mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-17 13:13:36 +00:00
d89ee33ce2
commitc567d4e1fe
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 20:35:01 2017 +0300 Style [#METR-2944]. commit26bf3e1228
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 20:33:11 2017 +0300 Miscellaneous [#METR-2944]. commiteb946f4c6f
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 20:30:19 2017 +0300 Miscellaneous [#METR-2944]. commit78c867a147
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 20:11:41 2017 +0300 Miscellaneous [#METR-2944]. commit6604c5c83c
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 19:56:15 2017 +0300 Miscellaneous [#METR-2944]. commit23fbf05c1d
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 19:47:52 2017 +0300 Miscellaneous [#METR-2944]. commit98772faf11
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 19:46:05 2017 +0300 Miscellaneous [#METR-2944]. commit3dc636ab9f
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 19:39:46 2017 +0300 Miscellaneous [#METR-2944]. commit3e16aee954
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 19:38:03 2017 +0300 Miscellaneous [#METR-2944]. commitae7e7e90eb
Author: Alexey Milovidov <milovidov@yandex-team.ru> Date: Fri Jan 6 19:34:15 2017 +0300 Miscellaneous [#METR-2944].
223 lines
6.9 KiB
C++
223 lines
6.9 KiB
C++
#pragma once
|
||
|
||
#include <DB/Common/PODArray.h>
|
||
|
||
#include <DB/IO/WriteHelpers.h>
|
||
#include <DB/IO/ReadHelpers.h>
|
||
|
||
#include <DB/DataTypes/DataTypesNumberFixed.h>
|
||
#include <DB/DataTypes/DataTypeArray.h>
|
||
|
||
#include <DB/AggregateFunctions/IUnaryAggregateFunction.h>
|
||
#include <DB/AggregateFunctions/QuantilesCommon.h>
|
||
|
||
#include <DB/Columns/ColumnArray.h>
|
||
|
||
|
||
namespace DB
|
||
{
|
||
|
||
|
||
/** В качестве состояния используется массив, в который складываются все значения.
|
||
* NOTE Если различных значений мало, то это не оптимально.
|
||
* Для 8 и 16-битных значений возможно, было бы лучше использовать lookup-таблицу.
|
||
*/
|
||
template <typename T>
|
||
struct AggregateFunctionQuantileExactData
|
||
{
|
||
/// Сразу будет выделена память на несколько элементов так, чтобы состояние занимало 64 байта.
|
||
static constexpr size_t bytes_in_arena = 64 - sizeof(PODArray<T>);
|
||
|
||
using Array = PODArray<T, bytes_in_arena, AllocatorWithStackMemory<Allocator<false>, bytes_in_arena>>;
|
||
Array array;
|
||
};
|
||
|
||
|
||
/** Точно вычисляет квантиль.
|
||
* В качестве типа аргумента может быть только числовой тип (в том числе, дата и дата-с-временем).
|
||
* Тип результата совпадает с типом аргумента.
|
||
*/
|
||
template <typename T>
|
||
class AggregateFunctionQuantileExact final
|
||
: public IUnaryAggregateFunction<AggregateFunctionQuantileExactData<T>, AggregateFunctionQuantileExact<T>>
|
||
{
|
||
private:
|
||
double level;
|
||
DataTypePtr type;
|
||
|
||
public:
|
||
AggregateFunctionQuantileExact(double level_ = 0.5) : level(level_) {}
|
||
|
||
String getName() const override { return "quantileExact"; }
|
||
|
||
DataTypePtr getReturnType() const override
|
||
{
|
||
return type;
|
||
}
|
||
|
||
void setArgument(const DataTypePtr & argument)
|
||
{
|
||
type = argument;
|
||
}
|
||
|
||
void setParameters(const Array & params) override
|
||
{
|
||
if (params.size() != 1)
|
||
throw Exception("Aggregate function " + getName() + " requires exactly one parameter.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
||
|
||
level = applyVisitor(FieldVisitorConvertToNumber<Float64>(), params[0]);
|
||
}
|
||
|
||
void addImpl(AggregateDataPtr place, const IColumn & column, size_t row_num, Arena *) const
|
||
{
|
||
this->data(place).array.push_back(static_cast<const ColumnVector<T> &>(column).getData()[row_num]);
|
||
}
|
||
|
||
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
|
||
{
|
||
this->data(place).array.insert(this->data(rhs).array.begin(), this->data(rhs).array.end());
|
||
}
|
||
|
||
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
|
||
{
|
||
const auto & array = this->data(place).array;
|
||
|
||
size_t size = array.size();
|
||
writeVarUInt(size, buf);
|
||
buf.write(reinterpret_cast<const char *>(&array[0]), size * sizeof(array[0]));
|
||
}
|
||
|
||
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
|
||
{
|
||
auto & array = this->data(place).array;
|
||
|
||
size_t size = 0;
|
||
readVarUInt(size, buf);
|
||
array.resize(size);
|
||
buf.read(reinterpret_cast<char *>(&array[0]), size * sizeof(array[0]));
|
||
}
|
||
|
||
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
|
||
{
|
||
/// Сортировка массива не будет считаться нарушением константности.
|
||
auto & array = const_cast<typename AggregateFunctionQuantileExactData<T>::Array &>(this->data(place).array);
|
||
|
||
T quantile = T();
|
||
|
||
if (!array.empty())
|
||
{
|
||
size_t n = level < 1
|
||
? level * array.size()
|
||
: (array.size() - 1);
|
||
|
||
std::nth_element(array.begin(), array.begin() + n, array.end()); /// NOTE Можно придумать алгоритм radix-select.
|
||
|
||
quantile = array[n];
|
||
}
|
||
|
||
static_cast<ColumnVector<T> &>(to).getData().push_back(quantile);
|
||
}
|
||
};
|
||
|
||
|
||
/** То же самое, но позволяет вычислить сразу несколько квантилей.
|
||
* Для этого, принимает в качестве параметров несколько уровней. Пример: quantilesExact(0.5, 0.8, 0.9, 0.95)(ConnectTiming).
|
||
* Возвращает массив результатов.
|
||
*/
|
||
template <typename T>
|
||
class AggregateFunctionQuantilesExact final
|
||
: public IUnaryAggregateFunction<AggregateFunctionQuantileExactData<T>, AggregateFunctionQuantilesExact<T>>
|
||
{
|
||
private:
|
||
QuantileLevels<double> levels;
|
||
DataTypePtr type;
|
||
|
||
public:
|
||
String getName() const override { return "quantilesExact"; }
|
||
|
||
DataTypePtr getReturnType() const override
|
||
{
|
||
return std::make_shared<DataTypeArray>(type);
|
||
}
|
||
|
||
void setArgument(const DataTypePtr & argument)
|
||
{
|
||
type = argument;
|
||
}
|
||
|
||
void setParameters(const Array & params) override
|
||
{
|
||
levels.set(params);
|
||
}
|
||
|
||
void addImpl(AggregateDataPtr place, const IColumn & column, size_t row_num, Arena *) const
|
||
{
|
||
this->data(place).array.push_back(static_cast<const ColumnVector<T> &>(column).getData()[row_num]);
|
||
}
|
||
|
||
void merge(AggregateDataPtr place, ConstAggregateDataPtr rhs, Arena * arena) const override
|
||
{
|
||
this->data(place).array.insert(this->data(rhs).array.begin(), this->data(rhs).array.end());
|
||
}
|
||
|
||
void serialize(ConstAggregateDataPtr place, WriteBuffer & buf) const override
|
||
{
|
||
const auto & array = this->data(place).array;
|
||
|
||
size_t size = array.size();
|
||
writeVarUInt(size, buf);
|
||
buf.write(reinterpret_cast<const char *>(&array[0]), size * sizeof(array[0]));
|
||
}
|
||
|
||
void deserialize(AggregateDataPtr place, ReadBuffer & buf, Arena *) const override
|
||
{
|
||
auto & array = this->data(place).array;
|
||
|
||
size_t size = 0;
|
||
readVarUInt(size, buf);
|
||
array.resize(size);
|
||
buf.read(reinterpret_cast<char *>(&array[0]), size * sizeof(array[0]));
|
||
}
|
||
|
||
void insertResultInto(ConstAggregateDataPtr place, IColumn & to) const override
|
||
{
|
||
/// Сортировка массива не будет считаться нарушением константности.
|
||
auto & array = const_cast<typename AggregateFunctionQuantileExactData<T>::Array &>(this->data(place).array);
|
||
|
||
ColumnArray & arr_to = static_cast<ColumnArray &>(to);
|
||
ColumnArray::Offsets_t & offsets_to = arr_to.getOffsets();
|
||
|
||
size_t num_levels = levels.size();
|
||
offsets_to.push_back((offsets_to.size() == 0 ? 0 : offsets_to.back()) + num_levels);
|
||
|
||
typename ColumnVector<T>::Container_t & data_to = static_cast<ColumnVector<T> &>(arr_to.getData()).getData();
|
||
size_t old_size = data_to.size();
|
||
data_to.resize(old_size + num_levels);
|
||
|
||
if (!array.empty())
|
||
{
|
||
size_t prev_n = 0;
|
||
for (auto level_index : levels.permutation)
|
||
{
|
||
auto level = levels.levels[level_index];
|
||
|
||
size_t n = level < 1
|
||
? level * array.size()
|
||
: (array.size() - 1);
|
||
|
||
std::nth_element(array.begin() + prev_n, array.begin() + n, array.end());
|
||
|
||
data_to[old_size + level_index] = array[n];
|
||
prev_n = n;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (size_t i = 0; i < num_levels; ++i)
|
||
data_to[old_size + i] = T();
|
||
}
|
||
}
|
||
};
|
||
|
||
}
|