, pos, 4);
|
|
}
|
|
|
|
/// This is not a really true case insensitive utf8. We zero the 5-th bit of every byte.
|
|
/// And first bit of first byte if there are two bytes.
|
|
/// For ASCII it works https://catonmat.net/ascii-case-conversion-trick. For most cyrillic letters also does.
|
|
/// For others, we don't care now. Lowering UTF is not a cheap operation.
|
|
if constexpr (case_insensitive)
|
|
{
|
|
switch (length)
|
|
{
|
|
case 4:
|
|
res &= ~(1u << (5 + 3 * CHAR_BIT));
|
|
[[fallthrough]];
|
|
case 3:
|
|
res &= ~(1u << (5 + 2 * CHAR_BIT));
|
|
[[fallthrough]];
|
|
case 2:
|
|
res &= ~(1u);
|
|
res &= ~(1u << (5 + CHAR_BIT));
|
|
[[fallthrough]];
|
|
default:
|
|
res &= ~(1u << 5);
|
|
}
|
|
}
|
|
|
|
pos += length;
|
|
code_points[num++] = res;
|
|
}
|
|
return num;
|
|
}
|
|
|
|
template <bool save_ngrams>
|
|
static ALWAYS_INLINE inline size_t calculateNeedleStats(
|
|
const char * data,
|
|
const size_t size,
|
|
NgramCount * ngram_stats,
|
|
[[maybe_unused]] NgramCount * ngram_storage,
|
|
size_t (*read_code_points)(CodePoint *, const char *&, const char *),
|
|
UInt16 (*hash_functor)(const CodePoint *))
|
|
{
|
|
const char * start = data;
|
|
const char * end = data + size;
|
|
CodePoint cp[simultaneously_codepoints_num] = {};
|
|
/// read_code_points returns the position of cp where it stopped reading codepoints.
|
|
size_t found = read_code_points(cp, start, end);
|
|
/// We need to start for the first time here, because first N - 1 codepoints mean nothing.
|
|
size_t i = N - 1;
|
|
size_t len = 0;
|
|
do
|
|
{
|
|
for (; i + N <= found; ++i)
|
|
{
|
|
++len;
|
|
UInt16 hash = hash_functor(cp + i);
|
|
if constexpr (save_ngrams)
|
|
*ngram_storage++ = hash;
|
|
++ngram_stats[hash];
|
|
}
|
|
i = 0;
|
|
} while (start < end && (found = read_code_points(cp, start, end)));
|
|
|
|
return len;
|
|
}
|
|
|
|
template <bool reuse_stats>
|
|
static ALWAYS_INLINE inline UInt64 calculateHaystackStatsAndMetric(
|
|
const char * data,
|
|
const size_t size,
|
|
NgramCount * ngram_stats,
|
|
size_t & distance,
|
|
[[maybe_unused]] UInt16 * ngram_storage,
|
|
size_t (*read_code_points)(CodePoint *, const char *&, const char *),
|
|
UInt16 (*hash_functor)(const CodePoint *))
|
|
{
|
|
size_t ngram_cnt = 0;
|
|
const char * start = data;
|
|
const char * end = data + size;
|
|
CodePoint cp[simultaneously_codepoints_num] = {};
|
|
|
|
/// read_code_points returns the position of cp where it stopped reading codepoints.
|
|
size_t found = read_code_points(cp, start, end);
|
|
/// We need to start for the first time here, because first N - 1 codepoints mean nothing.
|
|
size_t iter = N - 1;
|
|
|
|
do
|
|
{
|
|
for (; iter + N <= found; ++iter)
|
|
{
|
|
UInt16 hash = hash_functor(cp + iter);
|
|
/// For symmetric version we should add when we can't subtract to get symmetric difference.
|
|
if (static_cast<Int16>(ngram_stats[hash]) > 0)
|
|
--distance;
|
|
else if constexpr (symmetric)
|
|
++distance;
|
|
if constexpr (reuse_stats)
|
|
ngram_storage[ngram_cnt] = hash;
|
|
++ngram_cnt;
|
|
--ngram_stats[hash];
|
|
}
|
|
iter = 0;
|
|
} while (start < end && (found = read_code_points(cp, start, end)));
|
|
|
|
/// Return the state of hash map to its initial.
|
|
if constexpr (reuse_stats)
|
|
{
|
|
for (size_t i = 0; i < ngram_cnt; ++i)
|
|
++ngram_stats[ngram_storage[i]];
|
|
}
|
|
return ngram_cnt;
|
|
}
|
|
|
|
template <class Callback, class... Args>
|
|
static inline auto dispatchSearcher(Callback callback, Args &&... args)
|
|
{
|
|
if constexpr (!UTF8)
|
|
return callback(std::forward<Args>(args)..., readASCIICodePoints, calculateASCIIHash);
|
|
else
|
|
return callback(std::forward<Args>(args)..., readUTF8CodePoints, calculateUTF8Hash);
|
|
}
|
|
|
|
static void constantConstant(std::string data, std::string needle, Float32 & res)
|
|
{
|
|
std::unique_ptr<NgramCount[]> common_stats{new NgramCount[map_size]{}};
|
|
|
|
/// We use unsafe versions of getting ngrams, so I decided to use padded strings.
|
|
const size_t needle_size = needle.size();
|
|
const size_t data_size = data.size();
|
|
needle.resize(needle_size + default_padding);
|
|
data.resize(data_size + default_padding);
|
|
|
|
size_t second_size = dispatchSearcher(calculateNeedleStats<false>, needle.data(), needle_size, common_stats.get(), nullptr);
|
|
size_t distance = second_size;
|
|
if (data_size <= max_string_size)
|
|
{
|
|
size_t first_size = dispatchSearcher(calculateHaystackStatsAndMetric<false>, data.data(), data_size, common_stats.get(), distance, nullptr);
|
|
/// For !symmetric version we should not use first_size.
|
|
if constexpr (symmetric)
|
|
res = distance * 1.f / std::max(first_size + second_size, 1uz);
|
|
else
|
|
res = 1.f - distance * 1.f / std::max(second_size, 1uz);
|
|
}
|
|
else
|
|
{
|
|
if constexpr (symmetric)
|
|
res = 1.f;
|
|
else
|
|
res = 0.f;
|
|
}
|
|
}
|
|
|
|
static void vectorVector(
|
|
const ColumnString::Chars & haystack_data,
|
|
const ColumnString::Offsets & haystack_offsets,
|
|
const ColumnString::Chars & needle_data,
|
|
const ColumnString::Offsets & needle_offsets,
|
|
PaddedPODArray<Float32> & res)
|
|
{
|
|
const size_t haystack_offsets_size = haystack_offsets.size();
|
|
size_t prev_haystack_offset = 0;
|
|
size_t prev_needle_offset = 0;
|
|
|
|
std::unique_ptr<NgramCount[]> common_stats{new NgramCount[map_size]{}};
|
|
|
|
/// The main motivation is to not allocate more on stack because we have already allocated a lot (128Kb).
|
|
/// And we can reuse these storages in one thread because we care only about what was written to first places.
|
|
std::unique_ptr<UInt16[]> needle_ngram_storage(new UInt16[max_string_size]);
|
|
std::unique_ptr<UInt16[]> haystack_ngram_storage(new UInt16[max_string_size]);
|
|
|
|
for (size_t i = 0; i < haystack_offsets_size; ++i)
|
|
{
|
|
const char * haystack = reinterpret_cast<const char *>(&haystack_data[prev_haystack_offset]);
|
|
const size_t haystack_size = haystack_offsets[i] - prev_haystack_offset - 1;
|
|
const char * needle = reinterpret_cast<const char *>(&needle_data[prev_needle_offset]);
|
|
const size_t needle_size = needle_offsets[i] - prev_needle_offset - 1;
|
|
|
|
if (needle_size <= max_string_size && haystack_size <= max_string_size)
|
|
{
|
|
/// Get needle stats.
|
|
const size_t needle_stats_size = dispatchSearcher(
|
|
calculateNeedleStats<true>,
|
|
needle,
|
|
needle_size,
|
|
common_stats.get(),
|
|
needle_ngram_storage.get());
|
|
|
|
size_t distance = needle_stats_size;
|
|
|
|
/// Combine with haystack stats, return to initial needle stats.
|
|
const size_t haystack_stats_size = dispatchSearcher(
|
|
calculateHaystackStatsAndMetric<true>,
|
|
haystack,
|
|
haystack_size,
|
|
common_stats.get(),
|
|
distance,
|
|
haystack_ngram_storage.get());
|
|
|
|
/// Return to zero array stats.
|
|
for (size_t j = 0; j < needle_stats_size; ++j)
|
|
--common_stats[needle_ngram_storage[j]];
|
|
|
|
/// For now, common stats is a zero array.
|
|
|
|
|
|
/// For !symmetric version we should not use haystack_stats_size.
|
|
if constexpr (symmetric)
|
|
res[i] = distance * 1.f / std::max(haystack_stats_size + needle_stats_size, 1uz);
|
|
else
|
|
res[i] = 1.f - distance * 1.f / std::max(needle_stats_size, 1uz);
|
|
}
|
|
else
|
|
{
|
|
/// Strings are too big, we are assuming they are not the same. This is done because of limiting number
|
|
/// of bigrams added and not allocating too much memory.
|
|
if constexpr (symmetric)
|
|
res[i] = 1.f;
|
|
else
|
|
res[i] = 0.f;
|
|
}
|
|
|
|
prev_needle_offset = needle_offsets[i];
|
|
prev_haystack_offset = haystack_offsets[i];
|
|
}
|
|
}
|
|
|
|
static void constantVector(
|
|
std::string haystack,
|
|
const ColumnString::Chars & needle_data,
|
|
const ColumnString::Offsets & needle_offsets,
|
|
PaddedPODArray<Float32> & res)
|
|
{
|
|
/// For symmetric version it is better to use vector_constant
|
|
if constexpr (symmetric)
|
|
{
|
|
vectorConstant(needle_data, needle_offsets, std::move(haystack), res);
|
|
}
|
|
else
|
|
{
|
|
const size_t haystack_size = haystack.size();
|
|
haystack.resize(haystack_size + default_padding);
|
|
|
|
/// For logic explanation see vector_vector function.
|
|
const size_t needle_offsets_size = needle_offsets.size();
|
|
size_t prev_offset = 0;
|
|
|
|
std::unique_ptr<NgramCount[]> common_stats{new NgramCount[map_size]{}};
|
|
|
|
std::unique_ptr<UInt16[]> needle_ngram_storage(new UInt16[max_string_size]);
|
|
std::unique_ptr<UInt16[]> haystack_ngram_storage(new UInt16[max_string_size]);
|
|
|
|
for (size_t i = 0; i < needle_offsets_size; ++i)
|
|
{
|
|
const char * needle = reinterpret_cast<const char *>(&needle_data[prev_offset]);
|
|
const size_t needle_size = needle_offsets[i] - prev_offset - 1;
|
|
|
|
if (needle_size <= max_string_size && haystack_size <= max_string_size)
|
|
{
|
|
const size_t needle_stats_size = dispatchSearcher(
|
|
calculateNeedleStats<true>,
|
|
needle,
|
|
needle_size,
|
|
common_stats.get(),
|
|
needle_ngram_storage.get());
|
|
|
|
size_t distance = needle_stats_size;
|
|
|
|
dispatchSearcher(
|
|
calculateHaystackStatsAndMetric<true>,
|
|
haystack.data(),
|
|
haystack_size,
|
|
common_stats.get(),
|
|
distance,
|
|
haystack_ngram_storage.get());
|
|
|
|
for (size_t j = 0; j < needle_stats_size; ++j)
|
|
--common_stats[needle_ngram_storage[j]];
|
|
|
|
res[i] = 1.f - distance * 1.f / std::max(needle_stats_size, 1uz);
|
|
}
|
|
else
|
|
{
|
|
res[i] = 0.f;
|
|
}
|
|
|
|
prev_offset = needle_offsets[i];
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void vectorConstant(
|
|
const ColumnString::Chars & data,
|
|
const ColumnString::Offsets & offsets,
|
|
std::string needle,
|
|
PaddedPODArray<Float32> & res)
|
|
{
|
|
/// zeroing our map
|
|
std::unique_ptr<NgramCount[]> common_stats{new NgramCount[map_size]{}};
|
|
|
|
/// We can reuse these storages in one thread because we care only about what was written to first places.
|
|
std::unique_ptr<UInt16[]> ngram_storage(new NgramCount[max_string_size]);
|
|
|
|
/// We use unsafe versions of getting ngrams, so I decided to use padded_data even in needle case.
|
|
const size_t needle_size = needle.size();
|
|
needle.resize(needle_size + default_padding);
|
|
|
|
const size_t needle_stats_size = dispatchSearcher(calculateNeedleStats<false>, needle.data(), needle_size, common_stats.get(), nullptr);
|
|
|
|
size_t distance = needle_stats_size;
|
|
size_t prev_offset = 0;
|
|
for (size_t i = 0; i < offsets.size(); ++i)
|
|
{
|
|
const UInt8 * haystack = &data[prev_offset];
|
|
const size_t haystack_size = offsets[i] - prev_offset - 1;
|
|
if (haystack_size <= max_string_size)
|
|
{
|
|
size_t haystack_stats_size = dispatchSearcher(
|
|
calculateHaystackStatsAndMetric<true>,
|
|
reinterpret_cast<const char *>(haystack),
|
|
haystack_size, common_stats.get(),
|
|
distance,
|
|
ngram_storage.get());
|
|
/// For !symmetric version we should not use haystack_stats_size.
|
|
if constexpr (symmetric)
|
|
res[i] = distance * 1.f / std::max(haystack_stats_size + needle_stats_size, 1uz);
|
|
else
|
|
res[i] = 1.f - distance * 1.f / std::max(needle_stats_size, 1uz);
|
|
}
|
|
else
|
|
{
|
|
/// if the strings are too big, we say they are completely not the same
|
|
if constexpr (symmetric)
|
|
res[i] = 1.f;
|
|
else
|
|
res[i] = 0.f;
|
|
}
|
|
distance = needle_stats_size;
|
|
prev_offset = offsets[i];
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
struct NameNgramDistance
|
|
{
|
|
static constexpr auto name = "ngramDistance";
|
|
};
|
|
struct NameNgramDistanceCaseInsensitive
|
|
{
|
|
static constexpr auto name = "ngramDistanceCaseInsensitive";
|
|
};
|
|
|
|
struct NameNgramDistanceUTF8
|
|
{
|
|
static constexpr auto name = "ngramDistanceUTF8";
|
|
};
|
|
|
|
struct NameNgramDistanceUTF8CaseInsensitive
|
|
{
|
|
static constexpr auto name = "ngramDistanceCaseInsensitiveUTF8";
|
|
};
|
|
|
|
struct NameNgramSearch
|
|
{
|
|
static constexpr auto name = "ngramSearch";
|
|
};
|
|
struct NameNgramSearchCaseInsensitive
|
|
{
|
|
static constexpr auto name = "ngramSearchCaseInsensitive";
|
|
};
|
|
struct NameNgramSearchUTF8
|
|
{
|
|
static constexpr auto name = "ngramSearchUTF8";
|
|
};
|
|
|
|
struct NameNgramSearchUTF8CaseInsensitive
|
|
{
|
|
static constexpr auto name = "ngramSearchCaseInsensitiveUTF8";
|
|
};
|
|
|
|
using FunctionNgramDistance = FunctionsStringSimilarity<NgramDistanceImpl<4, UInt8, false, false, true>, NameNgramDistance>;
|
|
using FunctionNgramDistanceCaseInsensitive = FunctionsStringSimilarity<NgramDistanceImpl<4, UInt8, false, true, true>, NameNgramDistanceCaseInsensitive>;
|
|
using FunctionNgramDistanceUTF8 = FunctionsStringSimilarity<NgramDistanceImpl<3, UInt32, true, false, true>, NameNgramDistanceUTF8>;
|
|
using FunctionNgramDistanceCaseInsensitiveUTF8 = FunctionsStringSimilarity<NgramDistanceImpl<3, UInt32, true, true, true>, NameNgramDistanceUTF8CaseInsensitive>;
|
|
|
|
using FunctionNgramSearch = FunctionsStringSimilarity<NgramDistanceImpl<4, UInt8, false, false, false>, NameNgramSearch>;
|
|
using FunctionNgramSearchCaseInsensitive = FunctionsStringSimilarity<NgramDistanceImpl<4, UInt8, false, true, false>, NameNgramSearchCaseInsensitive>;
|
|
using FunctionNgramSearchUTF8 = FunctionsStringSimilarity<NgramDistanceImpl<3, UInt32, true, false, false>, NameNgramSearchUTF8>;
|
|
using FunctionNgramSearchCaseInsensitiveUTF8 = FunctionsStringSimilarity<NgramDistanceImpl<3, UInt32, true, true, false>, NameNgramSearchUTF8CaseInsensitive>;
|
|
|
|
|
|
REGISTER_FUNCTION(StringSimilarity)
|
|
{
|
|
factory.registerFunction<FunctionNgramDistance>();
|
|
factory.registerFunction<FunctionNgramDistanceCaseInsensitive>();
|
|
factory.registerFunction<FunctionNgramDistanceUTF8>();
|
|
factory.registerFunction<FunctionNgramDistanceCaseInsensitiveUTF8>();
|
|
|
|
factory.registerFunction<FunctionNgramSearch>();
|
|
factory.registerFunction<FunctionNgramSearchCaseInsensitive>();
|
|
factory.registerFunction<FunctionNgramSearchUTF8>();
|
|
factory.registerFunction<FunctionNgramSearchCaseInsensitiveUTF8>();
|
|
}
|
|
|
|
}
|